Theo Viel
Update docstring, typing and improve consistency
9e99f59
raw
history blame
4.22 kB
import numpy as np
import numpy.typing as npt
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from typing import Dict, List, Tuple
COLORS = [
"#003EFF",
"#FF8F00",
"#079700",
"#A123FF",
"#87CEEB",
"#FF5733",
"#C70039",
"#900C3F",
"#581845",
"#11998E",
]
def reformat_for_plotting(
boxes: npt.NDArray[np.float64],
labels: npt.NDArray[np.int_],
scores: npt.NDArray[np.float64],
shape: Tuple[int, int, int],
num_classes: int,
) -> Tuple[List[npt.NDArray[np.int_]], List[npt.NDArray[np.float64]]]:
"""
Reformat YOLOX predictions for plotting.
Args:
boxes (np.ndarray): Array of bounding boxes.
labels (np.ndarray): Array of labels.
scores (np.ndarray): Array of confidence scores.
shape (tuple): Shape of the image.
num_classes (int): Number of classes.
Returns:
list[np.ndarray]: List of box bounding boxes per class.
list[np.ndarray]: List of confidence scores per class.
"""
boxes_plot = boxes.copy()
boxes_plot[:, [0, 2]] *= shape[1]
boxes_plot[:, [1, 3]] *= shape[0]
boxes_plot = boxes_plot.astype(int)
boxes_plot[:, 2] -= boxes_plot[:, 0]
boxes_plot[:, 3] -= boxes_plot[:, 1]
boxes_plot = [boxes_plot[labels == c] for c in range(num_classes)]
confs = [scores[labels == c] for c in range(num_classes)]
return boxes_plot, confs
def plot_sample(
img: npt.NDArray[np.uint8],
boxes_list: List[npt.NDArray[np.int_]],
confs_list: List[npt.NDArray[np.float64]],
labels: List[str],
) -> None:
"""
Plots an image with bounding boxes.
Coordinates are expected in format [x_min, y_min, width, height].
Args:
img (numpy.ndarray): The input image to be plotted.
boxes_list (list[np.ndarray]): List of box bounding boxes per class.
confs_list (list[np.ndarray]): List of confidence scores per class.
labels (list): List of class labels.
"""
plt.imshow(img, cmap="gray")
plt.axis(False)
for boxes, confs, col, l in zip(boxes_list, confs_list, COLORS, labels):
for box_idx, box in enumerate(boxes):
# Better display around boundaries
h, w, _ = img.shape
box = np.copy(box)
box[:2] = np.clip(box[:2], 2, max(h, w))
box[2] = min(box[2], w - 2 - box[0])
box[3] = min(box[3], h - 2 - box[1])
rect = Rectangle(
(box[0], box[1]),
box[2],
box[3],
linewidth=2,
facecolor="none",
edgecolor=col,
)
plt.gca().add_patch(rect)
# Add class and index label with proper alignment
plt.text(
box[0], box[1],
f"{l}_{box_idx} conf={confs[box_idx]:.3f}",
color='white',
fontsize=8,
bbox=dict(facecolor=col, alpha=1, edgecolor=col, pad=0, linewidth=2),
verticalalignment='bottom',
horizontalalignment='left'
)
def postprocess_preds_page_element(
preds: Dict[str, npt.NDArray],
thresholds_per_class: Dict[str, float],
class_labels: List[str],
) -> Tuple[npt.NDArray[np.float64], npt.NDArray[np.int_], npt.NDArray[np.float64]]:
"""
Post process predictions for the page element task.
- Applies thresholding
Args:
preds (dict): Predictions. Keys are "scores", "boxes", "labels".
thresholds_per_class (dict): Thresholds per class.
class_labels (list): List of class labels.
Returns:
numpy.ndarray [N x 4]: Array of bounding boxes.
numpy.ndarray [N]: Array of labels.
numpy.ndarray [N]: Array of scores.
"""
boxes = preds["boxes"].cpu().numpy()
labels = preds["labels"].cpu().numpy()
scores = preds["scores"].cpu().numpy()
# Threshold per class
thresholds = np.array(
[thresholds_per_class[class_labels[int(x)]] for x in labels]
)
boxes = boxes[scores > thresholds]
labels = labels[scores > thresholds]
scores = scores[scores > thresholds]
return boxes, labels, scores