|  | import gradio as gr | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from torchvision import transforms | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | import math | 
					
						
						|  | from typing import Callable | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import random | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | from einops import rearrange, repeat | 
					
						
						|  | from diffusers import AutoencoderKL | 
					
						
						|  | from torch import Tensor, nn | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer | 
					
						
						|  | from safetensors.torch import load_file | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HFEmbedder(nn.Module): | 
					
						
						|  | def __init__(self, version: str, max_length: int, **hf_kwargs): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.is_clip = version.startswith("openai") | 
					
						
						|  | self.max_length = max_length | 
					
						
						|  | self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" | 
					
						
						|  |  | 
					
						
						|  | if self.is_clip: | 
					
						
						|  | self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) | 
					
						
						|  | self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) | 
					
						
						|  | else: | 
					
						
						|  | self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) | 
					
						
						|  | self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.hf_module = self.hf_module.eval().requires_grad_(False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, text: list[str]) -> Tensor: | 
					
						
						|  | batch_encoding = self.tokenizer( | 
					
						
						|  | text, | 
					
						
						|  | truncation=True, | 
					
						
						|  | max_length=self.max_length, | 
					
						
						|  | return_length=False, | 
					
						
						|  | return_overflowing_tokens=False, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.hf_module( | 
					
						
						|  | input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | ) | 
					
						
						|  | return outputs[self.output_key] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = "cuda" | 
					
						
						|  | t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device) | 
					
						
						|  | clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device) | 
					
						
						|  | ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: | 
					
						
						|  | q, k = apply_rope(q, k, pe) | 
					
						
						|  |  | 
					
						
						|  | x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | 
					
						
						|  |  | 
					
						
						|  | x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rope(pos, dim, theta): | 
					
						
						|  | scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | 
					
						
						|  | omega = 1.0 / (theta ** scale) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out = pos.unsqueeze(-1) * omega.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | cos_out = torch.cos(out) | 
					
						
						|  | sin_out = torch.sin(out) | 
					
						
						|  | out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | b, n, d, _ = out.shape | 
					
						
						|  | out = out.view(b, n, d, 2, 2) | 
					
						
						|  |  | 
					
						
						|  | return out.float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: | 
					
						
						|  | xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | 
					
						
						|  | xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | 
					
						
						|  | xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | 
					
						
						|  | xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | 
					
						
						|  | return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EmbedND(nn.Module): | 
					
						
						|  | def __init__(self, dim: int, theta: int, axes_dim: list[int]): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.theta = theta | 
					
						
						|  | self.axes_dim = axes_dim | 
					
						
						|  |  | 
					
						
						|  | def forward(self, ids: Tensor) -> Tensor: | 
					
						
						|  | n_axes = ids.shape[-1] | 
					
						
						|  | emb = torch.cat( | 
					
						
						|  | [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | 
					
						
						|  | dim=-3, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return emb.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | 
					
						
						|  | """ | 
					
						
						|  | Create sinusoidal timestep embeddings. | 
					
						
						|  | :param t: a 1-D Tensor of N indices, one per batch element. | 
					
						
						|  | These may be fractional. | 
					
						
						|  | :param dim: the dimension of the output. | 
					
						
						|  | :param max_period: controls the minimum frequency of the embeddings. | 
					
						
						|  | :return: an (N, D) Tensor of positional embeddings. | 
					
						
						|  | """ | 
					
						
						|  | t = time_factor * t | 
					
						
						|  | half = dim // 2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) | 
					
						
						|  |  | 
					
						
						|  | args = t[:, None].float() * freqs[None] | 
					
						
						|  | embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | 
					
						
						|  | if dim % 2: | 
					
						
						|  | embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | 
					
						
						|  | if torch.is_floating_point(t): | 
					
						
						|  | embedding = embedding.to(t) | 
					
						
						|  | return embedding | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MLPEmbedder(nn.Module): | 
					
						
						|  | def __init__(self, in_dim: int, hidden_dim: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | 
					
						
						|  | self.silu = nn.SiLU() | 
					
						
						|  | self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: Tensor) -> Tensor: | 
					
						
						|  | return self.out_layer(self.silu(self.in_layer(x))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RMSNorm(torch.nn.Module): | 
					
