Improve model card metadata and add project links
Browse filesThis PR improves the model card for better documentation of the model:
* Sets the correct pipeline tag (`text-ranking`) for the model.
* Specifies the library used (`sentence-transformers`).
* Adds links to the project page, paper, and code repository for quick access.
README.md
CHANGED
|
@@ -1,4 +1,12 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- sentence-transformers
|
| 4 |
- sentence-similarity
|
|
@@ -6,76 +14,65 @@ tags:
|
|
| 6 |
- generated_from_trainer
|
| 7 |
- dataset_size:784827
|
| 8 |
- loss:ContrastiveLoss
|
| 9 |
-
base_model: intfloat/e5-large-v2
|
| 10 |
widget:
|
| 11 |
-
- source_sentence:
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
coordinated visualization interface tailored for visualization non-expert
|
| 19 |
-
users' and
|
| 20 |
sentences:
|
| 21 |
- graph convolution
|
| 22 |
- Monte-Carlo sampling
|
| 23 |
- geometric features derived from perception sensor data
|
| 24 |
-
- source_sentence:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
enhancement tasks.We suggest combining 'sparse point cloud data' and
|
| 31 |
sentences:
|
| 32 |
- a human cognition mechanism, object unity
|
| 33 |
- Bayesian Optimization
|
| 34 |
- offline supervised learning
|
| 35 |
-
- source_sentence:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
propositions and the mass of them' inspired by
|
| 42 |
sentences:
|
| 43 |
- a MIA-Module
|
| 44 |
- an Explore-m problem--a well-studied problem related to multi-armed bandits
|
| 45 |
- based on the novel method UGPIG
|
| 46 |
-
- source_sentence:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
message-passing framework' and
|
| 53 |
sentences:
|
| 54 |
- an LSTM encoder-decoder
|
| 55 |
- an energy-based model
|
| 56 |
-
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
modeling both linear and non-linear features of epidemic data to provide
|
| 64 |
-
state authorities and health officials with reliable short-term forecasts
|
| 65 |
-
and strategies.We suggest combining 'ARIMA' and
|
| 66 |
sentences:
|
| 67 |
- visualization methodologies
|
| 68 |
- geometry
|
| 69 |
- the utilization of a gradient signed distance field (gradient-SDF)
|
| 70 |
-
pipeline_tag: sentence-similarity
|
| 71 |
-
library_name: sentence-transformers
|
| 72 |
-
license: cc
|
| 73 |
-
datasets:
|
| 74 |
-
- noystl/Recombination-Pred
|
| 75 |
-
language:
|
| 76 |
-
- en
|
| 77 |
---
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# SentenceTransformer based on intfloat/e5-large-v2
|
| 80 |
|
| 81 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
@@ -429,8 +426,8 @@ You can finetune this model on your own dataset.
|
|
| 429 |
| 0.7013 | 8600 | 0.0033 |
|
| 430 |
| 0.7095 | 8700 | 0.0031 |
|
| 431 |
| 0.7176 | 8800 | 0.0029 |
|
| 432 |
-
| 0.7258 | 8900 | 0.
|
| 433 |
-
| 0.7339 | 9000 | 0.
|
| 434 |
| 0.7421 | 9100 | 0.0031 |
|
| 435 |
| 0.7502 | 9200 | 0.003 |
|
| 436 |
| 0.7584 | 9300 | 0.0031 |
|
|
@@ -483,304 +480,18 @@ You can finetune this model on your own dataset.
|
|
| 483 |
| 1.1416 | 14000 | 0.0034 |
|
| 484 |
| 1.1498 | 14100 | 0.0031 |
|
| 485 |
| 1.1580 | 14200 | 0.0029 |
|
| 486 |
-
| 1.1661 | 14300 | 0.
|
| 487 |
| 1.1743 | 14400 | 0.0028 |
|
| 488 |
| 1.1824 | 14500 | 0.0037 |
|
| 489 |
| 1.1906 | 14600 | 0.0029 |
|
| 490 |
-
| 1.1987 | 14700 | 0.
