File size: 39,213 Bytes
fd01e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from torch.nn import Module, ModuleList
import numpy as np
from einops import rearrange, repeat
from torch.cuda.amp import autocast
from torch import nn, einsum, broadcast_tensors, Tensor
from beartype import beartype
from beartype.typing import Literal, Union, Optional
from math import pi, log
import math
class CacheFeatures(object):
def __init__(self, value, type):
self.value = value
self.type = type
def my_to(self, device, dtype):
self.value['features'] = self.value['features'].to(device, dtype) if 'features' in self.value and self.value['features'] is not None else None
return self
def __call__(self):
return self.value
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# broadcat, as tortoise-tts was using it
def broadcat(tensors, dim = -1):
broadcasted_tensors = broadcast_tensors(*tensors)
def pool(x: torch.Tensor, size: int, dim: int) -> torch.Tensor:
# return x.view(x.shape[:dim] + (-1, size) + x.shape[dim + 1 :]).mean(dim + 1)
# Reshape x to group elements along the specified dimension into chunks of 'size', then average over those chunks.
# Check if the dimension is divisible by the pool size, if not pad with mean values
if x.shape[dim] % size != 0:
print(f"Warning: dimension {dim} with size {x.shape[dim]} is not divisible by pool size {size}, padding with mean values")
remainder = x.shape[dim] % size
pad_len = size - remainder
# Get the mean of the last few elements along the dimension to be pooled
last_elements = x.narrow(dim, x.shape[dim] - remainder, remainder)
mean_value = last_elements.mean()
# Create padding tensor with the same shape as x except for the dimension being pooled
pad_shape = list(x.shape)
pad_shape[dim] = pad_len
padding = torch.ones(pad_shape, device=x.device, dtype=x.dtype) * mean_value
# Concatenate the original tensor with the padding along the specified dimension
x = torch.cat([x, padding], dim=dim)
shape_before = x.shape[:dim]
shape_after = x.shape[dim + 1 :]
new_shape = shape_before + (-1, size) + shape_after
x_reshaped = x.view(new_shape)
return x_reshaped.mean(dim + 1)
def rotate_half(x):
x = rearrange(x, '... (d r) -> ... d r', r = 2)
x1, x2 = x.unbind(dim = -1)
x = torch.stack((-x2, x1), dim = -1)
return rearrange(x, '... d r -> ... (d r)')
def apply_rotary_emb(freqs, t, start_index = 0, scale = 1., seq_dim = -2):
with torch.amp.autocast(device_type='cuda', enabled=False):
ori_dtype = t.dtype
embed_dtype = torch.float64
t = t.to(embed_dtype)
if t.ndim == 3:
seq_len = t.shape[seq_dim]
freqs = freqs[-seq_len:].to(t)
rot_dim = freqs.shape[-1]
end_index = start_index + rot_dim
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
return torch.cat((t_left, t, t_right), dim = -1).to(ori_dtype)
class MaxTimeContinuousTimeRotaryEmbedding(nn.Module):
def __init__(self, dim, max_time, period_mode="shortest", device=None):
super().__init__()
assert dim % 2 == 0, "RoPE embedding dimension must be even"
# Set max period = max_time
if period_mode == "shortest": # shortest period is max_time
base = 5
inv_freq = 2 * math.pi / (max_time * (base ** (torch.arange(0, dim // 2).float() / (dim // 2))))
elif period_mode == "longest": # longest period is max_time ** ((dim // 2) / (dim // 2 - 1))
theta = max_time ** ((dim // 2) / (dim // 2 - 1))
inv_freq = 2 * math.pi / ((theta ** (torch.arange(0, dim // 2).float() / (dim // 2))))
else:
raise ValueError(f"Invalid period mode: {period_mode}")
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, time_values: torch.Tensor):
"""
time_values: [batch_size, seq_len], in seconds (or any continuous unit)
Returns:
cos, sin: [batch_size, seq_len, dim]
"""
batch_size, seq_len = time_values.shape
time_values_exp = time_values[:, None, :] # [batch, 1, seq_len]
freqs = (self.inv_freq[None, :, None] @ time_values_exp).transpose(1, 2) # [batch, seq_len, dim//2]
# emb = torch.cat([freqs, freqs], dim=-1) # [batch, seq_len, dim]
# return emb.cos(), emb.sin()
return freqs
def get_axial_freqs(self, *dims):
Colon = slice(None)
all_freqs = []
for ind, dim in enumerate(dims):
pos = torch.arange(dim, device = self.device)
freqs = self.forward(pos, seq_len = dim)
all_axis = [None] * len(dims)
all_axis[ind] = Colon
new_axis_slice = (Ellipsis, *all_axis, Colon)
all_freqs.append(freqs[new_axis_slice])
all_freqs = broadcast_tensors(*all_freqs)
return torch.cat(all_freqs, dim = -1)
