# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 import torch import torch.nn as nn from typing import Dict, List, Tuple class Exp: """ Configuration class for the page element model. This class contains all configuration parameters for the YOLOX-based page element detection model, including architecture settings, inference parameters, and class-specific thresholds. """ def __init__(self) -> None: """Initialize the configuration with default parameters.""" self.name: str = "page-element-v3" self.ckpt: str = "weights.pth" self.device: str = "cuda:0" if torch.cuda.is_available() else "cpu" # YOLOX architecture parameters self.act: str = "silu" self.depth: float = 1.00 self.width: float = 1.00 self.labels: List[str] = [ "table", "chart", "title", "infographic", "text", "header_footer", ] self.num_classes: int = len(self.labels) # Inference parameters self.size: Tuple[int, int] = (1024, 1024) self.min_bbox_size: int = 0 self.normalize_boxes: bool = True # NMS & thresholding. These can be updated self.conf_thresh: float = 0.01 self.iou_thresh: float = 0.5 self.class_agnostic: bool = True self.thresholds_per_class: Dict[str, float] = { "table": 0.1, "chart": 0.01, "infographic": 0.01, "title": 0.1, "text": 0.1, "header_footer": 0.1, } def get_model(self) -> nn.Module: """ Get the YOLOX model. Builds and returns a YOLOX model with the configured architecture. Also updates batch normalization parameters for optimal inference. Returns: nn.Module: The YOLOX model with configured parameters. """ from yolox import YOLOX, YOLOPAFPN, YOLOXHead # Build model if getattr(self, "model", None) is None: in_channels = [256, 512, 1024] backbone = YOLOPAFPN( self.depth, self.width, in_channels=in_channels, act=self.act ) head = YOLOXHead( self.num_classes, self.width, in_channels=in_channels, act=self.act ) self.model = YOLOX(backbone, head) # Update batch-norm parameters def init_yolo(M: nn.Module) -> None: for m in M.modules(): if isinstance(m, nn.BatchNorm2d): m.eps = 1e-3 m.momentum = 0.03 self.model.apply(init_yolo) return self.model