nhonhoccode commited on
Commit
12554f1
·
verified ·
1 Parent(s): 253bcf3

Add model card (rich)

Browse files
Files changed (1) hide show
  1. README.md +93 -195
README.md CHANGED
@@ -1,199 +1,97 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
  library_name: transformers
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - qwen
9
+ - unsloth
10
+ - cybersecurity
11
+ - instruction-tuning
12
+ - lora
13
+ - kaggle
14
+ base_model: unsloth/Qwen3-0.6B
15
+ datasets:
16
+ - zobayer0x01/cybersecurity-qa
17
+ metrics:
18
+ - sacrebleu
19
+ - rougeL
20
+ - f1
21
+ - exact_match
22
  ---
23
 
24
+ # qwen3-0-6b Cybersecurity QA (LORA 8bit)
25
+ Fine-tuned on Kaggle using **LORA**. (Quant: LoRA + 8-bit (bnb int8))
26
+
27
+
28
+ ### Model Summary
29
+ - Base: `unsloth/Qwen3-0.6B`
30
+ - Trainable params: **10,092,544** / total **606,142,464**
31
+ - Train wall time (s): 26498.1
32
+ - Files: adapter_model.safetensors + adapter_config.json (LoRA) + tokenizer files
33
+
34
+ ### Data
35
+ - Dataset: `zobayer0x01/cybersecurity-qa`
36
+ - Samples: **total=42484**, train=38235, val=2000
37
+ - Prompting: Chat template with a fixed system prompt:
38
+ ```text
39
+ You are a helpful assistant specialized in cybersecurity Q&A.
40
+ ```
41
+
42
+
43
+ ### Training Config
44
+ | Field | Value |
45
+ |---|---|
46
+ | Method | **LORA** |
47
+ | Precision | fp16 |
48
+ | Quantization | LoRA + 8-bit (bnb int8) |
49
+ | Mode | steps |
50
+ | Num Epochs | 1 |
51
+ | Max Steps | 2000 |
52
+ | Eval Steps | 400 |
53
+ | Save Steps | 400 |
54
+ | LR | 0.0001 |
55
+ | Max Length | 768 |
56
+ | per_device_batch_size | 1 |
57
+ | grad_accum | 8 |
58
+
59
+ ### Evaluation (greedy)
60
+ | Metric | Score |
61
+ |---|---:|
62
+ | BLEU-4 | 1.27 |
63
+ | ROUGE-L | 14.07 |
64
+ | F1 | 27.83 |
65
+ | EM (Exact Match) | 0.00 |
66
+
67
+ > Notes: We normalize whitespace/punctuations, compute token-level P/R/F1, and use `evaluate`'s `sacrebleu/rouge/chrf`.
68
+
69
+ ## How to use
70
+ ```python
71
+ from transformers import AutoTokenizer, AutoModelForCausalLM
72
+ from peft import PeftModel
73
+ tok = AutoTokenizer.from_pretrained("nhonhoccode/qwen3-0-6b-cybersecqa-lora-8bit-20251102-2209")
74
+ base = AutoModelForCausalLM.from_pretrained("unsloth/Qwen3-0.6B")
75
+ mdl = PeftModel.from_pretrained(base, "nhonhoccode/qwen3-0-6b-cybersecqa-lora-8bit-20251102-2209") # Loads LoRA adapter
76
+ prompt = tok.apply_chat_template(
77
+ [{"role":"system","content":"You are a helpful assistant specialized in cybersecurity Q&A."},
78
+ {"role":"user","content":"Explain SQL injection in one paragraph."}],
79
+ tokenize=False, add_generation_prompt=True
80
+ )
81
+ ids = tok(prompt, return_tensors="pt").input_ids
82
+ out = mdl.generate(ids, max_new_tokens=128, do_sample=False)
83
+ print(tok.decode(out[0][ids.shape[-1]:], skip_special_tokens=True))
84
+ ```
85
+
86
+ ### Intended Use & Limitations
87
+ - Domain: cybersecurity Q&A; not guaranteed to be accurate for legal/medical purposes.
88
+ - The model can hallucinate or produce outdated guidance—verify before applying in production.
89
+ - Safety: No explicit content filtering. Add guardrails (moderation, retrieval augmentation) for deployment.
90
+
91
+ ### Reproducibility (env)
92
+ - `transformers>=4.43,<5`, `accelerate>=0.33,<0.34`, `peft>=0.11,<0.13`, `datasets>=2.18,<3`, `evaluate>=0.4,<0.5`,
93
+ `rouge-score`, `sacrebleu`, `huggingface_hub>=0.23,<0.26`, `bitsandbytes`
94
+ - GPU: T4-class; LoRA recommended for low VRAM.
95
+
96
+ ### Changelog
97
+ - 2025-11-02 22:09 — Initial release (LORA-8bit)