class RotaryEmbedding(Module):
@beartype
def __init__(
self,
dim,
custom_freqs: Optional[Tensor] = None,
freqs_for: Union[Literal['lang', 'pixel', 'constant']] = 'lang',
theta = 10000,
max_freq = 10,
num_freqs = 1,
learned_freq = False,
use_xpos = False,
xpos_scale_base = 512,
interpolate_factor = 1.,
theta_rescale_factor = 1.,
seq_before_head_dim = False,
cache_if_possible = True,
max_time = None
):
super().__init__()
self.dim = dim
self.freqs_for = freqs_for
self.max_freq = max_freq
self.num_freqs = num_freqs
self.learned_freq = learned_freq
self.use_xpos = use_xpos
self.xpos_scale_base = xpos_scale_base
self.interpolate_factor = interpolate_factor
self.theta_rescale_factor = theta_rescale_factor
self.cache_if_possible = cache_if_possible
self.max_time = max_time
self.tmp_store('cached_freqs', None)
self.tmp_store('cached_scales', None)
# Adjust theta to avoid angle wrapping after large times
if exists(max_time) and freqs_for == 'lang':
# Make sure highest frequency completes 1 full rotation over max time
# theta = base of exponent: higher theta → lower frequency range
# max_time * (1/theta^(0)) = 2pi => theta = max_time / (2pi)
theta = max_time / (2 * pi)
theta *= theta_rescale_factor ** (dim / (dim - 2))
self.theta = theta
if exists(custom_freqs):
freqs = custom_freqs
elif freqs_for == 'lang':
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
elif freqs_for == 'pixel':
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
elif freqs_for == 'constant':
freqs = torch.ones(num_freqs).float()
self.freqs = nn.Parameter(freqs, requires_grad = learned_freq)
self.learned_freq = learned_freq
# dummy for device
self.tmp_store('dummy', torch.tensor(0))
# default sequence dimension
self.seq_before_head_dim = seq_before_head_dim
self.default_seq_dim = -3 if seq_before_head_dim else -2
# interpolation factors
assert interpolate_factor >= 1.
self.interpolate_factor = interpolate_factor
# xpos
if not use_xpos:
self.tmp_store('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = xpos_scale_base
self.tmp_store('scale', scale)
# add apply_rotary_emb as static method
self.apply_rotary_emb = staticmethod(apply_rotary_emb)
@property
def device(self):
return self.dummy.device
def tmp_store(self, key, value):
self.register_buffer(key, value, persistent = False)
def get_seq_pos(self, seq_len, device, dtype, offset = 0):
return (torch.arange(seq_len, device = device, dtype = dtype) + offset) / self.interpolate_factor
def rotate_queries_or_keys(self, t, seq_dim = None, offset = 0):
seq_dim = default(seq_dim, self.default_seq_dim)
assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim]
freqs = self.forward(self.get_seq_pos(seq_len, device = device, dtype = dtype, offset = offset), seq_len = seq_len, offset = offset)
if seq_dim == -3:
freqs = rearrange(freqs, 'n d -> n 1 d')
return apply_rotary_emb(freqs, t, seq_dim = seq_dim)
def rotate_queries_with_cached_keys(self, q, k, seq_dim = None, offset = 0):
seq_dim = default(seq_dim, self.default_seq_dim)
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim]
assert q_len <= k_len
rotated_q = self.rotate_queries_or_keys(q, seq_dim = seq_dim, offset = k_len - q_len + offset)
rotated_k = self.rotate_queries_or_keys(k, seq_dim = seq_dim, offset = offset)
rotated_q = rotated_q.type(q.dtype)
rotated_k = rotated_k.type(k.dtype)
return rotated_q, rotated_k
def rotate_queries_and_keys(self, q, k, seq_dim = None):
seq_dim = default(seq_dim, self.default_seq_dim)
assert self.use_xpos
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim]
seq = self.get_seq_pos(seq_len, dtype = dtype, device = device)
freqs = self.forward(seq, seq_len = seq_len)
scale = self.get_scale(seq, seq_len = seq_len).to(dtype)
if seq_dim == -3:
freqs = rearrange(freqs, 'n d -> n 1 d')
scale = rearrange(scale, 'n d -> n 1 d')
rotated_q = apply_rotary_emb(freqs, q, scale = scale, seq_dim = seq_dim)
rotated_k = apply_rotary_emb(freqs, k, scale = scale ** -1, seq_dim = seq_dim)
rotated_q = rotated_q.type(q.dtype)
rotated_k = rotated_k.type(k.dtype)
return rotated_q, rotated_k
@beartype
def get_scale(
self,
t: Tensor,
seq_len: Optional[int] = None,
offset = 0
):
assert self.use_xpos
should_cache = (
self.cache_if_possible and
exists(seq_len)
)
if (
should_cache and \
exists(self.cached_scales) and \
(seq_len + offset) <= self.cached_scales.shape[0]
):
return self.cached_scales[offset:(offset + seq_len)]
scale = 1.
