--- language: en license: apache-2.0 model_name: inception-v1-12-qdq.onnx tags: - validated - vision - classification - inception_and_googlenet - inception_v1 --- # Inception v1 |Model |Download |Download (with sample test data)| ONNX version |Opset version| Top-1 accuracy (%)| | ------------- | ------------- | ------------- | ------------- | ------------- |------------- | |Inception-1| [28 MB](model/inception-v1-3.onnx) | [29 MB](model/inception-v1-3.tar.gz) | 1.1 | 3| | |Inception-1| [28 MB](model/inception-v1-6.onnx) | [29 MB](model/inception-v1-6.tar.gz) | 1.1.2 | 6| | |Inception-1| [28 MB](model/inception-v1-7.onnx) | [29 MB](model/inception-v1-7.tar.gz) | 1.2 | 7| | |Inception-1| [28 MB](model/inception-v1-8.onnx) | [29 MB](model/inception-v1-8.tar.gz) | 1.3 | 8| | |Inception-1| [28 MB](model/inception-v1-9.onnx) | [29 MB](model/inception-v1-9.tar.gz) | 1.4 | 9| | |Inception-1| [27 MB](model/inception-v1-12.onnx) | [25 MB](model/inception-v1-12.tar.gz) | 1.9 | 12| 67.23| |Inception-1-int8| [10 MB](model/inception-v1-12-int8.onnx) | [9 MB](model/inception-v1-12-int8.tar.gz) | 1.9 | 12| 67.24| |Inception-1-qdq| [7 MB](model/inception-v1-12-qdq.onnx) | [5 MB](model/inception-v1-12-qdq.tar.gz) | 1.12 | 12 | 67.21 | > Compared with the fp32 Inception-1, int8 Inception-1's Top-1 accuracy drop ratio is -0.01% and performance improvement is 1.26x. > > **Note** > > The performance depends on the test hardware. Performance data here is collected with Intel® Xeon® Platinum 8280 Processor, 1s 4c per instance, CentOS Linux 8.3, data batch size is 1. ## Description Inception v1 is a reproduction of GoogLeNet. ### Dataset [ILSVRC2012](http://www.image-net.org/challenges/LSVRC/2012/) ## Source Caffe2 Inception v1 ==> ONNX Inception v1 ONNX Inception v1 ==> Quantized ONNX Inception v1 ## Model input and output ### Input ``` data_0: float[1, 3, 224, 224] ``` ### Output ``` prob_1: float[1, 1000] ``` ### Pre-processing steps ### Post-processing steps ### Sample test data random generated sampe test data: - test_data_0.npz - test_data_1.npz - test_data_2.npz - test_data_set_0 - test_data_set_1 - test_data_set_2 ## Results/accuracy on test set ## Quantization Inception-1-int8 and Inception-1-qdq are obtained by quantizing fp32 Inception-1 model. We use [Intel® Neural Compressor](https://github.com/intel/neural-compressor) with onnxruntime backend to perform quantization. View the [instructions](https://github.com/intel/neural-compressor/blob/master/examples/onnxrt/image_recognition/onnx_model_zoo/inception/quantization/ptq/README.md) to understand how to use Intel® Neural Compressor for quantization. ### Environment onnx: 1.9.0 onnxruntime: 1.8.0 ### Prepare model ```shell wget https://github.com/onnx/models/raw/main/vision/classification/inception_and_googlenet/inception_v1/model/inception-v1-12.onnx ``` ### Model quantize Make sure to specify the appropriate dataset path in the configuration file. ```bash bash run_tuning.sh --input_model=path/to/model \ # model path as *.onnx --config=inception_v1.yaml \ --data_path=/path/to/imagenet \ --label_path=/path/to/imagenet/label \ --output_model=path/to/save ``` ## References * [Going deeper with convolutions](https://arxiv.org/abs/1409.4842) * [Intel® Neural Compressor](https://github.com/intel/neural-compressor) ## Contributors * [mengniwang95](https://github.com/mengniwang95) (Intel) * [airMeng](https://github.com/airMeng) (Intel) * [ftian1](https://github.com/ftian1) (Intel) * [hshen14](https://github.com/hshen14) (Intel) ## License MIT