						
						|  | def __init__(self, dim: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.scale = nn.Parameter(torch.ones(dim)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: Tensor): | 
					
						
						|  | x_dtype = x.dtype | 
					
						
						|  | x = x.float() | 
					
						
						|  | rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) | 
					
						
						|  | return (x * rrms).to(dtype=x_dtype) * self.scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QKNorm(torch.nn.Module): | 
					
						
						|  | def __init__(self, dim: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.query_norm = RMSNorm(dim) | 
					
						
						|  | self.key_norm = RMSNorm(dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: | 
					
						
						|  | q = self.query_norm(q) | 
					
						
						|  | k = self.key_norm(k) | 
					
						
						|  | return q.to(v), k.to(v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SelfAttention(nn.Module): | 
					
						
						|  | def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | head_dim = dim // num_heads | 
					
						
						|  |  | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | 
					
						
						|  | self.norm = QKNorm(head_dim) | 
					
						
						|  | self.proj = nn.Linear(dim, dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: Tensor, pe: Tensor) -> Tensor: | 
					
						
						|  | qkv = self.qkv(x) | 
					
						
						|  |  | 
					
						
						|  | B, L, _ = qkv.shape | 
					
						
						|  | qkv = qkv.view(B, L, 3, self.num_heads, -1) | 
					
						
						|  | q, k, v = qkv.permute(2, 0, 3, 1, 4) | 
					
						
						|  | q, k = self.norm(q, k, v) | 
					
						
						|  | x = attention(q, k, v, pe=pe) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class ModulationOut: | 
					
						
						|  | shift: Tensor | 
					
						
						|  | scale: Tensor | 
					
						
						|  | gate: Tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Modulation(nn.Module): | 
					
						
						|  | def __init__(self, dim: int, double: bool): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.is_double = double | 
					
						
						|  | self.multiplier = 6 if double else 3 | 
					
						
						|  | self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: | 
					
						
						|  | out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | ModulationOut(*out[:3]), | 
					
						
						|  | ModulationOut(*out[3:]) if self.is_double else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DoubleStreamBlock(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | mlp_hidden_dim = int(hidden_size * mlp_ratio) | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.img_mod = Modulation(hidden_size, double=True) | 
					
						
						|  | self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | 
					
						
						|  | self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | 
					
						
						|  |  | 
					
						
						|  | self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | 
					
						
						|  | self.img_mlp = nn.Sequential( | 
					
						
						|  | nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | 
					
						
						|  | nn.GELU(approximate="tanh"), | 
					
						
						|  | nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.txt_mod = Modulation(hidden_size, double=True) | 
					
						
						|  | self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | 
					
						
						|  | self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | 
					
						
						|  |  | 
					
						
						|  | self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | 
					
						
						|  | self.txt_mlp = nn.Sequential( | 
					
						
						|  | nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | 
					
						
						|  | nn.GELU(approximate="tanh"), | 
					
						
						|  | nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: | 
					
						
						|  | img_mod1, img_mod2 = self.img_mod(vec) | 
					
						
						|  | txt_mod1, txt_mod2 = self.txt_mod(vec) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_modulated = self.img_norm1(img) | 
					
						
						|  | img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | 
					
						
						|  | img_qkv = self.img_attn.qkv(img_modulated) | 
					
						
						|  |  | 
					
						
						|  | B, L, _ = img_qkv.shape | 
					
						
						|  | H = self.num_heads | 
					
						
						|  | D = img_qkv.shape[-1] // (3 * H) | 
					
						
						|  | img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | 
					
						
						|  | img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | txt_modulated = self.txt_norm1(txt) | 
					
						
						|  | txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | 
					
						
						|  | txt_qkv = self.txt_attn.qkv(txt_modulated) | 
					
						
						|  |  | 
					
						
						|  | B, L, _ = txt_qkv.shape | 
					
						
						|  | txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | 
					
						
						|  | txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = torch.cat((txt_q, img_q), dim=2) | 
					
						
						|  | k = torch.cat((txt_k, img_k), dim=2) | 
					
						
						|  | v = torch.cat((txt_v, img_v), dim=2) | 
					
						
						|  |  | 
					
						
						|  | attn = attention(q, k, v, pe=pe) | 
					
						
						|  | txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img = img + img_mod1.gate * self.img_attn.proj(img_attn) | 
					
