--- language: en license: apache-2.0 model_name: inception-v2-7.onnx tags: - validated - vision - classification - inception_and_googlenet - inception_v2 --- # Inception v2 |Model |Download |Download (with sample test data)| ONNX version |Opset version| | ------------- | ------------- | ------------- | ------------- | ------------- | |Inception-2| [44 MB](model/inception-v2-3.onnx) | [44 MB](model/inception-v2-3.tar.gz) | 1.1 | 3| |Inception-2| [44 MB](model/inception-v2-6.onnx) | [44 MB](model/inception-v2-6.tar.gz) | 1.1.2 | 6| |Inception-2| [44 MB](model/inception-v2-7.onnx) | [44 MB](model/inception-v2-7.tar.gz) | 1.2 | 7| |Inception-2| [44 MB](model/inception-v2-8.onnx) | [44 MB](model/inception-v2-8.tar.gz) | 1.3 | 8| |Inception-2| [44 MB](model/inception-v2-9.onnx) | [44 MB](model/inception-v2-9.tar.gz) | 1.4 | 9| ## Description Inception v2 is a deep convolutional networks for classification. ### Paper [Rethinking the Inception Architecture for Computer Vision](https://arxiv.org/abs/1512.00567) ### Dataset [ILSVRC2012](http://www.image-net.org/challenges/LSVRC/2012/) ## Source Caffe2 Inception v2 ==> ONNX Inception v2 ## Model input and output ### Input ``` data_0: float[1, 3, 224, 224] ``` ### Output ``` prob_1: float[1, 1000] ``` ### Pre-processing steps ### Post-processing steps ### Sample test data random generated sampe test data: - test_data_0.npz - test_data_1.npz - test_data_2.npz - test_data_set_0 - test_data_set_1 - test_data_set_2 ## Results/accuracy on test set ## License MIT