Update README.md
Browse files
README.md
CHANGED
|
@@ -17,9 +17,85 @@ model-index:
|
|
| 17 |
split: test
|
| 18 |
metrics:
|
| 19 |
- type: acc
|
| 20 |
-
value:
|
| 21 |
name: accuracy
|
| 22 |
source:
|
| 23 |
url: https://github.com/karpathy/nanochat
|
| 24 |
name: nanochat
|
| 25 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
split: test
|
| 18 |
metrics:
|
| 19 |
- type: acc
|
| 20 |
+
value: 9.7
|
| 21 |
name: accuracy
|
| 22 |
source:
|
| 23 |
url: https://github.com/karpathy/nanochat
|
| 24 |
name: nanochat
|
| 25 |
---
|
| 26 |
+
|
| 27 |
+
# NanoChat SFT
|
| 28 |
+
|
| 29 |
+
This is the RL trained checkpoint from [Andrej Karpathy's](https://huggingface.co/karpathy) fullstack llm project to build an LLM, [nanochat](https://github.com/karpathy/nanochat).
|
| 30 |
+
|
| 31 |
+
## Usage
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
import torch
|
| 35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
model_name = "nanochat-students/rl-d20"
|
| 39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
+
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 42 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
|
| 43 |
+
model.eval()
|
| 44 |
+
|
| 45 |
+
conversation = [
|
| 46 |
+
{"role": "user", "content": "Hello, who are you?"},
|
| 47 |
+
]
|
| 48 |
+
rendered = tokenizer.apply_chat_template(
|
| 49 |
+
conversation,
|
| 50 |
+
tokenize=False,
|
| 51 |
+
add_generation_prompt=True,
|
| 52 |
+
)
|
| 53 |
+
model_inputs = tokenizer([rendered], return_tensors="pt").to(model.device)
|
| 54 |
+
|
| 55 |
+
generated = model.generate(**model_inputs, max_new_tokens=256)
|
| 56 |
+
output_ids = generated[0, model_inputs.input_ids.shape[1]:]
|
| 57 |
+
print(tokenizer.decode(output_ids, skip_special_tokens=True))
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
## Chat RL Training Metrics
|
| 62 |
+
|
| 63 |
+
timestamp: 2025-10-15 12:59:52
|
| 64 |
+
|
| 65 |
+
- run: burtenshaw-20251015111354
|
| 66 |
+
- source: sft
|
| 67 |
+
- dtype: bfloat16
|
| 68 |
+
- device_batch_size: 8
|
| 69 |
+
- examples_per_step: 16
|
| 70 |
+
- num_samples: 16
|
| 71 |
+
- max_new_tokens: 256
|
| 72 |
+
- temperature: 1.0000
|
| 73 |
+
- top_k: 50
|
| 74 |
+
- unembedding_lr: 0.0040
|
| 75 |
+
- embedding_lr: 0.2000
|
| 76 |
+
- matrix_lr: 0.0200
|
| 77 |
+
- weight_decay: 0.0000
|
| 78 |
+
- init_lr_frac: 0.0500
|
| 79 |
+
- num_epochs: 1
|
| 80 |
+
- save_every: 60
|
| 81 |
+
- eval_every: 60
|
| 82 |
+
- eval_examples: 400
|
| 83 |
+
|
| 84 |
+
## Chat evaluation RL
|
| 85 |
+
|
| 86 |
+
timestamp: 2025-10-15 13:04:39
|
| 87 |
+
|
| 88 |
+
- source: rl
|
| 89 |
+
- task_name: GSM8K
|
| 90 |
+
- dtype: bfloat16
|
| 91 |
+
- temperature: 0.0000
|
| 92 |
+
- max_new_tokens: 512
|
| 93 |
+
- num_samples: 1
|
| 94 |
+
- top_k: 50
|
| 95 |
+
- batch_size: 8
|
| 96 |
+
- model_tag: None
|
| 97 |
+
- step: None
|
| 98 |
+
- max_problems: None
|
| 99 |
+
- GSM8K: 0.0970
|
| 100 |
+
|
| 101 |
+
Logs from training can be found here: https://huggingface.co/spaces/nanochat-students/trackio
|