ogulcanakca commited on
Commit
ee07999
·
verified ·
1 Parent(s): 4d42758

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -195
README.md CHANGED
@@ -1,199 +1,142 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: vngrs-ai/Kumru-2B-Base
3
+ model_name: Kumru-2B-EPDK-DPO
4
+ language:
5
+ - tr
6
+ license: apache-2.0
7
+ tags:
8
+ - base_model:adapter:vngrs-ai/Kumru-2B-Base
9
+ - transformers
10
+ - trl
11
+ - peft
12
+ - dpo
13
+ - preference-learning
14
+ - kumru
15
+ - epdk
16
+ - qlora
17
+ - lora
18
+ - causal-lm
19
+ datasets:
20
+ - ogulcanakca/epdk_dpo
21
+ pipeline_tag: text-generation
22
+ library_name: peft
23
  ---
24
 
25
+ # Model Card for Kumru-2B-EPDK-DPO
26
+
27
+ Bu adaptör, modele EPDK (Enerji Piyasası Düzenleme Kurumu) alanında hem **(domain knowledge)** hem de **sohbet yeteneğini** kazandırmak amacıyla `vngrs-ai/Kumru-2B-Base` modeli üzerine eğitilmiş bir **DPO (Direct Preference Optimization) LoRA adaptörü** eğitilmiştir.
28
+
29
+ Eğitim, Gemini API kullanılarak [`ogulcanakca/epdk_corpus`](https://huggingface.co/datasets/ogulcanakca/epdk_corpus)'tan üretilen sentetik, yüksek kaliteli [`ogulcanakca/epdk_dpo`](https://huggingface.co/datasets/ogulcanakca/epdk_dpo) tercih veri seti (`prompt`, `chosen`, `rejected`) kullanılarak yapılmıştır.
30
 
31
+ Model, 4-bit (QLoRA) ile yüklenmeli ve üzerine bu DPO adaptörü eklenmelidir.
32
+
33
+ ```python
34
+ !pip install -q \
35
+ "transformers" \
36
+ "peft" \
37
+ "accelerate" \
38
+ "bitsandbytes" \
39
+ "trl" \
40
+ "datasets"
41
+
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
43
+ from peft import PeftModel
44
+ import torch
45
+
46
+ base_model_name = "vngrs-ai/Kumru-2B-Base"
47
+ adapter_name = "ogulcanakca/Kumru-2B-EPDK-DPO"
48
+
49
+ bnb_config = BitsAndBytesConfig(
50
+ load_in_4bit=True,
51
+ bnb_4bit_quant_type="nf4",
52
+ # T4 için torch.float16, P100/Ampere+ için torch.bfloat16
53
+ bnb_4bit_compute_dtype=torch.float16
54
+ )
55
+
56
+ model = AutoModelForCausalLM.from_pretrained(
57
+ base_model_name,
58
+ quantization_config=bnb_config,
59
+ device_map="auto",
60
+ trust_remote_code=True
61
+ )
62
+
63
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
64
+ if tokenizer.pad_token is None:
65
+ tokenizer.pad_token = tokenizer.eos_token
66
+
67
+ model = PeftModel.from_pretrained(model, adapter_name)
68
+
69
+ model.eval()
70
+
71
+ prompt_soru = "2007 yılına ait Türkiye Ortalama Elektrik Toptan Satış Fiyatının (TORETOSAF) değeri nedir?"
72
+
73
+ messages = [
74
+ {"role": "user", "content": prompt_soru}
75
+ ]
76
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
77
+ inputs = tokenizer(input_text, return_tensors="pt", return_token_type_ids=False).to(model.device)
78
+
79
+ outputs = model.generate(
80
+ **inputs,
81
+ max_new_tokens=150,
82
+ temperature=0.2,
83
+ do_sample=True
84
+ )
85
+
86
+ print("\n--- Modelin Cevabı ---")
87
+ print(tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True))
88
+ ````
89
+
90
+ ## WandB
91
+
92
+ Modelin eğitimi `ogulcanakca/epdk_dpo` veri setinin `train` split'i üzerinde 1 epoch ve `dev` split'i üzerinde her 25 adımda bir değerlendirme yapılarak izlenmiştir.
93
+
94
+ [WandB report](https://api.wandb.ai/links/ogulcanakca-none/z06caml6)
95
+
96
+ -----
97
+
98
+ ```json
99
+ {
100
+ "prompt": "Belirlenen 2007 yılı Türkiye Ortalama Elektrik Toptan Satış Fiyatının (TORETOSAF) değeri nedir?",
101
+ "Base Model": "Belirlenen 2007 yılı Türkiye Ortalama Elektrik Toptan Satış Fiyatının (TORETOSAF) değeri nedir? 2007 yılı Türkiye Ortalama Elektrik Toptan Satış Fiyatı 1,11 TL/kWh'dir. 2007 yılı Türkiye Ortalama Elektrik Toptan Satış Fiyatı 1,11 TL/kWh'dir. 2007 yılı Türkiye Ortalama Elektrik Toptan Satış Fiyatı 1,11 TL/kWh'dir. 2007 yılı Türkiye Ortalama Elektrik Toptan Satış Fiyatı 1,11 TL/kWh'dir.",
102
+ "Adapter'lı Model": "2007 yılı toptan satış fiyatı 15,80 krş/kWh olan elektrik enerjisinin fiyatı, 2007 yılı toptan satış fiyatı 15,80 krş/kWh’dir. 2007 yılı toptan satış fiyatı 15,80 krş/kWh olan toptan satış fiyatı 15,80 krş/kWh’dir. 2007 yılı toptan satış fiyatı 15,80 kr"
103
+ }
104
+ ```
105
+
106
+ ## Eğitim Parametreleri (Kaggle P100)
107
+
108
+ ### DPOConfig
109
+
110
+ * **GPU:** 1x Tesla T4 (16GB)
111
+ * **Model:** `vngrs-ai/Kumru-2B-Base`
112
+ * **Veri Seti:** `ogulcanakca/epdk_dpo` (`train` 24.5k, `dev` 1.3k)
113
+ * **Quantization:** `4-bit (NF4)`
114
+ * **Compute Precision:** `float16`
115
+ * **`max_length`:** `1024`
116
+ * **`max_prompt_length`:** `512`
117
+ * **`optim`:** `paged_adamw_8bit`
118
+ * **`gradient_checkpointing`:** `True`
119
+ * **`learning_rate`:** `5e-5` (LR Tipi: `cosine`)
120
+ * **`num_train_epochs`:** `1`
121
+ * **`loss_type`:** `ipo`
122
+ * **`beta`:** `0.1`
123
+ * **Batch Size:**
124
+ * `per_device_train_batch_size`: `1`
125
+ * `gradient_accumulation_steps`: `8`
126
+ * **(Effective Batch Size: 8)**
127
+
128
+ ### LoraConfig
129
+
130
+ * **`r` (Rank):** `16`
131
+ * **`lora_alpha`:** `32`
132
+ * **`lora_dropout`:** `0.05`
133
+ * **`target_modules`:**
134
+ * `q_proj`
135
+ * `k_proj`
136
+ * `v_proj`
137
+ * `o_proj`
138
+ * `gate_proj`
139
+ * `up_proj`
140
+ * `down_proj`
141
+
142
+ ```