						
						|  | img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) | 
					
						
						|  | txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | 
					
						
						|  | return img, txt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SingleStreamBlock(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A DiT block with parallel linear layers as described in | 
					
						
						|  | https://arxiv.org/abs/2302.05442 and adapted modulation interface. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_size: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | mlp_ratio: float = 4.0, | 
					
						
						|  | qk_scale: float | None = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_dim = hidden_size | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | head_dim = hidden_size // num_heads | 
					
						
						|  | self.scale = qk_scale or head_dim**-0.5 | 
					
						
						|  |  | 
					
						
						|  | self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | 
					
						
						|  |  | 
					
						
						|  | self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | 
					
						
						|  |  | 
					
						
						|  | self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | 
					
						
						|  |  | 
					
						
						|  | self.norm = QKNorm(head_dim) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | 
					
						
						|  |  | 
					
						
						|  | self.mlp_act = nn.GELU(approximate="tanh") | 
					
						
						|  | self.modulation = Modulation(hidden_size, double=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: | 
					
						
						|  | mod, _ = self.modulation(vec) | 
					
						
						|  | x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | 
					
						
						|  | qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads) | 
					
						
						|  | q, k, v = qkv.permute(2, 0, 3, 1, 4) | 
					
						
						|  | q, k = self.norm(q, k, v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn = attention(q, k, v, pe=pe) | 
					
						
						|  |  | 
					
						
						|  | output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | 
					
						
						|  | return x + mod.gate * output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LastLayer(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size: int, patch_size: int, out_channels: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | 
					
						
						|  | self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | 
					
						
						|  | self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: Tensor, vec: Tensor) -> Tensor: | 
					
						
						|  | shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | 
					
						
						|  | x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | 
					
						
						|  | x = self.linear(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FluxParams: | 
					
						
						|  | in_channels: int = 64 | 
					
						
						|  | vec_in_dim: int = 768 | 
					
						
						|  | context_in_dim: int = 4096 | 
					
						
						|  | hidden_size: int = 3072 | 
					
						
						|  | mlp_ratio: float = 4.0 | 
					
						
						|  | num_heads: int = 24 | 
					
						
						|  | depth: int = 19 | 
					
						
						|  | depth_single_blocks: int = 38 | 
					
						
						|  | axes_dim: list = [16, 56, 56] | 
					
						
						|  | theta: int = 10_000 | 
					
						
						|  | qkv_bias: bool = True | 
					
						
						|  | guidance_embed: bool = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Flux(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Transformer model for flow matching on sequences. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, params = FluxParams()): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.params = params | 
					
						
						|  | self.in_channels = params.in_channels | 
					
						
						|  | self.out_channels = self.in_channels | 
					
						
						|  | if params.hidden_size % params.num_heads != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | 
					
						
						|  | ) | 
					
						
						|  | pe_dim = params.hidden_size // params.num_heads | 
					
						
						|  | if sum(params.axes_dim) != pe_dim: | 
					
						
						|  | raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | 
					
						
						|  | self.hidden_size = params.hidden_size | 
					
						
						|  | self.num_heads = params.num_heads | 
					
						
						|  | self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | 
					
						
						|  | self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | 
					
						
						|  | self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | 
					
						
						|  | self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | self.double_blocks = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | DoubleStreamBlock( | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | self.num_heads, | 
					
						
						|  | mlp_ratio=params.mlp_ratio, | 
					
						
						|  | qkv_bias=params.qkv_bias, | 
					
						
						|  | ) | 
					
						
						|  | for _ in range(params.depth) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.single_blocks = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) | 
					
						
						|  | for _ in range(params.depth_single_blocks) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | img: Tensor, | 
					
						
						|  | img_ids: Tensor, | 
					
						
						|  | txt: Tensor, | 
					
						
						|  | txt_ids: Tensor, | 
					
						
						|  | timesteps: Tensor, | 
					
						
						|  | y: Tensor, | 
					
						
						|  | guidance: Tensor | None = None, | 
					
						
						|  | use_guidance_vec = True, | 
					
						
						|  | ) -> Tensor: | 
					
						
						|  | if img.ndim != 3 or txt.ndim != 3: | 
					
						
						|  | raise ValueError("Input img and txt tensors must have 3 dimensions.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img = self.img_in(img) | 
					
