# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import torch import torch.nn as nn from einops import rearrange from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel class SoundMultimodalProjectorConfig(PretrainedConfig): """Configuration for sound multimodal projector.""" model_type = "sound_mm_projector" def __init__(self, sound_mm_projector_type: str = None, **kwargs): super().__init__() self.sound_mm_projector_type = sound_mm_projector_type class AudioDownSampleBlock(nn.Module): """Downsample audio features using 1D convolution.""" def __init__(self, embed_dim): super().__init__() self.conv1 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) def forward(self, x): x = rearrange(x, "b t c -> b c t") x = self.conv1(x) x = rearrange(x, "b c t -> b t c") return x class AudioDownSamplePoolBlock(nn.Module): """Downsample audio features using average pooling.""" def __init__(self, embed_dim): super().__init__() self.pool = nn.AvgPool1d(kernel_size=2) def forward(self, x): x = rearrange(x, "b t c -> b c t") x = self.pool(x) x = rearrange(x, "b c t -> b t c") return x class AudioDownSampleMaxPoolBlock(nn.Module): """Downsample audio features using max pooling.""" def __init__(self, embed_dim): super().__init__() self.pool = nn.MaxPool1d(kernel_size=2) def forward(self, x): x = rearrange(x, "b t c -> b c t") x = self.pool(x) x = rearrange(x, "b c t -> b t c") return x class SoundMultimodalProjector(PreTrainedModel): """Sound multimodal projector for mapping audio features to LLM space.""" config_class = SoundMultimodalProjectorConfig def __init__(self, sound_mm_projector_cfg: SoundMultimodalProjectorConfig, config: PretrainedConfig): super().__init__(sound_mm_projector_cfg) if hasattr(config, "sound_mm_projector"): sound_mm_projector_type = config.sound_mm_projector else: sound_mm_projector_type = sound_mm_projector_cfg.sound_mm_projector_type self.sound_mm_projector_type = sound_mm_projector_type self.config.sound_mm_projector_type = sound_mm_projector_type if hasattr(config, "sound_mm_projector_cfg") and type(config.sound_mm_projector_cfg) == dict: config.sound_mm_projector_cfg["sound_mm_projector_type"] = sound_mm_projector_type if sound_mm_projector_type == "mlp": self.layers = nn.Sequential( nn.Linear(config.sound_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size), ) elif sound_mm_projector_type == "mlp_downsample": self.downsample_block = AudioDownSampleBlock(config.sound_hidden_size) self.layers = nn.Sequential( nn.Linear(config.sound_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size), ) elif sound_mm_projector_type == "mlp_downsample_pool": self.downsample_block = AudioDownSamplePoolBlock(config.sound_hidden_size) self.layers = nn.Sequential( nn.Linear(config.sound_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size), ) elif sound_mm_projector_type == "mlp_downsample_pool_max": self.downsample_block = AudioDownSampleMaxPoolBlock(config.sound_hidden_size) self.layers = nn.Sequential( nn.Linear(config.sound_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size), ) else: raise ValueError(f"Unknown projector type: {sound_mm_projector_type}") def forward(self, x, *args, **kwargs): if self.sound_mm_projector_type in ["mlp_downsample", "mlp_downsample_pool", "mlp_downsample_pool_max"]: x = self.downsample_block(x) return self.layers(x) AutoConfig.register("sound_mm_projector", SoundMultimodalProjectorConfig) AutoModel.register(SoundMultimodalProjectorConfig, SoundMultimodalProjector)