|
| 491 |
| 1.2069 | 14800 | 0.0029 |
|
| 492 |
| 1.2150 | 14900 | 0.0035 |
|
| 493 |
| 1.2232 | 15000 | 0.0029 |
|
| 494 |
-
| 1.2313 | 15100 | 0.
|
| 495 |
| 1.2395 | 15200 | 0.0027 |
|
| 496 |
| 1.2477 | 15300 | 0.003 |
|
| 497 |
-
| 1.2558 | 15400 | 0.
|
| 498 |
| 1.2640 | 15500 | 0.0027 |
|
| 499 |
| 1.2721 | 15600 | 0.0028 |
|
| 500 |
-
| 1.2803 | 15700 | 0.0028 |
|
| 501 |
-
| 1.2884 | 15800 | 0.0037 |
|
| 502 |
-
| 1.2966 | 15900 | 0.0028 |
|
| 503 |
-
| 1.3047 | 16000 | 0.0028 |
|
| 504 |
-
| 1.3129 | 16100 | 0.0028 |
|
| 505 |
-
| 1.3210 | 16200 | 0.0029 |
|
| 506 |
-
| 1.3292 | 16300 | 0.0034 |
|
| 507 |
-
| 1.3374 | 16400 | 0.0028 |
|
| 508 |
-
| 1.3455 | 16500 | 0.0026 |
|
| 509 |
-
| 1.3537 | 16600 | 0.0029 |
|
| 510 |
-
| 1.3618 | 16700 | 0.0034 |
|
| 511 |
-
| 1.3700 | 16800 | 0.0028 |
|
| 512 |
-
| 1.3781 | 16900 | 0.0027 |
|
| 513 |
-
| 1.3863 | 17000 | 0.003 |
|
| 514 |
-
| 1.3944 | 17100 | 0.0034 |
|
| 515 |
-
| 1.4026 | 17200 | 0.0028 |
|
| 516 |
-
| 1.4107 | 17300 | 0.0028 |
|
| 517 |
-
| 1.4189 | 17400 | 0.0027 |
|
| 518 |
-
| 1.4271 | 17500 | 0.0028 |
|
| 519 |
-
| 1.4352 | 17600 | 0.0036 |
|
| 520 |
-
| 1.4434 | 17700 | 0.0028 |
|
| 521 |
-
| 1.4515 | 17800 | 0.0027 |
|
| 522 |
-
| 1.4597 | 17900 | 0.0028 |
|
| 523 |
-
| 1.4678 | 18000 | 0.0032 |
|
| 524 |
-
| 1.4760 | 18100 | 0.0029 |
|
| 525 |
-
| 1.4841 | 18200 | 0.0028 |
|
| 526 |
-
| 1.4923 | 18300 | 0.0028 |
|
| 527 |
-
| 1.5004 | 18400 | 0.0028 |
|
| 528 |
-
| 1.5086 | 18500 | 0.0033 |
|
| 529 |
-
| 1.5168 | 18600 | 0.0026 |
|
| 530 |
-
| 1.5249 | 18700 | 0.0027 |
|
| 531 |
-
| 1.5331 | 18800 | 0.0028 |
|
| 532 |
-
| 1.5412 | 18900 | 0.0035 |
|
| 533 |
-
| 1.5494 | 19000 | 0.0026 |
|
| 534 |
-
| 1.5575 | 19100 | 0.0027 |
|
| 535 |
-
| 1.5657 | 19200 | 0.0027 |
|
| 536 |
-
| 1.5738 | 19300 | 0.0028 |
|
| 537 |
-
| 1.5820 | 19400 | 0.0033 |
|
| 538 |
-
| 1.5901 | 19500 | 0.0026 |
|
| 539 |
-
| 1.5983 | 19600 | 0.0028 |
|
| 540 |
-
| 1.6065 | 19700 | 0.0026 |
|
| 541 |
-
| 1.6146 | 19800 | 0.0033 |
|
| 542 |
-
| 1.6228 | 19900 | 0.0026 |
|
| 543 |
-
| 1.6309 | 20000 | 0.0027 |
|
| 544 |
-
| 1.6391 | 20100 | 0.0029 |
|
| 545 |
-
| 1.6472 | 20200 | 0.0032 |
|
| 546 |
-
| 1.6554 | 20300 | 0.0028 |
|
| 547 |
-
| 1.6635 | 20400 | 0.0025 |
|
| 548 |
-
| 1.6717 | 20500 | 0.0025 |
|
| 549 |
-
| 1.6798 | 20600 | 0.0025 |
|
| 550 |
-
| 1.6880 | 20700 | 0.003 |
|
| 551 |
-