						
						|  | vec = self.time_in(timestep_embedding(timesteps, 256)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vec = vec + self.vector_in(y) | 
					
						
						|  | txt = self.txt_in(txt) | 
					
						
						|  |  | 
					
						
						|  | ids = torch.cat((txt_ids, img_ids), dim=1) | 
					
						
						|  | pe = self.pe_embedder(ids) | 
					
						
						|  |  | 
					
						
						|  | for block in self.double_blocks: | 
					
						
						|  | img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | 
					
						
						|  |  | 
					
						
						|  | img = torch.cat((txt, img), 1) | 
					
						
						|  | for block in self.single_blocks: | 
					
						
						|  | img = block(img, vec=vec, pe=pe) | 
					
						
						|  | img = img[:, txt.shape[1] :, ...] | 
					
						
						|  |  | 
					
						
						|  | img = self.final_layer(img, vec) | 
					
						
						|  | return img | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: | 
					
						
						|  | bs, c, h, w = img.shape | 
					
						
						|  | if bs == 1 and not isinstance(prompt, str): | 
					
						
						|  | bs = len(prompt) | 
					
						
						|  |  | 
					
						
						|  | img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | 
					
						
						|  | if img.shape[0] == 1 and bs > 1: | 
					
						
						|  | img = repeat(img, "1 ... -> bs ...", bs=bs) | 
					
						
						|  |  | 
					
						
						|  | img_ids = torch.zeros(h // 2, w // 2, 3) | 
					
						
						|  | img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | 
					
						
						|  | img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | 
					
						
						|  | img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(prompt, str): | 
					
						
						|  | prompt = [prompt] | 
					
						
						|  | txt = t5(prompt) | 
					
						
						|  | if txt.shape[0] == 1 and bs > 1: | 
					
						
						|  | txt = repeat(txt, "1 ... -> bs ...", bs=bs) | 
					
						
						|  | txt_ids = torch.zeros(bs, txt.shape[1], 3) | 
					
						
						|  |  | 
					
						
						|  | vec = clip(prompt) | 
					
						
						|  | if vec.shape[0] == 1 and bs > 1: | 
					
						
						|  | vec = repeat(vec, "1 ... -> bs ...", bs=bs) | 
					
						
						|  |  | 
					
						
						|  | return { | 
					
						
						|  | "img": img, | 
					
						
						|  | "img_ids": img_ids.to(img.device), | 
					
						
						|  | "txt": txt.to(img.device), | 
					
						
						|  | "txt_ids": txt_ids.to(img.device), | 
					
						
						|  | "vec": vec.to(img.device), | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def time_shift(mu: float, sigma: float, t: Tensor): | 
					
						
						|  | return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_lin_function( | 
					
						
						|  | x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 | 
					
						
						|  | ) -> Callable[[float], float]: | 
					
						
						|  | m = (y2 - y1) / (x2 - x1) | 
					
						
						|  | b = y1 - m * x1 | 
					
						
						|  | return lambda x: m * x + b | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_schedule( | 
					
						
						|  | num_steps: int, | 
					
						
						|  | image_seq_len: int, | 
					
						
						|  | base_shift: float = 0.5, | 
					
						
						|  | max_shift: float = 1.15, | 
					
						
						|  | shift: bool = True, | 
					
						
						|  | ) -> list[float]: | 
					
						
						|  |  | 
					
						
						|  | timesteps = torch.linspace(1, 0, num_steps + 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shift: | 
					
						
						|  |  | 
					
						
						|  | mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) | 
					
						
						|  | timesteps = time_shift(mu, 1.0, timesteps) | 
					
						
						|  |  | 
					
						
						|  | return timesteps.tolist() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def denoise( | 
					
						
						|  | model: Flux, | 
					
						
						|  |  | 
					
						
						|  | img: Tensor, | 
					
						
						|  | img_ids: Tensor, | 
					
						
						|  | txt: Tensor, | 
					
						
						|  | txt_ids: Tensor, | 
					
						
						|  | vec: Tensor, | 
					
						
						|  |  | 
					
						
						|  | timesteps: list[float], | 
					
						
						|  | guidance: float = 4.0, | 
					
						
						|  | use_cfg_guidance = False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) | 
					