if self.use_xpos:
power = (t - len(t) // 2) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
if should_cache:
self.tmp_store('cached_scales', scale)
return scale
def get_axial_freqs(self, *dims):
Colon = slice(None)
all_freqs = []
for ind, dim in enumerate(dims):
if self.freqs_for == 'pixel':
pos = torch.linspace(-1, 1, steps = dim, device = self.device)
else:
pos = torch.arange(dim, device = self.device)
freqs = self.forward(pos, seq_len = dim)
all_axis = [None] * len(dims)
all_axis[ind] = Colon
new_axis_slice = (Ellipsis, *all_axis, Colon)
all_freqs.append(freqs[new_axis_slice])
all_freqs = broadcast_tensors(*all_freqs)
return torch.cat(all_freqs, dim = -1)
def forward(
self,
t: Tensor,
seq_len = None,
offset = 0
):
should_cache = (
self.cache_if_possible and \
not self.learned_freq and \
exists(seq_len) and \
self.freqs_for != 'pixel'
)
if (
should_cache and \
exists(self.cached_freqs) and \
(offset + seq_len) <= self.cached_freqs.shape[0]
):
return self.cached_freqs[offset:(offset + seq_len)].detach()
freqs = self.freqs
# Scale time to keep t * freq <= 2pi
if hasattr(self, 'max_time') and self.max_time is not None:
t = t / self.max_time * (2 * pi)
freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs)
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
if should_cache:
self.tmp_store('cached_freqs', freqs.detach())
return freqs
class BaseEncoder(nn.Module):
def __init__(self, parent: nn.Module) -> None:
super().__init__()
self._parent = [parent]
@property
def parent(self) -> nn.Module:
return self._parent[0]
class BasicImageEncoder(BaseEncoder):
def __init__(
self,
parent: torch.nn.Module,
start_tokens: Optional[str] = None,
end_tokens: Optional[str] = "\n",
) -> None:
super().__init__(parent)
end_tokens = None if end_tokens == "None" else end_tokens
self.start_tokens = start_tokens
self.end_tokens = end_tokens
def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
if tokens is None:
return None
token_ids = self.parent.tokenizer(tokens).input_ids
token_ids = torch.tensor(token_ids, device=self.parent.device)
return self.parent.llm_model_embed_tokens(token_ids)
def _process_features(
self,
features: torch.Tensor,
start_token_embeds: Optional[torch.Tensor],
end_token_embeds: Optional[torch.Tensor],
) -> torch.Tensor:
if start_token_embeds is not None:
features = torch.cat([start_token_embeds, features], dim=0)
if end_token_embeds is not None:
features = torch.cat([features, end_token_embeds], dim=0)
return features
def forward(self, images: List[torch.Tensor], config: Dict[str, Any], mm_info: dict) -> List[torch.Tensor]:
images = torch.stack(images, dim=0)
features = self.parent.encode_images(images, block_sizes=config.get("block_sizes"))
process_features = partial(
self._process_features,
start_token_embeds=self.embed_tokens(self.start_tokens),
end_token_embeds=self.embed_tokens(self.end_tokens),
)
return [process_features(f) for f in features]
class BasicVideoEncoder(BaseEncoder):
def __init__(
self,
parent: torch.nn.Module,
start_tokens: Optional[str] = None,
end_tokens: Optional[str] = "\n",
) -> None:
super().__init__(parent)
end_tokens = None if end_tokens == "None" else end_tokens
self.start_tokens = start_tokens
self.end_tokens = end_tokens
def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
if tokens is None:
return None
token_ids = self.parent.tokenizer(tokens).input_ids
token_ids = torch.tensor(token_ids, device=self.parent.device)
return self.parent.llm_model_embed_tokens(token_ids)
def _process_features(
self,
features: torch.Tensor,
start_token_embeds: Optional[torch.Tensor],
end_token_embeds: Optional[torch.Tensor],
) -> torch.Tensor:
if start_token_embeds is not None:
start_embeds = torch.stack([start_token_embeds] * features.shape[0], dim=0)
features = torch.cat([start_embeds, features], dim=1)