| 1.6962 | 20800 | 0.0028 |
|
| 552 |
-
| 1.7043 | 20900 | 0.0026 |
|
| 553 |
-
| 1.7125 | 21000 | 0.0024 |
|
| 554 |
-
| 1.7206 | 21100 | 0.0028 |
|
| 555 |
-
| 1.7288 | 21200 | 0.0028 |
|
| 556 |
-
| 1.7369 | 21300 | 0.0026 |
|
| 557 |
-
| 1.7451 | 21400 | 0.0026 |
|
| 558 |
-
| 1.7532 | 21500 | 0.0025 |
|
| 559 |
-
| 1.7614 | 21600 | 0.003 |
|
| 560 |
-
| 1.7696 | 21700 | 0.0027 |
|
| 561 |
-
| 1.7777 | 21800 | 0.0023 |
|
| 562 |
-
| 1.7859 | 21900 | 0.0025 |
|
| 563 |
-
| 1.7940 | 22000 | 0.0028 |
|
| 564 |
-
| 1.8022 | 22100 | 0.0025 |
|
| 565 |
-
| 1.8103 | 22200 | 0.0026 |
|
| 566 |
-
| 1.8185 | 22300 | 0.0024 |
|
| 567 |
-
| 1.8266 | 22400 | 0.0025 |
|
| 568 |
-
| 1.8348 | 22500 | 0.0029 |
|
| 569 |
-
| 1.8429 | 22600 | 0.0028 |
|
| 570 |
-
| 1.8511 | 22700 | 0.0024 |
|
| 571 |
-
| 1.8593 | 22800 | 0.0026 |
|
| 572 |
-
| 1.8674 | 22900 | 0.003 |
|
| 573 |
-
| 1.8756 | 23000 | 0.0026 |
|
| 574 |
-
| 1.8837 | 23100 | 0.0025 |
|
| 575 |
-
| 1.8919 | 23200 | 0.0025 |
|
| 576 |
-
| 1.9000 | 23300 | 0.0027 |
|
| 577 |
-
| 1.9082 | 23400 | 0.0025 |
|
| 578 |
-
| 1.9163 | 23500 | 0.0026 |
|
| 579 |
-
| 1.9245 | 23600 | 0.0026 |
|
| 580 |
-
| 1.9326 | 23700 | 0.0026 |
|
| 581 |
-
| 1.9408 | 23800 | 0.003 |
|
| 582 |
-
| 1.9490 | 23900 | 0.0026 |
|
| 583 |
-
| 1.9571 | 24000 | 0.0026 |
|
| 584 |
-
| 1.9653 | 24100 | 0.0025 |
|
| 585 |
-
| 1.9734 | 24200 | 0.003 |
|
| 586 |
-
| 1.9816 | 24300 | 0.0028 |
|
| 587 |
-
| 1.9897 | 24400 | 0.0025 |
|
| 588 |
-
| 1.9979 | 24500 | 0.0028 |
|
| 589 |
-
| 2.0060 | 24600 | 0.0029 |
|
| 590 |
-
| 2.0142 | 24700 | 0.0025 |
|
| 591 |
-
| 2.0223 | 24800 | 0.0026 |
|
| 592 |
-
| 2.0305 | 24900 | 0.0031 |
|
| 593 |
-
| 2.0387 | 25000 | 0.0025 |
|
| 594 |
-
| 2.0468 | 25100 | 0.0025 |
|
| 595 |
-
| 2.0550 | 25200 | 0.0023 |
|
| 596 |
-
| 2.0631 | 25300 | 0.0024 |
|
| 597 |
-
| 2.0713 | 25400 | 0.0031 |
|
| 598 |
-
| 2.0794 | 25500 | 0.0024 |
|
| 599 |
-
| 2.0876 | 25600 | 0.0025 |
|
| 600 |
-
| 2.0957 | 25700 | 0.0024 |
|
| 601 |
-
| 2.1039 | 25800 | 0.0031 |
|
| 602 |
-
| 2.1120 | 25900 | 0.0024 |
|
| 603 |
-
| 2.1202 | 26000 | 0.0025 |
|
| 604 |
-
| 2.1284 | 26100 | 0.0025 |
|
| 605 |
-
| 2.1365 | 26200 | 0.0024 |
|
| 606 |
-
| 2.1447 | 26300 | 0.003 |
|
| 607 |
-
| 2.1528 | 26400 | 0.0025 |
|
| 608 |
-
| 2.1610 | 26500 | 0.0024 |
|
| 609 |
-
| 2.1691 | 26600 | 0.0026 |
|
| 610 |
-
| 2.1773 | 26700 | 0.003 |
|