						
						|  | for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:])): | 
					
						
						|  | t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | 
					
						
						|  |  | 
					
						
						|  | if use_cfg_guidance: | 
					
						
						|  | half_x = img[:len(img)//2] | 
					
						
						|  | img = torch.cat([half_x, half_x], dim=0) | 
					
						
						|  | t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | 
					
						
						|  |  | 
					
						
						|  | pred = model( | 
					
						
						|  | img=img, | 
					
						
						|  | img_ids=img_ids, | 
					
						
						|  | txt=txt, | 
					
						
						|  | txt_ids=txt_ids, | 
					
						
						|  | y=vec, | 
					
						
						|  | timesteps=t_vec, | 
					
						
						|  | guidance=guidance_vec, | 
					
						
						|  | use_guidance_vec=not use_cfg_guidance, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if use_cfg_guidance: | 
					
						
						|  | uncond, cond = pred.chunk(2, dim=0) | 
					
						
						|  | model_output = uncond + guidance * (cond - uncond) | 
					
						
						|  | pred = torch.cat([model_output, model_output], dim=0) | 
					
						
						|  |  | 
					
						
						|  | img = img + (t_prev - t_curr) * pred | 
					
						
						|  |  | 
					
						
						|  | return img | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def unpack(x: Tensor, height: int, width: int) -> Tensor: | 
					
						
						|  | return rearrange( | 
					
						
						|  | x, | 
					
						
						|  | "b (h w) (c ph pw) -> b c (h ph) (w pw)", | 
					
						
						|  | h=math.ceil(height / 16), | 
					
						
						|  | w=math.ceil(width / 16), | 
					
						
						|  | ph=2, | 
					
						
						|  | pw=2, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class SamplingOptions: | 
					
						
						|  | prompt: str | 
					
						
						|  | width: int | 
					
						
						|  | height: int | 
					
						
						|  | guidance: float | 
					
						
						|  | seed: int | None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_image(image) -> torch.Tensor | None: | 
					
						
						|  | if image is None: | 
					
						
						|  | return None | 
					
						
						|  | image = Image.fromarray(image).convert("RGB") | 
					
						
						|  |  | 
					
						
						|  | transform = transforms.Compose([ | 
					
						
						|  | transforms.ToTensor(), | 
					
						
						|  | transforms.Lambda(lambda x: 2.0 * x - 1.0), | 
					
						
						|  | ]) | 
					
						
						|  | img: torch.Tensor = transform(image) | 
					
						
						|  | return img[None, ...] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EmptyInitWrapper(torch.overrides.TorchFunctionMode): | 
					
						
						|  | def __init__(self, device=None): | 
					
						
						|  | self.device = device | 
					
						
						|  |  | 
					
						
						|  | def __torch_function__(self, func, types, args=(), kwargs=None): | 
					
						
						|  | kwargs = kwargs or {} | 
					
						
						|  | if getattr(func, "__module__", None) == "torch.nn.init": | 
					
						
						|  | if "tensor" in kwargs: | 
					
						
						|  | return kwargs["tensor"] | 
					
						
						|  | else: | 
					
						
						|  | return args[0] | 
					
						
						|  | if ( | 
					
						
						|  | self.device is not None | 
					
						
						|  | and func in torch.utils._device._device_constructors() | 
					
						
						|  | and kwargs.get("device") is None | 
					
						
						|  | ): | 
					
						
						|  | kwargs["device"] = self.device | 
					
						
						|  | return func(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | with EmptyInitWrapper(): | 
					
						
						|  | model = Flux().to(dtype=torch.bfloat16, device="cuda") | 
					
						
						|  | sd = load_file("./consolidated_s6700.safetensors") | 
					
						
						|  | sd = {k.replace("model.", ""): v for k, v in sd.items()} | 
					
						
						|  | result = model.load_state_dict(sd) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def generate_image( | 
					
