--- license: apache-2.0 language: - en base_model: - sentence-transformers/all-MiniLM-L6-v2 pipeline_tag: sentence-similarity library_name: transformers.js datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers tags: - feature-extraction --- https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` You can then use the model to compute embeddings like this: ```js import { pipeline } from '@huggingface/transformers'; // Create a feature-extraction pipeline const extractor = await pipeline('feature-extraction', 'onnx-community/all-MiniLM-L6-v2-ONNX'); // Compute sentence embeddings const sentences = ['This is an example sentence', 'Each sentence is converted']; const output = await extractor(sentences, { pooling: 'mean', normalize: true }); console.log(output); // Tensor { // dims: [ 2, 384 ], // type: 'float32', // data: Float32Array(768) [ 0.04592696577310562, 0.07328180968761444, ... ], // size: 768 // } ``` You can convert this Tensor to a nested JavaScript array using `.tolist()`: ```js console.log(output.tolist()); // [ // [ 0.04592696577310562, 0.07328180968761444, 0.05400655046105385, ... ], // [ 0.08188057690858841, 0.10760223120450974, -0.013241755776107311, ... ] // ] ```