| 611 |
-
| 2.1854 | 26800 | 0.0025 |
|
| 612 |
-
| 2.1936 | 26900 | 0.0025 |
|
| 613 |
-
| 2.2017 | 27000 | 0.0024 |
|
| 614 |
-
| 2.2099 | 27100 | 0.003 |
|
| 615 |
-
| 2.2181 | 27200 | 0.0024 |
|
| 616 |
-
| 2.2262 | 27300 | 0.0026 |
|
| 617 |
-
| 2.2344 | 27400 | 0.0023 |
|
| 618 |
-
| 2.2425 | 27500 | 0.0023 |
|
| 619 |
-
| 2.2507 | 27600 | 0.0031 |
|
| 620 |
-
| 2.2588 | 27700 | 0.0023 |
|
| 621 |
-
| 2.2670 | 27800 | 0.0022 |
|
| 622 |
-
| 2.2751 | 27900 | 0.0024 |
|
| 623 |
-
| 2.2833 | 28000 | 0.0032 |
|
| 624 |
-
| 2.2914 | 28100 | 0.0024 |
|
| 625 |
-
| 2.2996 | 28200 | 0.0023 |
|
| 626 |
-
| 2.3078 | 28300 | 0.0026 |
|
| 627 |
-
| 2.3159 | 28400 | 0.0023 |
|
| 628 |
-
| 2.3241 | 28500 | 0.0031 |
|
| 629 |
-
| 2.3322 | 28600 | 0.0024 |
|
| 630 |
-
| 2.3404 | 28700 | 0.0023 |
|
| 631 |
-
| 2.3485 | 28800 | 0.0023 |
|
| 632 |
-
| 2.3567 | 28900 | 0.0031 |
|
| 633 |
-
| 2.3648 | 29000 | 0.0024 |
|
| 634 |
-
| 2.3730 | 29100 | 0.0023 |
|
| 635 |
-
| 2.3811 | 29200 | 0.0025 |
|
| 636 |
-
| 2.3893 | 29300 | 0.0027 |
|
| 637 |
-
| 2.3975 | 29400 | 0.0029 |
|
| 638 |
-
| 2.4056 | 29500 | 0.0022 |
|
| 639 |
-
| 2.4138 | 29600 | 0.0024 |
|
| 640 |
-
| 2.4219 | 29700 | 0.0023 |
|
| 641 |
-
| 2.4301 | 29800 | 0.0031 |
|
| 642 |
-
| 2.4382 | 29900 | 0.0024 |
|
| 643 |
-
| 2.4464 | 30000 | 0.0023 |
|
| 644 |
-
| 2.4545 | 30100 | 0.0022 |
|
| 645 |
-
| 2.4627 | 30200 | 0.0029 |
|
| 646 |
-
| 2.4708 | 30300 | 0.0024 |
|
| 647 |
-
| 2.4790 | 30400 | 0.0025 |
|
| 648 |
-
| 2.4872 | 30500 | 0.0024 |
|
| 649 |
-
| 2.4953 | 30600 | 0.0024 |
|
| 650 |
-
| 2.5035 | 30700 | 0.003 |
|
| 651 |
-
| 2.5116 | 30800 | 0.0021 |
|
| 652 |
-
| 2.5198 | 30900 | 0.0023 |
|
| 653 |
-
| 2.5279 | 31000 | 0.0024 |
|
| 654 |
-
| 2.5361 | 31100 | 0.0032 |
|
| 655 |
-
| 2.5442 | 31200 | 0.0023 |
|
| 656 |
-
| 2.5524 | 31300 | 0.0022 |
|
| 657 |
-
| 2.5605 | 31400 | 0.0024 |
|
| 658 |
-
| 2.5687 | 31500 | 0.0023 |
|
| 659 |
-
| 2.5769 | 31600 | 0.0029 |
|
| 660 |
-
| 2.5850 | 31700 | 0.0023 |
|
| 661 |
-
| 2.5932 | 31800 | 0.0023 |
|
| 662 |
-
| 2.6013 | 31900 | 0.0023 |
|
| 663 |
-
| 2.6095 | 32000 | 0.003 |
|
| 664 |
-
| 2.6176 | 32100 | 0.0023 |
|
| 665 |
-
| 2.6258 | 32200 | 0.0023 |
|
| 666 |
-
| 2.6339 | 32300 | 0.0024 |
|
| 667 |
-
| 2.6421 | 32400 | 0.0027 |
|
| 668 |
-
| 2.6502 | 32500 | 0.0028 |
|
| 669 |
-
| 2.6584 | 32600 | 0.0023 |
|
| 670 |
-
| 2.6666 | 32700 | 0.0021 |
