File size: 1,767 Bytes
96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 96e6073 184eb71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers
tags:
- Inductive
- Reasoning
datasets:
- nsadeq/redis_generate_rule_alignment
- nsadeq/redis_generate_rule_sft
- nsadeq/redis_follow_rule_sft
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
---
---
library_name: transformers
tags:
- Inductive
- Reasoning
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
---
# Model Card for Model ID
ReDis-Llama is trained for improved inductive reasoning performance.
### Model Description
- **Developed by:** Nafis Sadeq
- **Language(s) (NLP):** English
- **Finetuned from model:** Qwen/Qwen2.5-7B-Instruct
### Model Sources [optional]
- **Repository:** https://github.com/NafisSadeq/reasoning-distillation
- **Paper:** https://arxiv.org/abs/2504.10647
## How to Get Started with the Model
Follow the instructions here: https://github.com/NafisSadeq/reasoning-distillation
## Training Details
Training details can be found in the paper: https://arxiv.org/abs/2504.10647
## Environmental Impact
- **Hardware Type:** 2 × 48 GB Nvidia RTX A6000 GPUs
- **Hours used:** 72 hours
### Model Architecture and Objective
This model has the same architecture as Qwen/Qwen2.5-7B-Instruct
### Compute Infrastructure
2 × 48 GB Nvidia RTX A6000 GPUs
## Citation
If you use this model, please cite the following paper.
@misc{sadeq2025improvingincontextlearningreasoning,
title={Improving In-Context Learning with Reasoning Distillation},
author={Nafis Sadeq and Xin Xu and Zhouhang Xie and Julian McAuley and Byungkyu Kang and Prarit Lamba and Xiang Gao},
year={2025},
eprint={2504.10647},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.10647},
} |