push model
Browse files- README.md +124 -0
- config.json +35 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- finance
|
| 8 |
+
- aspect-classification
|
| 9 |
+
- absa
|
| 10 |
+
- finbert
|
| 11 |
+
- text-classification
|
| 12 |
+
datasets:
|
| 13 |
+
- pauri32/fiqa-2018
|
| 14 |
+
base_model: ProsusAI/finbert
|
| 15 |
+
metrics:
|
| 16 |
+
- accuracy
|
| 17 |
+
- f1
|
| 18 |
+
pipeline_tag: text-classification
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# ABSA-FinBERT: Aspect Classification for Financial Text
|
| 22 |
+
|
| 23 |
+
This model classifies financial headlines and tweets into four aspect categories: **Corporate**, **Economy**, **Market**, and **Stock**.
|
| 24 |
+
|
| 25 |
+
## Model Description
|
| 26 |
+
|
| 27 |
+
ABSA-FinBERT is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) for Level-1 aspect classification on the FiQA dataset. The model was trained with class-weighted cross-entropy loss to address extreme class imbalance in the training data.
|
| 28 |
+
|
| 29 |
+
This work is motivated by [Yang et al. (2018)](https://arxiv.org/abs/1808.07931), "Financial Aspect-Based Sentiment Analysis using Deep Representations," which demonstrated that financial text often contains multi-dimensional information requiring aspect-level analysis.
|
| 30 |
+
|
| 31 |
+
## Intended Use
|
| 32 |
+
|
| 33 |
+
- Classifying financial news headlines by topic/aspect
|
| 34 |
+
- Preprocessing step for aspect-based sentiment analysis pipelines
|
| 35 |
+
- Financial text categorization
|
| 36 |
+
|
| 37 |
+
## Training Data
|
| 38 |
+
|
| 39 |
+
Trained on the [FiQA dataset](https://huggingface.co/datasets/pauri32/fiqa-2018) (WWW'18 Open Challenge), with Level-1 aspect labels extracted from hierarchical annotations.
|
| 40 |
+
|
| 41 |
+
| Aspect | Training Examples | Percentage |
|
| 42 |
+
|--------|-------------------|------------|
|
| 43 |
+
| Stock | 562 | 58.5% |
|
| 44 |
+
| Corporate | 367 | 38.2% |
|
| 45 |
+
| Market | 26 | 2.7% |
|
| 46 |
+
| Economy | 4 | 0.4% |
|
| 47 |
+
|
| 48 |
+
### Class Weights Applied
|
| 49 |
+
Due to extreme imbalance, inverse frequency weights were used: Corporate (0.65), Economy (59.94), Market (9.22), Stock (0.43).
|
| 50 |
+
|
| 51 |
+
## Performance
|
| 52 |
+
|
| 53 |
+
| Metric | Score |
|
| 54 |
+
|--------|-------|
|
| 55 |
+
| Accuracy | 88.59% |
|
| 56 |
+
| Macro-F1 | 0.5429 |
|
| 57 |
+
| Weighted-F1 | 0.8688 |
|
| 58 |
+
|
| 59 |
+
### Per-Class Results
|
| 60 |
+
|
| 61 |
+
| Aspect | Precision | Recall | F1-Score | Support |
|
| 62 |
+
|--------|-----------|--------|----------|---------|
|
| 63 |
+
| Corporate | 0.91 | 0.94 | 0.92 | 64 |
|
| 64 |
+
| Economy | 0.00 | 0.00 | 0.00 | 3 |
|
| 65 |
+
| Market | 0.50 | 0.25 | 0.33 | 8 |
|
| 66 |
+
| Stock | 0.89 | 0.95 | 0.92 | 74 |
|
| 67 |
+
|
| 68 |
+
**Note:** The model performs well on majority classes but fails on Economy due to having only 4 training examples. Class weighting cannot overcome severe data scarcity.
|
| 69 |
+
|
| 70 |
+
## Usage
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 74 |
+
import torch
|
| 75 |
+
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/absa-finbert")
|
| 77 |
+
model = AutoModelForSequenceClassification.from_pretrained("your-username/absa-finbert")
|
| 78 |
+
|
| 79 |
+
# Label mapping
|
| 80 |
+
id2label = {0: "Corporate", 1: "Economy", 2: "Market", 3: "Stock"}
|
| 81 |
+
|
| 82 |
+
# Example inference
|
| 83 |
+
text = "How Kraft-Heinz Merger Came Together in Speedy 10 Weeks"
|
| 84 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
|
| 85 |
+
outputs = model(**inputs)
|
| 86 |
+
prediction = torch.argmax(outputs.logits, dim=-1).item()
|
| 87 |
+
|
| 88 |
+
print(f"Aspect: {id2label[prediction]}") # Output: Corporate
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## Training Procedure
|
| 92 |
+
|
| 93 |
+
- **Base model:** ProsusAI/finbert
|
| 94 |
+
- **Learning rate:** 3e-5
|
| 95 |
+
- **Batch size:** 16 (effective 32 with gradient accumulation)
|
| 96 |
+
- **Epochs:** 10 (early stopping patience: 3)
|
| 97 |
+
- **Loss:** Weighted cross-entropy
|
| 98 |
+
- **Optimizer:** AdamW with warmup (10%)
|
| 99 |
+
- **Mixed precision:** FP16
|
| 100 |
+
|
| 101 |
+
## Limitations
|
| 102 |
+
|
| 103 |
+
- Economy class is effectively unlearnable with only 4 training examples
|
| 104 |
+
- Market class has limited representation (26 examples)
|
| 105 |
+
- Model is optimized for short financial headlines/tweets, not long-form text
|
| 106 |
+
|
| 107 |
+
## Citation
|
| 108 |
+
|
| 109 |
+
If you use this model, please cite:
|
| 110 |
+
|
| 111 |
+
```bibtex
|
| 112 |
+
@misc{absa-finbert-2025,
|
| 113 |
+
title={ABSA-FinBERT: Aspect Classification for Financial Text},
|
| 114 |
+
author={Cirillo, Nick and Memon, Suha and Truong, Kalen and Zhang, Bruce},
|
| 115 |
+
year={2025},
|
| 116 |
+
howpublished={\url{https://huggingface.co/your-username/absa-finbert}}
|
| 117 |
+
}
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
## References
|
| 121 |
+
|
| 122 |
+
- Yang, S., Rosenfeld, J., & Makutonin, J. (2018). Financial Aspect-Based Sentiment Analysis using Deep Representations. arXiv:1808.07931.
|
| 123 |
+
- Araci, D. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. arXiv:1908.10063.
|
| 124 |
+
- Maia, M., et al. (2018). WWW'18 Open Challenge: Financial Opinion Mining and Question Answering.
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.2,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.2,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "positive",
|
| 14 |
+
"1": "negative",
|
| 15 |
+
"2": "neutral"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"negative": 1,
|
| 21 |
+
"neutral": 2,
|
| 22 |
+
"positive": 0
|
| 23 |
+
},
|
| 24 |
+
"layer_norm_eps": 1e-12,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"position_embedding_type": "absolute",
|
| 31 |
+
"transformers_version": "4.57.3",
|
| 32 |
+
"type_vocab_size": 2,
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 30522
|
| 35 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0bbf9021d3af08672e7b0a911621662602736ff6d408035dfeb5e5e62749a5c
|
| 3 |
+
size 437961724
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|