Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +248 -0
- config.json +31 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +8 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: setfit
|
| 3 |
+
tags:
|
| 4 |
+
- setfit
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- text-classification
|
| 7 |
+
- generated_from_setfit_trainer
|
| 8 |
+
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
+
widget:
|
| 11 |
+
- text: Ruukki Group calculates that it has lost EUR 4mn in the failed project .
|
| 12 |
+
- text: The Tecnomen Convergent Charging solution includes functionality for prepaid
|
| 13 |
+
and post-paid billing , charging and rating of voice calls , video calls , raw
|
| 14 |
+
data traffic and any type of content services in both mobile and fixed networks
|
| 15 |
+
.
|
| 16 |
+
- text: The combined value of the planned investments is about EUR 30mn .
|
| 17 |
+
- text: The Diameter Protocol is developed according to the standards IETF RFC 3588
|
| 18 |
+
and IETF RFC 3539 .
|
| 19 |
+
- text: Below are unaudited consolidated results for Aspocomp Group under IFRS reporting
|
| 20 |
+
standards .
|
| 21 |
+
pipeline_tag: text-classification
|
| 22 |
+
inference: true
|
| 23 |
+
base_model: BAAI/bge-small-en-v1.5
|
| 24 |
+
model-index:
|
| 25 |
+
- name: SetFit with BAAI/bge-small-en-v1.5
|
| 26 |
+
results:
|
| 27 |
+
- task:
|
| 28 |
+
type: text-classification
|
| 29 |
+
name: Text Classification
|
| 30 |
+
dataset:
|
| 31 |
+
name: Unknown
|
| 32 |
+
type: unknown
|
| 33 |
+
split: test
|
| 34 |
+
metrics:
|
| 35 |
+
- type: accuracy
|
| 36 |
+
value: 0.9426048565121413
|
| 37 |
+
name: Accuracy
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
| 41 |
+
|
| 42 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 43 |
+
|
| 44 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 45 |
+
|
| 46 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 47 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 48 |
+
|
| 49 |
+
## Model Details
|
| 50 |
+
|
| 51 |
+
### Model Description
|
| 52 |
+
- **Model Type:** SetFit
|
| 53 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
| 54 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 55 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 56 |
+
- **Number of Classes:** 3 classes
|
| 57 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 58 |
+
<!-- - **Language:** Unknown -->
|
| 59 |
+
<!-- - **License:** Unknown -->
|
| 60 |
+
|
| 61 |
+
### Model Sources
|
| 62 |
+
|
| 63 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 64 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 65 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 66 |
+
|
| 67 |
+
### Model Labels
|
| 68 |
+
| Label | Examples |
|
| 69 |
+
|:---------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 70 |
+
| positive | <ul><li>'HELSINKI ( AFX ) - Nokian Tyres reported a fourth quarter pretax profit of 61.5 mln eur , up from 48.6 mln on the back of strong sales .'</li><li>'Equity ratio was 60.9 % compared to 54.2 % In the third quarter of 2007 , net sales of the Frozen Foods Business totaled EUR 11.0 , up by about 5 % from the third quarter of 2006 .'</li><li>"`` After a long , unprofitable period the Food Division posted a profitable result , which speaks of a healthier cost structure and a new approach in business operations , '' Rihko said ."</li></ul> |
|
| 71 |
+
| neutral | <ul><li>'Their names have not yet been released .'</li><li>'The contract includes design , construction , delivery of equipment , installation and commissioning .'</li><li>"Tieto 's service is also used to send , process and receive materials related to absentee voting ."</li></ul> |
|
| 72 |
+
| negative | <ul><li>'The company confirmed its estimate for lower revenue for the whole 2009 than the year-ago EUR93 .9 m as given in the interim report on 5 August 2009 .'</li><li>'Acando AB ( ACANB SS ) fell 8.9 percent to 13.35 kronor , the lowest close since Dec. 11 .'</li><li>'Okmetic expects its net sales for the first half of 2009 to be less than in 2008 .'</li></ul> |
|
| 73 |
+
|
| 74 |
+
## Evaluation
|
| 75 |
+
|
| 76 |
+
### Metrics
|
| 77 |
+
| Label | Accuracy |
|
| 78 |
+
|:--------|:---------|
|
| 79 |
+
| **all** | 0.9426 |
|
| 80 |
+
|
| 81 |
+
## Uses
|
| 82 |
+
|
| 83 |
+
### Direct Use for Inference
|
| 84 |
+
|
| 85 |
+
First install the SetFit library:
|
| 86 |
+
|
| 87 |
+
```bash
|
| 88 |
+
pip install setfit
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
Then you can load this model and run inference.