if end_token_embeds is not None:
end_embeds = torch.stack([end_token_embeds] * features.shape[0], dim=0)
features = torch.cat([features, end_embeds], dim=1)
return features.flatten(0, 1)
def forward(self, videos: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
num_frames = [video.shape[0] for video in videos]
images = torch.cat(videos, dim=0)
features = self.parent.encode_images(images)
features = torch.split(features, num_frames)
process_features = partial(
self._process_features,
start_token_embeds=self.embed_tokens(self.start_tokens),
end_token_embeds=self.embed_tokens(self.end_tokens),
)
return [process_features(f) for f in features]
class BasicSoundEncoder(BaseEncoder):
def __init__(
self,
parent: torch.nn.Module,
start_tokens: Optional[str] = None,
end_tokens: Optional[str] = "\n",
embed_time = "True",
trope_theta = 50000,
trope_dim = 128,
max_time = None,
time_embed_type = "pixel",
period_fix = False,
) -> None:
super().__init__(parent)
end_tokens = None if end_tokens == "None" else end_tokens
if embed_time == "True":
embed_time = True
elif embed_time == "False":
embed_time = False
self.start_tokens = start_tokens
self.end_tokens = end_tokens
if embed_time == "False" or embed_time == False:
self.embed_time = False
else:
self.embed_time = True
self.time_embed_type = time_embed_type
period_mode = None
if type(period_fix) == str:
if period_fix == "shortest":
period_fix = "MTCT"
period_mode = "shortest"
elif period_fix == "longest":
period_fix = "MTCT"
period_mode = "longest"
self.period_fix = period_fix
self.max_time = max_time
if period_fix == "MTCT":
if period_mode is None:
self.pos_emb = MaxTimeContinuousTimeRotaryEmbedding(
dim = trope_dim,
max_time = max_time,
)
else:
self.pos_emb = MaxTimeContinuousTimeRotaryEmbedding(
dim = trope_dim,
max_time = max_time,
period_mode = period_mode,
)
elif time_embed_type in ["pixel", "lang"]:
if trope_dim is None and max_time is None:
raise ValueError("trope_dim or max_time is required when embed_time is True")
self.pos_emb = RotaryEmbedding(
dim = trope_dim,
freqs_for = time_embed_type,
max_freq = 256,
max_time = max_time,
)
elif time_embed_type == "learned_embed":
self.time_embed = parent.sound_mm_projector.time_embed
else:
raise ValueError(f"Invalid time_embed_type: {time_embed_type}")
def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
if tokens is None:
return None
token_ids = self.parent.tokenizer(tokens).input_ids
token_ids = torch.tensor(token_ids, device=self.parent.device)
# return self.parent.llm.model.embed_tokens(token_ids)
return self.parent.llm_model_embed_tokens(token_ids)
def _process_features(
self,
features: torch.Tensor,
start_token_embeds: Optional[torch.Tensor],
end_token_embeds: Optional[torch.Tensor],
times: Optional[torch.Tensor] = None,
time_embed: Optional[torch.Tensor] = None,
) -> torch.Tensor:
features = features.to(self.parent.device)
device = features.device
dtype = features.dtype
if self.embed_time:
device = features.device
dtype = features.dtype
# Handle different embedding types
if self.time_embed_type in ["pixel", "lang"]:
times = times.unsqueeze(0)
new_times = times
pos_emb = self.pos_emb.to(device)
if self.period_fix == "True":
if self.max_time is not None:
angle = new_times.to(device) / self.max_time * 2 * np.pi
else:
angle = new_times.to(device)
elif self.period_fix == "MTCT":
freqs = self.pos_emb(new_times.float())
freqs = freqs.squeeze(0)
features = apply_rotary_emb(freqs, features)
else:
angle = (-new_times * 2 * np.pi).to(device)
if not self.period_fix == "MTCT":
freqs = pos_emb.get_axial_freqs(new_times.shape[0], features.shape[-2]).to(device)
angle_expanded = angle.unsqueeze(2)
angle_expanded = angle_expanded.expand(new_times.shape[0], features.shape[-2], freqs.shape[-1])
freqs = freqs * angle_expanded