						
						|  | prompt, neg_prompt, width, height, guidance, seed, | 
					
						
						|  | do_img2img, init_image, image2image_strength, resize_img, | 
					
						
						|  | progress=gr.Progress(track_tqdm=True), | 
					
						
						|  | ): | 
					
						
						|  | if seed == 0: | 
					
						
						|  | seed = int(random.random() * 1000000) | 
					
						
						|  |  | 
					
						
						|  | device = "cuda" if torch.cuda.is_available() else "cpu" | 
					
						
						|  | torch_device = torch.device(device) | 
					
						
						|  |  | 
					
						
						|  | if do_img2img and init_image is not None: | 
					
						
						|  | init_image = get_image(init_image) | 
					
						
						|  | if resize_img: | 
					
						
						|  | init_image = torch.nn.functional.interpolate(init_image, (height, width)) | 
					
						
						|  | else: | 
					
						
						|  | h, w = init_image.shape[-2:] | 
					
						
						|  | init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)] | 
					
						
						|  | height = init_image.shape[-2] | 
					
						
						|  | width = init_image.shape[-1] | 
					
						
						|  | init_image = ae.encode(init_image.to(torch_device)).latent_dist.sample() | 
					
						
						|  | init_image =  (init_image - ae.config.shift_factor) * ae.config.scaling_factor | 
					
						
						|  |  | 
					
						
						|  | generator = torch.Generator(device=device).manual_seed(seed) | 
					
						
						|  | x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator) | 
					
						
						|  |  | 
					
						
						|  | num_steps = 28 | 
					
						
						|  | timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True) | 
					
						
						|  |  | 
					
						
						|  | if do_img2img and init_image is not None: | 
					
						
						|  | t_idx = int((1 - image2image_strength) * num_steps) | 
					
						
						|  | t = timesteps[t_idx] | 
					
						
						|  | timesteps = timesteps[t_idx:] | 
					
						
						|  | x = t * x + (1.0 - t) * init_image.to(x.dtype) | 
					
						
						|  |  | 
					
						
						|  | inp = prepare(t5=t5, clip=clip, img=x, prompt=[neg_prompt, prompt]) | 
					
						
						|  | x = denoise(model, **inp, timesteps=timesteps, guidance=guidance, use_cfg_guidance=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = unpack(x.float(), height, width) | 
					
						
						|  | with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): | 
					
						
						|  | x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor | 
					
						
						|  | x = ae.decode(x).sample | 
					
						
						|  |  | 
					
						
						|  | x = x.clamp(-1, 1) | 
					
						
						|  | x = rearrange(x[0], "c h w -> h w c") | 
					
						
						|  | img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | 
					
						
						|  |  | 
					
						
						|  | return img, seed | 
					
						
						|  |  | 
					
						
						|  | def create_demo(): | 
					
						
						|  | with gr.Blocks(theme="bethecloud/storj_theme") as demo: | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word 'FLUX' is painted over it in big, red brush strokes with visible texture") | 
					
						
						|  | neg_prompt = gr.Textbox(label="Negative Prompt", value="bad photo") | 
					
						
						|  | width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360) | 
					
						
						|  | height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768) | 
					
						
						|  | guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5) | 
					
						
						|  | seed = gr.Number(label="Seed", precision=-1) | 
					
						
						|  | do_img2img = gr.Checkbox(label="Image to Image", value=False) | 
					
						
						|  | init_image = gr.Image(label="Input Image", visible=False) | 
					
						
						|  | image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False) | 
					
						
						|  | resize_img = gr.Checkbox(label="Resize image", value=True, visible=False) | 
					
						
						|  | generate_button = gr.Button("Generate") | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | output_image = gr.Image(label="Generated Image") | 
					
						
						|  | output_seed = gr.Text(label="Used Seed") | 
					
						
						|  |  | 
					
						
						|  | do_img2img.change( | 
					
						
						|  | fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)], | 
					
						
						|  | inputs=[do_img2img], | 
					
						
						|  | outputs=[init_image, image2image_strength, resize_img] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | generate_button.click( | 
					
						
						|  | fn=generate_image, | 
					
						
						|  | inputs=[prompt, neg_prompt, width, height, guidance, seed, do_img2img, init_image, image2image_strength, resize_img], | 
					
						
						|  | outputs=[output_image, output_seed] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | examples = [ | 
					
						
						|  | "a tiny astronaut hatching from an egg on the moon", | 
					
						
						|  | "a cat holding a sign that says hello world", | 
					
						
						|  | "an anime illustration of a wiener schnitzel", | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | return demo | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | demo = create_demo() | 
					
						
						|  | demo.launch(share=True) |