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
from setfit import SetFitModel
|
| 95 |
+
|
| 96 |
+
# Download from the 🤗 Hub
|
| 97 |
+
model = SetFitModel.from_pretrained("moshew/bge-small-en-v1.5-SetFit-FSA")
|
| 98 |
+
# Run inference
|
| 99 |
+
preds = model("The combined value of the planned investments is about EUR 30mn .")
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
<!--
|
| 103 |
+
### Downstream Use
|
| 104 |
+
|
| 105 |
+
*List how someone could finetune this model on their own dataset.*
|
| 106 |
+
-->
|
| 107 |
+
|
| 108 |
+
<!--
|
| 109 |
+
### Out-of-Scope Use
|
| 110 |
+
|
| 111 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 112 |
+
-->
|
| 113 |
+
|
| 114 |
+
<!--
|
| 115 |
+
## Bias, Risks and Limitations
|
| 116 |
+
|
| 117 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 118 |
+
-->
|
| 119 |
+
|
| 120 |
+
<!--
|
| 121 |
+
### Recommendations
|
| 122 |
+
|
| 123 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 124 |
+
-->
|
| 125 |
+
|
| 126 |
+
## Training Details
|
| 127 |
+
|
| 128 |
+
### Training Set Metrics
|
| 129 |
+
| Training set | Min | Median | Max |
|
| 130 |
+
|:-------------|:----|:--------|:----|
|
| 131 |
+
| Word count | 2 | 22.4020 | 60 |
|
| 132 |
+
|
| 133 |
+
| Label | Training Sample Count |
|
| 134 |
+
|:---------|:----------------------|
|
| 135 |
+
| negative | 266 |
|
| 136 |
+
| neutral | 1142 |
|
| 137 |
+
| positive | 403 |
|
| 138 |
+
|
| 139 |
+
### Training Hyperparameters
|
| 140 |
+
- batch_size: (16, 16)
|
| 141 |
+
- num_epochs: (1, 1)
|
| 142 |
+
- max_steps: -1
|
| 143 |
+
- sampling_strategy: oversampling
|
| 144 |
+
- num_iterations: 10
|
| 145 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 146 |
+
- head_learning_rate: 0.01
|
| 147 |
+
- loss: CosineSimilarityLoss
|
| 148 |
+
- distance_metric: cosine_distance
|
| 149 |
+
- margin: 0.25
|
| 150 |
+
- end_to_end: False
|
| 151 |
+
- use_amp: False
|
| 152 |
+
- warmup_proportion: 0.1
|
| 153 |
+
- seed: 42
|
| 154 |
+
- eval_max_steps: -1
|
| 155 |
+
- load_best_model_at_end: False
|
| 156 |
+
|
| 157 |
+
### Training Results
|
| 158 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 159 |
+
|:------:|:----:|:-------------:|:---------------:|
|
| 160 |
+
| 0.0004 | 1 | 0.2832 | - |
|
| 161 |
+
| 0.0221 | 50 | 0.209 | - |
|
| 162 |
+
| 0.0442 | 100 | 0.1899 | - |
|
| 163 |
+
| 0.0663 | 150 | 0.1399 | - |
|
| 164 |
+
| 0.0883 | 200 | 0.1274 | - |
|
| 165 |
+
| 0.1104 | 250 | 0.0586 | - |
|
| 166 |
+
| 0.1325 | 300 | 0.0756 | - |
|
| 167 |
+
| 0.1546 | 350 | 0.0777 | - |
|
| 168 |
+
| 0.1767 | 400 | 0.0684 | - |
|
| 169 |
+
| 0.1988 | 450 | 0.0311 | - |
|
| 170 |
+
| 0.2208 | 500 | 0.0102 | - |
|
| 171 |
+
| 0.2429 | 550 | 0.052 | - |
|
| 172 |
+
| 0.2650 | 600 | 0.0149 | - |
|
| 173 |
+
| 0.2871 | 650 | 0.1042 | - |
|
| 174 |
+
| 0.3092 | 700 | 0.061 | - |
|
| 175 |
+
| 0.3313 | 750 | 0.0083 | - |
|
| 176 |
+
| 0.3534 | 800 | 0.0036 | - |
|
| 177 |
+
| 0.3754 | 850 | 0.002 | - |
|
| 178 |
+
| 0.3975 | 900 | 0.0598 | - |
|
| 179 |
+
| 0.4196 | 950 | 0.0036 | - |
|
| 180 |
+
| 0.4417 | 1000 | 0.0027 | - |
|
| 181 |
+
| 0.4638 | 1050 | 0.0617 | - |
|
| 182 |
+
| 0.4859 | 1100 | 0.0015 | - |
|
| 183 |
+
| 0.5080 | 1150 | 0.0022 | - |
|
| 184 |
+
| 0.5300 | 1200 | 0.0016 | - |
|
| 185 |
+
| 0.5521 | 1250 | 0.0009 | - |
|
| 186 |
+
| 0.5742 | 1300 | 0.0013 | - |
|
| 187 |
+
| 0.5963 | 1350 | 0.0009 | - |
|
| 188 |
