File size: 2,278 Bytes
fd01e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch
import torch.nn as nn
import torch.nn.functional as F


class AudioTower(nn.Module):
    def __init__(self, audio_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.audio_tower_name = audio_tower
        self.cfg_only = None

    def forward(self, sounds):
        if type(sounds) is list:
            sound_features = []
            audio_output_lengths = []
            for sound in sounds:
                if hasattr(sound, "input_features"):
                    sound = sound["input_features"]
                sound_feature = self.audio_tower(sound)
                sound_feature = sound_feature.last_hidden_state
                sound_feature = sound_feature.to(sound.dtype)
                sound_features.append(sound_feature)
                audio_output_lengths.append(sound_feature.shape[1])
            sound_features = torch.cat(sound_features, dim=1).squeeze(0)
        else:
            raise NotImplementedError("Not implemented for this encoder")

        return sound_features, audio_output_lengths

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.audio_tower.dtype

    @property
    def config(self):
        if self.is_loaded:
            return self.audio_tower.config
        else:
            return self.cfg_only

    @property
    def device(self):
        return self.audio_tower.device

    @property
    def hidden_size(self):
        return self.config.hidden_size