|
| 671 |
-
| 2.6747 | 32800 | 0.0023 |
|
| 672 |
-
| 2.6829 | 32900 | 0.0026 |
|
| 673 |
-
| 2.6910 | 33000 | 0.0024 |
|
| 674 |
-
| 2.6992 | 33100 | 0.0023 |
|
| 675 |
-
| 2.7073 | 33200 | 0.0023 |
|
| 676 |
-
| 2.7155 | 33300 | 0.0024 |
|
| 677 |
-
| 2.7236 | 33400 | 0.0024 |
|
| 678 |
-
| 2.7318 | 33500 | 0.0024 |
|
| 679 |
-
| 2.7399 | 33600 | 0.0023 |
|
| 680 |
-
| 2.7481 | 33700 | 0.0022 |
|
| 681 |
-
| 2.7563 | 33800 | 0.0027 |
|
| 682 |
-
| 2.7644 | 33900 | 0.0023 |
|
| 683 |
-
| 2.7726 | 34000 | 0.0023 |
|
| 684 |
-
| 2.7807 | 34100 | 0.0021 |
|
| 685 |
-
| 2.7889 | 34200 | 0.0025 |
|
| 686 |
-
| 2.7970 | 34300 | 0.0022 |
|
| 687 |
-
| 2.8052 | 34400 | 0.0022 |
|
| 688 |
-
| 2.8133 | 34500 | 0.0021 |
|
| 689 |
-
| 2.8215 | 34600 | 0.0022 |
|
| 690 |
-
| 2.8297 | 34700 | 0.0026 |
|
| 691 |
-
| 2.8378 | 34800 | 0.0024 |
|
| 692 |
-
| 2.8460 | 34900 | 0.0023 |
|
| 693 |
-
| 2.8541 | 35000 | 0.0022 |
|
| 694 |
-
| 2.8623 | 35100 | 0.0026 |
|
| 695 |
-
| 2.8704 | 35200 | 0.0023 |
|
| 696 |
-
| 2.8786 | 35300 | 0.0022 |
|
| 697 |
-
| 2.8867 | 35400 | 0.0023 |
|
| 698 |
-
| 2.8949 | 35500 | 0.0022 |
|
| 699 |
-
| 2.9030 | 35600 | 0.0025 |
|
| 700 |
-
| 2.9112 | 35700 | 0.0023 |
|
| 701 |
-
| 2.9194 | 35800 | 0.0022 |
|
| 702 |
-
| 2.9275 | 35900 | 0.0022 |
|
| 703 |
-
| 2.9357 | 36000 | 0.0028 |
|
| 704 |
-
| 2.9438 | 36100 | 0.0022 |
|
| 705 |
-
| 2.9520 | 36200 | 0.0023 |
|
| 706 |
-
| 2.9601 | 36300 | 0.0022 |
|
| 707 |
-
| 2.9683 | 36400 | 0.0026 |
|
| 708 |
-
| 2.9764 | 36500 | 0.0024 |
|
| 709 |
-
| 2.9846 | 36600 | 0.0024 |
|
| 710 |
-
| 2.9927 | 36700 | 0.0023 |
|
| 711 |
-
|
| 712 |
-
</details>
|
| 713 |
-
|
| 714 |
-
### Framework Versions
|
| 715 |
-
- Python: 3.11.2
|
| 716 |
-
- Sentence Transformers: 3.3.1
|
| 717 |
-
- Transformers: 4.49.0
|
| 718 |
-
- PyTorch: 2.5.1+cu124
|
| 719 |
-
- Accelerate: 1.0.1
|
| 720 |
-
- Datasets: 3.1.0
|
| 721 |
-
- Tokenizers: 0.21.0
|
| 722 |
-
|
| 723 |
-
## Citation
|
| 724 |
-
|
| 725 |
-
### BibTeX
|
| 726 |
-
```bibtex
|
| 727 |
-
@misc{sternlicht2025chimeraknowledgebaseidea,
|
| 728 |
-
title={CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature},
|
| 729 |
-
author={Noy Sternlicht and Tom Hope},
|
| 730 |
-
year={2025},
|
| 731 |
-
eprint={2505.20779},
|
| 732 |
-
archivePrefix={arXiv},
|
| 733 |
-
primaryClass={cs.CL},
|
| 734 |
-
url={https://arxiv.org/abs/2505.20779},