freqs = freqs.squeeze(0)
# ori_dtype = features.dtype
# embed_dtype = torch.float32
# features = features.to(embed_dtype)
features = apply_rotary_emb(freqs, features)
# features = features.to(ori_dtype)
elif self.time_embed_type == "learned_embed": # Learned embedding
# Add time embeddings to features
features = features + time_embed
else:
raise ValueError(f"Invalid time_embed_type: {self.time_embed_type}")
if start_token_embeds is not None:
features = torch.cat([start_token_embeds, features], dim=0)
if end_token_embeds is not None:
features = torch.cat([features, end_token_embeds], dim=0)
return features
def forward(self, sounds: List[torch.Tensor], config: Dict[str, Any], mm_info: dict) -> List[torch.Tensor]:
# sounds = torch.stack(sounds, dim=0)
features = self.parent.encode_sound(sounds, mm_info=mm_info)
process_features = partial(
self._process_features,
start_token_embeds=self.embed_tokens(self.start_tokens),
end_token_embeds=self.embed_tokens(self.end_tokens),
)
if self.embed_time:
new_features = []
device = features[0].device
fea_count = len(features)
aud_idx = 0
bs = len(mm_info["audio_info"])
if self.time_embed_type == "learned_embed": # Learned embedding, we need to first collect all times and only do time embedding once
times_list = []
for i in range(bs):
_audio_info = mm_info["audio_info"][i]
if _audio_info is not None:
for j in range(len(_audio_info)):
_feature = features[aud_idx]
if _audio_info[j] == "dummy":
times = torch.zeros(_feature.shape[0], device=device, dtype=_feature.dtype)
else:
audio_chunk_length = _audio_info[j]["new_audio_chunk_length"]
sec_per_embed = audio_chunk_length / _feature.shape[0]
audio_start_sec = _audio_info[j]["audio_start_sec"]
times = [audio_start_sec + i * sec_per_embed + sec_per_embed / 2 for i in range(_feature.shape[0])]
times = torch.tensor(times).to(device)
times_list.append(times)
aud_idx += 1
times = torch.stack(times_list, dim=0)
time_embeds = self.time_embed(times, dtype=features[0].dtype)
aud_idx = 0
for i in range(bs):
_audio_info = mm_info["audio_info"][i]
if _audio_info is not None:
for j in range(len(_audio_info)):
try:
_feature = features[aud_idx]
except Exception as e:
print(f"Error: {e}. Length of features: {len(features)}. Length of _audio_info: {len(_audio_info)}. Length of _feature: {_feature.shape[0]}")
raise e
if _audio_info[j] == "dummy":
times = torch.zeros(_feature.shape[0], device=device, dtype=_feature.dtype)
else:
audio_chunk_length = _audio_info[j]["new_audio_chunk_length"]
sec_per_embed = audio_chunk_length / _feature.shape[0]
audio_start_sec = _audio_info[j]["audio_start_sec"]
times = [audio_start_sec + i * sec_per_embed + sec_per_embed / 2 for i in range(_feature.shape[0])]
times = torch.tensor(times).to(device)
if self.time_embed_type == "learned_embed":
_feature = process_features(_feature, time_embed=time_embeds[aud_idx])
else:
_feature = process_features(_feature, times=times)
new_features.append(_feature)
aud_idx += 1
assert aud_idx == fea_count , "aud_idx: {}, fea_count: {}".format(aud_idx, fea_count)
features = new_features
else:
features = [process_features(f) for f in features]
return features
# return [process_features(f) for f in feature
class TSPVideoEncoder(BasicVideoEncoder):
def __init__(
self,
parent: torch.nn.Module,
pool_sizes: List[Tuple[int, int, int]],
start_tokens: Optional[str] = None,
end_tokens: Optional[str] = "\n",
sep_tokens: Optional[str] = None,
embed_time: str = "False",
trope_theta = 50000,
trope_dim = 128,
max_time = None,
time_embed_type = "pixel",
period_fix = False,
) -> None:
super().__init__(parent, start_tokens=start_tokens, end_tokens=end_tokens)
self.pool_sizes = pool_sizes
self.sep_tokens = sep_tokens
if embed_time == "False":
self.embed_time = False
else:
self.embed_time = True
