Theo Viel
Update docstring, typing and improve consistency
9e99f59
raw
history blame
7.17 kB
import os
import sys
import torch
import importlib
import numpy as np
import numpy.typing as npt
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Tuple, Union
from yolox.boxes import postprocess
def define_model(config_name: str = "page_element_v3", verbose: bool = True) -> nn.Module:
"""
Defines and initializes the model based on the configuration.
Args:
config_name (str): Configuration name. Defaults to "page_element_v3".
verbose (bool): Whether to print verbose output. Defaults to True.
Returns:
torch.nn.Module: The initialized YOLOX model.
"""
# Load model from exp_file
sys.path.append(os.path.dirname(config_name))
exp_module = importlib.import_module(os.path.basename(config_name).split(".")[0])
config = exp_module.Exp()
model = config.get_model()
# Load weights
if verbose:
print(" -> Loading weights from", config.ckpt)
ckpt = torch.load(config.ckpt, map_location="cpu", weights_only=False)
model.load_state_dict(ckpt["model"], strict=True)
model = YoloXWrapper(model, config)
return model.eval().to(config.device)
def resize_pad(img: torch.Tensor, size: tuple) -> torch.Tensor:
"""
Resizes and pads an image to a given size.
The goal is to preserve the aspect ratio of the image.
Args:
img (torch.Tensor[C x H x W]): The image to resize and pad.
size (tuple[2]): The size to resize and pad the image to.
Returns:
torch.Tensor: The resized and padded image.
"""
img = img.float()
_, h, w = img.shape
scale = min(size[0] / h, size[1] / w)
nh = int(h * scale)
nw = int(w * scale)
img = F.interpolate(
img.unsqueeze(0), size=(nh, nw), mode="bilinear", align_corners=False
).squeeze(0)
img = torch.clamp(img, 0, 255)
pad_b = size[0] - nh
pad_r = size[1] - nw
img = F.pad(img, (0, pad_r, 0, pad_b), value=114.0)
return img
class YoloXWrapper(nn.Module):
"""
Wrapper for YoloX models.
"""
def __init__(self, model: nn.Module, config) -> None:
"""
Constructor
Args:
model (torch model): Yolo model.
config (Config): Config object containing model parameters.
"""
super().__init__()
self.model = model
self.config = config
# Copy config parameters
self.device = config.device
self.img_size = config.size
self.min_bbox_size = config.min_bbox_size
self.normalize_boxes = config.normalize_boxes
self.conf_thresh = config.conf_thresh
self.iou_thresh = config.iou_thresh
self.class_agnostic = config.class_agnostic
self.thresholds_per_class = config.thresholds_per_class
self.labels = config.labels
self.num_classes = config.num_classes
def reformat_input(
self,
x: torch.Tensor,
orig_sizes: Union[torch.Tensor, List, Tuple, npt.NDArray]
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Reformats the input data and original sizes to the correct format.
Args:
x (torch.Tensor[BS x C x H x W]): Input image batch.
orig_sizes (torch.Tensor or list or np.ndarray): Original image sizes.
Returns:
torch tensor [BS x C x H x W]: Input image batch.
torch tensor [BS x 2]: Original image sizes (before resizing and padding).
"""
# Convert image size to tensor
if isinstance(orig_sizes, (list, tuple)):
orig_sizes = np.array(orig_sizes)
if orig_sizes.shape[-1] == 3: # remove channel
orig_sizes = orig_sizes[..., :2]
if isinstance(orig_sizes, np.ndarray):
orig_sizes = torch.from_numpy(orig_sizes).to(self.device)
# Add batch dimension if not present
if len(x.size()) == 3:
x = x.unsqueeze(0)
if len(orig_sizes.size()) == 1:
orig_sizes = orig_sizes.unsqueeze(0)
return x, orig_sizes
def preprocess(self, image: Union[torch.Tensor, npt.NDArray]) -> torch.Tensor:
"""
YoloX preprocessing function:
- Resizes to the longest edge to img_size while preserving the aspect ratio
- Pads the shortest edge to img_size
Args:
image (torch tensor or np array [H x W x 3]): Input images in uint8 format.
Returns:
torch tensor [3 x H x W]: Processed image.
"""
if not isinstance(image, torch.Tensor):
image = torch.from_numpy(image)
image = image.permute(2, 0, 1) # [H, W, 3] -> [3, H, W]
image = resize_pad(image, self.img_size)
return image.float()
def forward(
self,
x: torch.Tensor,
orig_sizes: Union[torch.Tensor, List, Tuple, npt.NDArray]
) -> List[Dict[str, torch.Tensor]]:
"""
Forward pass of the model.
Applies NMS and reformats the predictions.
Args:
x (torch.Tensor[BS x C x H x W]): Input image batch.
orig_sizes (torch.Tensor or list or np.ndarray): Original image sizes.
Returns:
list[dict]: List of prediction dictionaries. Each dictionary contains:
- labels (torch.Tensor[N]): Class labels
- boxes (torch.Tensor[N x 4]): Bounding boxes
- scores (torch.Tensor[N]): Confidence scores.
"""
x, orig_sizes = self.reformat_input(x, orig_sizes)
# Scale to 0-255 if in range 0-1
if x.max() <= 1:
x *= 255
pred_boxes = self.model(x.to(self.device))
# NMS
pred_boxes = postprocess(
pred_boxes,
self.config.num_classes,
self.conf_thresh,
self.iou_thresh,
class_agnostic=self.class_agnostic,
)
# Reformat output
preds = []
for i, (p, size) in enumerate(zip(pred_boxes, orig_sizes)):
if p is None: # No detections
preds.append({
"labels": torch.empty(0),
"boxes": torch.empty((0, 4)),
"scores": torch.empty(0),
})
continue
p = p.view(-1, p.size(-1))
ratio = min(self.img_size[0] / size[0], self.img_size[1] / size[1])
boxes = p[:, :4] / ratio
# Clip
boxes[:, [0, 2]] = torch.clamp(boxes[:, [0, 2]], 0, size[1])
boxes[:, [1, 3]] = torch.clamp(boxes[:, [1, 3]], 0, size[0])
# Remove too small
kept = (
(boxes[:, 2] - boxes[:, 0] > self.min_bbox_size) &
(boxes[:, 3] - boxes[:, 1] > self.min_bbox_size)
)
boxes = boxes[kept]
p = p[kept]
# Normalize to 0-1
if self.normalize_boxes:
boxes[:, [0, 2]] /= size[1]
boxes[:, [1, 3]] /= size[0]
scores = p[:, 4] * p[:, 5]
labels = p[:, 6]
preds.append({"labels": labels, "boxes": boxes, "scores": scores})
return preds