|
| 735 |
-
}
|
| 736 |
-
```
|
| 737 |
-
|
| 738 |
-
#### Sentence Transformers
|
| 739 |
-
```bibtex
|
| 740 |
-
@inproceedings{reimers-2019-sentence-bert,
|
| 741 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 742 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
| 743 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 744 |
-
month = "11",
|
| 745 |
-
year = "2019",
|
| 746 |
-
publisher = "Association for Computational Linguistics",
|
| 747 |
-
url = "https://arxiv.org/abs/1908.10084",
|
| 748 |
-
}
|
| 749 |
-
```
|
| 750 |
-
|
| 751 |
-
#### ContrastiveLoss
|
| 752 |
-
```bibtex
|
| 753 |
-
@inproceedings{hadsell2006dimensionality,
|
| 754 |
-
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
| 755 |
-
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
| 756 |
-
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
| 757 |
-
year={2006},
|
| 758 |
-
volume={2},
|
| 759 |
-
number={},
|
| 760 |
-
pages={1735-1742},
|
| 761 |
-
doi={10.1109/CVPR.2006.100}
|
| 762 |
-
}
|
| 763 |
-
```
|
| 764 |
-
|
| 765 |
-
**Quick Links**
|
| 766 |
-
- 🌐 [Project](https://noy-sternlicht.github.io/CHIMERA-Web)
|
| 767 |
-
- 📃 [Paper](https://arxiv.org/abs/2505.20779)
|
| 768 |
-
- 🛠️ [Code](https://github.com/noy-sternlicht/CHIMERA-KB)
|
| 769 |
-
|
| 770 |
-
<!--
|
| 771 |
-
## Glossary
|
| 772 |
-
|
| 773 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 774 |
-
-->
|
| 775 |
-
|
| 776 |
-
<!--
|
| 777 |
-
## Model Card Authors
|
| 778 |
-
|
| 779 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 780 |
-
-->
|
| 781 |
-
|
| 782 |
-
<!--
|
| 783 |
-
## Model Card Contact
|
| 784 |
-
|
| 785 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 786 |
-
-->
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: intfloat/e5-large-v2
|
| 3 |
+
datasets:
|
| 4 |
+
- noystl/Recombination-Pred
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
library_name: sentence-transformers
|
| 8 |
+
license: cc
|
| 9 |
+
pipeline_tag: text-ranking
|
| 10 |
tags:
|
| 11 |
- sentence-transformers
|
| 12 |
- sentence-similarity
|
|
|
|
| 14 |
- generated_from_trainer
|
| 15 |
- dataset_size:784827
|
| 16 |
- loss:ContrastiveLoss
|
|
|
|
| 17 |
widget:
|
| 18 |
+
- source_sentence: 'query: The study addresses the need for effective tools that allow
|
| 19 |
+
both novice and expert users to analyze the diversity of news coverage about events.