self.time_embed_type = time_embed_type
period_mode = None
if type(period_fix) == str:
if period_fix == "shortest":
period_fix = "MTCT"
period_mode = "shortest"
elif period_fix == "longest":
period_fix = "MTCT"
period_mode = "longest"
self.period_fix = period_fix
self.max_time = max_time
if period_fix == "MTCT":
if period_mode is None:
self.pos_emb = MaxTimeContinuousTimeRotaryEmbedding(
dim = trope_dim,
max_time = max_time,
)
else:
self.pos_emb = MaxTimeContinuousTimeRotaryEmbedding(
dim = trope_dim,
max_time = max_time,
period_mode = period_mode,
)
elif time_embed_type in ["pixel", "lang"]:
if trope_dim is None and max_time is None:
raise ValueError("trope_dim or max_time is required when embed_time is True")
if time_embed_type == "lang":
self.pos_emb = RotaryEmbedding(
dim = trope_dim,
freqs_for = 'lang',
theta = trope_theta,
max_time = max_time,
)
elif time_embed_type == "pixel":
self.pos_emb = RotaryEmbedding(
dim = trope_dim,
freqs_for = time_embed_type,
max_freq = 256
)
elif time_embed_type == "learned_embed":
self.time_embed = parent.mm_projector.time_embed
else:
raise ValueError(f"Invalid time_embed_type: {time_embed_type}")
def _process_features(
self,
inputs: torch.Tensor,
start_token_embeds: Optional[torch.Tensor],
end_token_embeds: Optional[torch.Tensor],
sep_token_embeds: Optional[torch.Tensor],
times: Optional[torch.Tensor] = None,
time_embed: Optional[torch.Tensor] = None,
) -> torch.Tensor:
nt, ns = inputs.shape[:2]
nl = int(ns**0.5)
outputs = []
for pool_size in self.pool_sizes:
features = inputs.view(nt, nl, nl, -1)
for dim, p in enumerate(pool_size):
try:
features = pool(features, p, dim=dim)
except Exception as e:
print(f"Error: Pooling failed: {e}")
print(f"inputs.shape: {inputs.shape}, features.shape: {features.shape}, pool_size: {p}, dim: {dim}")
raise e
features = features.flatten(1, 2)
if self.embed_time:
device = features.device
dtype = features.dtype
if self.time_embed_type in ["pixel", "lang"]:
# consider the pooling in self.pool_sizes
temporal_pool_size = pool_size[0]
if temporal_pool_size != 1:
if len(times) % temporal_pool_size != 0:
# pad
print(f"Warning: length of times: {len(times)} is not a multiple of temporal_pool_size: {temporal_pool_size}")
remainder = len(times) % temporal_pool_size
pad_len = temporal_pool_size - remainder
last_window_mean_times = times[-remainder:].mean()
times = torch.cat([times, torch.ones(pad_len).to(times.device) * last_window_mean_times])
new_times = pool(times, temporal_pool_size, 0)
else:
new_times = times
pos_emb = self.pos_emb.to(device)
if self.period_fix == "True":
if self.max_time is not None:
angle = new_times.to(device) / self.max_time * 2 * np.pi
else:
angle = new_times.to(device)
elif self.period_fix == "MTCT":
if new_times.ndim == 1:
new_times = new_times.unsqueeze(0)
freqs = self.pos_emb(new_times.float())
freqs = freqs.squeeze(0)
freqs = freqs.unsqueeze(1)
features = apply_rotary_emb(freqs, features, seq_dim=0)
else:
angle = (-new_times * 2 * np.pi).to(device)
if not self.period_fix == "MTCT":
freqs = pos_emb.get_axial_freqs(new_times.shape[0], features.shape[-2]).to(device)
angle_expanded = angle.unsqueeze(1).unsqueeze(2)
angle_expanded = angle_expanded.expand(new_times.shape[0], features.shape[-2], freqs.shape[-1])
freqs = freqs * angle_expanded
# ori_dtype = features.dtype
# embed_dtype = torch.float32
# features = features.to(embed_dtype)
features = apply_rotary_emb(freqs, features)
# features = features.to(ori_dtype)
elif self.time_embed_type == "learned_embed": # Learned embedding
# Add time embeddings to features
features = features + time_embed
else:
raise ValueError(f"Invalid time_embed_type: {self.time_embed_type}")
features = super()._process_features(
features,
start_token_embeds=start_token_embeds,
end_token_embeds=end_token_embeds,