+
| 0.6184 | 1400 | 0.0015 | - |
|
| 189 |
+
| 0.6405 | 1450 | 0.0018 | - |
|
| 190 |
+
| 0.6625 | 1500 | 0.0015 | - |
|
| 191 |
+
| 0.6846 | 1550 | 0.0018 | - |
|
| 192 |
+
| 0.7067 | 1600 | 0.0016 | - |
|
| 193 |
+
| 0.7288 | 1650 | 0.0022 | - |
|
| 194 |
+
| 0.7509 | 1700 | 0.0013 | - |
|
| 195 |
+
| 0.7730 | 1750 | 0.0108 | - |
|
| 196 |
+
| 0.7951 | 1800 | 0.0016 | - |
|
| 197 |
+
| 0.8171 | 1850 | 0.0021 | - |
|
| 198 |
+
| 0.8392 | 1900 | 0.002 | - |
|
| 199 |
+
| 0.8613 | 1950 | 0.0015 | - |
|
| 200 |
+
| 0.8834 | 2000 | 0.0016 | - |
|
| 201 |
+
| 0.9055 | 2050 | 0.0028 | - |
|
| 202 |
+
| 0.9276 | 2100 | 0.0013 | - |
|
| 203 |
+
| 0.9496 | 2150 | 0.0019 | - |
|
| 204 |
+
| 0.9717 | 2200 | 0.0075 | - |
|
| 205 |
+
| 0.9938 | 2250 | 0.0015 | - |
|
| 206 |
+
|
| 207 |
+
### Framework Versions
|
| 208 |
+
- Python: 3.10.12
|
| 209 |
+
- SetFit: 1.0.3
|
| 210 |
+
- Sentence Transformers: 2.5.1
|
| 211 |
+
- Transformers: 4.38.1
|
| 212 |
+
- PyTorch: 2.1.0+cu121
|
| 213 |
+
- Datasets: 2.18.0
|
| 214 |
+
- Tokenizers: 0.15.2
|
| 215 |
+
|
| 216 |
+
## Citation
|
| 217 |
+
|
| 218 |
+
### BibTeX
|
| 219 |
+
```bibtex
|
| 220 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 221 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 222 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 223 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 224 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 225 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 226 |
+
publisher = {arXiv},
|
| 227 |
+
year = {2022},
|
| 228 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 229 |
+
}
|
| 230 |
+
```
|
| 231 |
+
|
| 232 |
+
<!--
|
| 233 |
+
## Glossary
|
| 234 |
+
|
| 235 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 236 |
+
-->
|
| 237 |
+
|
| 238 |
+
<!--
|
| 239 |
+
## Model Card Authors
|
| 240 |
+
|
| 241 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 242 |
+
-->
|
| 243 |
+
|
| 244 |
+
<!--
|
| 245 |
+
## Model Card Contact
|
| 246 |
+
|
| 247 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 248 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "LABEL_0"
|
| 13 |
+
},
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 1536,
|
| 16 |
+
"label2id": {
|
| 17 |
+
"LABEL_0": 0
|
| 18 |
+
},
|
| 19 |
+
"layer_norm_eps": 1e-12,
|
| 20 |
+
"max_position_embeddings": 512,
|
| 21 |
+
"model_type": "bert",
|
| 22 |
+
"num_attention_heads": 12,
|
| 23 |
+
"num_hidden_layers": 12,
|
| 24 |
+
"pad_token_id": 0,
|
| 25 |
+
"position_embedding_type": "absolute",
|
| 26 |
+
"torch_dtype": "float32",
|
| 27 |
+
"transformers_version": "4.38.1",
|
| 28 |
+
"type_vocab_size": 2,
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 30522
|
| 31 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.2.2",
|
| 4 |
+
"transformers": "4.28.1",
|
| 5 |
+
"pytorch": "1.13.0+cu117"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null
|
| 9 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": [
|
| 3 |
+
"negative",
|
| 4 |
+
"neutral",
|
| 5 |
+
"positive"
|
| 6 |
+
],
|
| 7 |
+
"normalize_embeddings": false
|
| 8 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11dab720450d4492ff84ed3baa65fa60b66e8bb0a83348fcc02244a798bf2dda
|
| 3 |
+
size 133462128
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8595235eb279767ad54f331847212692ff3d3553ed44fbe7c3f001bd2eb53bb
|
| 3 |
+
size 10159
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|