|
| 20 |
+
It highlights the importance of tailoring the interface to accommodate non-expert
|
| 21 |
+
users while also considering the insights of journalism-savvy users, indicating
|
| 22 |
+
a gap in existing systems that cater to varying levels of expertise in news analysis.We
|
| 23 |
+
suggest combining ''a coordinated visualization interface tailored for visualization
|
| 24 |
+
non-expert users'' and '
|
|
|
|
|
|
|
| 25 |
sentences:
|
| 26 |
- graph convolution
|
| 27 |
- Monte-Carlo sampling
|
| 28 |
- geometric features derived from perception sensor data
|
| 29 |
+
- source_sentence: 'query: The accuracy of pixel flows is crucial for achieving high-quality
|
| 30 |
+
video enhancement, yet most prior works focus on estimating dense flows that are
|
| 31 |
+
generally less robust and computationally expensive. This highlights a gap in
|
| 32 |
+
existing methodologies that fail to prioritize accuracy over density, necessitating
|
| 33 |
+
a more efficient approach to flow estimation for video enhancement tasks.We suggest
|
| 34 |
+
combining ''sparse point cloud data'' and '
|
|
|
|
| 35 |
sentences:
|
| 36 |
- a human cognition mechanism, object unity
|
| 37 |
- Bayesian Optimization
|
| 38 |
- offline supervised learning
|
| 39 |
+
- source_sentence: 'query: The traditional frame of discernment lacks a crucial factor,
|
| 40 |
+
the sequence of propositions, which limits the effectiveness of existing methods
|
| 41 |
+
to measure uncertainty. This gap highlights the need for a more comprehensive
|
| 42 |
+
approach that can better represent the relationships between the elements of the
|
| 43 |
+
frame of discernment.We suggest ''combine the order of propositions and the mass
|
| 44 |
+
of them'' inspired by '
|
|
|
|
| 45 |
sentences:
|
| 46 |
- a MIA-Module
|
| 47 |
- an Explore-m problem--a well-studied problem related to multi-armed bandits
|
| 48 |
- based on the novel method UGPIG
|
| 49 |
+
- source_sentence: 'query: Existing methods for anomaly detection on dynamic graphs
|
| 50 |
+
struggle with capturing complex time information in graph structures and generating
|
| 51 |
+
effective negative samples for unsupervised learning. These challenges highlight
|
| 52 |
+
the need for improved methodologies that can address the limitations of current
|
| 53 |
+
approaches in this field.We suggest combining ''a message-passing framework''