)
if sep_token_embeds is not None:
features = torch.cat([features, sep_token_embeds], dim=0)
outputs.append(features)
return torch.cat(outputs, dim=0)
def forward(self, videos: List[torch.Tensor], config: Dict[str, Any], mm_info: dict) -> List[torch.Tensor]:
cache_feas = []
cache_feas_index = []
for _idx in range(len(videos)):
if type(videos[_idx]) == CacheFeatures:
cache_feas.append(videos[_idx])
cache_feas_index.append(_idx)
num_frames = [
_.value['features'].shape[0] if isinstance(_, CacheFeatures) else _.shape[0]
for _ in videos
]
features = self.parent.encode_video(videos, mm_info=mm_info, num_frames=num_frames)
features = torch.split(features, num_frames)
process_features = partial(
self._process_features,
start_token_embeds=self.embed_tokens(self.start_tokens),
end_token_embeds=self.embed_tokens(self.end_tokens),
sep_token_embeds=self.embed_tokens(self.sep_tokens),
)
if self.embed_time:
bs = len(mm_info["video_info"])
vid_idx = 0
device = features[0].device
if self.time_embed_type == "learned_embed":
# Learned embedding, we need to first collect all times from all videos and only do time embedding once
times_list = []
for i in range(bs):
_video_info = mm_info["video_info"][i]
if _video_info is not None:
for j in range(len(_video_info)):
_feature = features[vid_idx]
if _video_info[j] == "dummy":
times = torch.zeros(_feature.shape[0], device=device, dtype=_feature.dtype)
else:
times = _video_info[j]["video_frame_times"]
times = torch.tensor(times).to(device)
for pool_size in self.pool_sizes:
temporal_pool_size = pool_size[0]
if temporal_pool_size != 1:
if len(times) % temporal_pool_size != 0:
# pad
print(f"Warning: length of times: {len(times)} is not a multiple of temporal_pool_size: {temporal_pool_size}")
remainder = len(times) % temporal_pool_size
pad_len = temporal_pool_size - remainder
last_window_mean_times = times[-remainder:].mean()
times = torch.cat([times, torch.ones(pad_len).to(times.device) * last_window_mean_times])
times = pool(times, temporal_pool_size, 0)
times_list.append(times)
vid_idx += 1
# pad the times to the same length
ori_lens = [len(times) for times in times_list]
max_len = max(ori_lens)
for i in range(len(times_list)):
if len(times_list[i]) < max_len:
times_list[i] = torch.cat([times_list[i], torch.zeros(max_len - len(times_list[i])).to(times_list[i].device)])
times = torch.stack(times_list, dim=0)
time_embeds = self.time_embed(times, dtype=features[0].dtype)
# remove the padding for each embed
new_time_embeds = []
for i in range(len(times_list)):
new_time_embeds.append(time_embeds[i][:ori_lens[i]].unsqueeze(1).expand(-1, features[0].shape[1], -1))
# add dummy embed to the first embed
new_time_embeds[0] = new_time_embeds[0] + 0 * time_embeds.mean()
new_features = []
fea_count = len(features)
vid_idx = 0
for i in range(bs):
_video_info = mm_info["video_info"][i]
if _video_info is not None:
for j in range(len(_video_info)):
_feature = features[vid_idx]
if _video_info[j] == "dummy":
times = torch.zeros(_feature.shape[0], device=device, dtype=_feature.dtype)
else:
times = _video_info[j]["video_frame_times"]
times = torch.tensor(times).to(device)
if self.time_embed_type == "learned_embed":
_feature = process_features(_feature, time_embed=new_time_embeds[vid_idx])
else:
_feature = process_features(_feature, times=times)
new_features.append(_feature)
vid_idx += 1
assert vid_idx == fea_count, "vid_idx: {}, fea_count: {}".format(vid_idx, fea_count)
features = new_features
else:
features = [process_features(f) for f in features]
return features
def _encode_video_frames(self, video_frames: torch.Tensor) -> torch.Tensor:
"""Helper method to encode video frames when cached features are not available."""
features = self.parent.encode_images(video_frames.unsqueeze(0))
return features.squeeze(0)
|