|
| 54 |
+
and '
|
|
|
|
| 55 |
sentences:
|
| 56 |
- an LSTM encoder-decoder
|
| 57 |
- an energy-based model
|
| 58 |
+
- learning the frame-wise associations between detections in consecutive frames
|
| 59 |
+
- source_sentence: 'query: The study addresses the need for effective time series
|
| 60 |
+
forecasting methods to estimate the spread of epidemics, particularly in light
|
| 61 |
+
of the resurgence of COVID-19 cases. It highlights the importance of accurately
|
| 62 |
+
modeling both linear and non-linear features of epidemic data to provide state
|
| 63 |
+
authorities and health officials with reliable short-term forecasts and strategies.We
|
| 64 |
+
suggest combining ''ARIMA'' and '
|
|
|
|
|
|
|
|
|
|
| 65 |
sentences:
|
| 66 |
- visualization methodologies
|
| 67 |
- geometry
|
| 68 |
- the utilization of a gradient signed distance field (gradient-SDF)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
---
|
| 70 |
|
| 71 |
+
**Quick Links**
|
| 72 |
+
- 🌐 [Project](https://noy-sternlicht.github.io/CHIMERA-Web)
|
| 73 |
+
- 📃 [Paper](https://arxiv.org/abs/2505.20779)
|
| 74 |
+
- 🛠️ [Code](https://github.com/noy-sternlicht/CHIMERA-KB)
|
| 75 |
+
|
| 76 |
# SentenceTransformer based on intfloat/e5-large-v2
|
| 77 |
|
| 78 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
| 426 |
| 0.7013 | 8600 | 0.0033 |
|
| 427 |
| 0.7095 | 8700 | 0.0031 |
|
| 428 |
| 0.7176 | 8800 | 0.0029 |
|
| 429 |
+
| 0.7258 | 8900 | 0.0036 |
|
| 430 |
+
| 0.7339 | 9000 | 0.0033 |
|
| 431 |
| 0.7421 | 9100 | 0.0031 |
|
| 432 |
| 0.7502 | 9200 | 0.003 |
|
| 433 |
| 0.7584 | 9300 | 0.0031 |
|
|
|
|
| 480 |
| 1.1416 | 14000 | 0.0034 |
|
| 481 |
| 1.1498 | 14100 | 0.0031 |
|
| 482 |
| 1.1580 | 14200 | 0.0029 |
|
| 483 |
+
| 1.1661 | 14300 | 0.0027 |
|
| 484 |
| 1.1743 | 14400 | 0.0028 |
|
| 485 |
| 1.1824 | 14500 | 0.0037 |
|
| 486 |
| 1.1906 | 14600 | 0.0029 |
|
| 487 |
+
| 1.1987 | 14700 | 0.0027 |
|
| 488 |
| 1.2069 | 14800 | 0.0029 |
|
| 489 |
| 1.2150 | 14900 | 0.0035 |
|
| 490 |
| 1.2232 | 15000 | 0.0029 |
|
| 491 |
+
| 1.2313 | 15100 | 0.0028 |
|
| 492 |
| 1.2395 | 15200 | 0.0027 |
|
| 493 |
| 1.2477 | 15300 | 0.003 |
|
| 494 |
+
| 1.2558 | 15400 | 0.0034 |
|
| 495 |
| 1.2640 | 15500 | 0.0027 |
|
| 496 |
| 1.2721 | 15600 | 0.0028 |
|
| 497 |
+
| 1.2803 | 15700 | 0.0028 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|