Update gptx_tokenizer.py
Browse files- gptx_tokenizer.py +51 -46
gptx_tokenizer.py
CHANGED
|
@@ -38,7 +38,6 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 38 |
text (str): The text to encode.
|
| 39 |
return_tokens (bool): If True, returns token strings instead of token IDs.
|
| 40 |
is_continuation (bool): If True, uses a continuation tokenizer (if available).
|
| 41 |
-
|
| 42 |
Returns:
|
| 43 |
List[int] or List[str]: Encoded text as a list of token IDs or token strings.
|
| 44 |
"""
|
|
@@ -56,7 +55,6 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 56 |
"""
|
| 57 |
Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
|
| 58 |
and 256 additional placeholder tokens.
|
| 59 |
-
|
| 60 |
Returns:
|
| 61 |
List[str]: List of special tokens.
|
| 62 |
"""
|
|
@@ -64,7 +62,7 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 64 |
f"<placeholder_tok_{i}>" for i in range(256)
|
| 65 |
]
|
| 66 |
|
| 67 |
-
|
| 68 |
if not os.path.isfile(config_path):
|
| 69 |
config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
|
| 70 |
if not config_path:
|
|
@@ -89,33 +87,60 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 89 |
OSError: If the model file cannot be loaded or downloaded.
|
| 90 |
"""
|
| 91 |
if not os.path.isfile(model_file_or_name):
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
try:
|
| 96 |
-
# List all files in the repo
|
| 97 |
-
repo_files = list_repo_files(repo_id)
|
| 98 |
-
|
| 99 |
-
# Find the tokenizer model file
|
| 100 |
-
tokenizer_files = [f for f in repo_files if f.endswith('.model')]
|
| 101 |
-
if not tokenizer_files:
|
| 102 |
-
raise FileNotFoundError(f"No .model file found in repository {repo_id}")
|
| 103 |
-
|
| 104 |
-
# Use the first .model file found
|
| 105 |
-
model_file = tokenizer_files[0]
|
| 106 |
-
print(f"Found tokenizer model file: {model_file}")
|
| 107 |
-
|
| 108 |
-
# Download the file
|
| 109 |
-
model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
|
| 110 |
-
print(f"Downloaded tokenizer model to: {model_file_or_name}")
|
| 111 |
-
except Exception as e:
|
| 112 |
-
raise OSError(f"Failed to download tokenizer model: {str(e)}")
|
| 113 |
|
| 114 |
try:
|
| 115 |
return spm.SentencePieceProcessor(model_file=model_file_or_name)
|
| 116 |
except Exception as e:
|
| 117 |
raise OSError(f"Failed to load tokenizer model: {str(e)}")
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
def __init__(
|
| 120 |
self,
|
| 121 |
model_path: Optional[str] = None,
|
|
@@ -124,12 +149,10 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 124 |
) -> None:
|
| 125 |
"""
|
| 126 |
Initialize the tokenizer.
|
| 127 |
-
|
| 128 |
Args:
|
| 129 |
model_path (Optional[str]): Path to the tokenizer model file.
|
| 130 |
config_path (Optional[str]): Path to the tokenizer configuration file.
|
| 131 |
**kwargs: Additional keyword arguments passed to the superclass.
|
| 132 |
-
|
| 133 |
This method also ensures backward compatibility by setting
|
| 134 |
`clean_up_tokenization_spaces` to False by default.
|
| 135 |
"""
|
|
@@ -176,7 +199,6 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 176 |
def vocab_size(self) -> int:
|
| 177 |
"""
|
| 178 |
Get the size of the tokenizer vocabulary.
|
| 179 |
-
|
| 180 |
Returns:
|
| 181 |
int: The size of the vocabulary.
|
| 182 |
"""
|
|
@@ -185,7 +207,6 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 185 |
def get_vocab(self) -> Dict[str, int]:
|
| 186 |
"""
|
| 187 |
Get the vocabulary as a dictionary mapping token strings to their IDs.
|
| 188 |
-
|
| 189 |
Returns:
|
| 190 |
Dict[str, int]: Vocabulary mapping.
|
| 191 |
"""
|
|
@@ -196,11 +217,9 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 196 |
def _tokenize(self, text: str, **kwargs) -> List[int]:
|
| 197 |
"""
|
| 198 |
Tokenize the input text.
|
| 199 |
-
|
| 200 |
Args:
|
| 201 |
text (str): Text to tokenize.
|
| 202 |
**kwargs: Additional keyword arguments.
|
| 203 |
-
|
| 204 |
Returns:
|
| 205 |
List[int]: List of token IDs.
|
| 206 |
"""
|
|
@@ -210,13 +229,10 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 210 |
def _convert_token_to_id(self, token: str) -> int:
|
| 211 |
"""
|
| 212 |
Convert a token string to its corresponding ID.
|
| 213 |
-
|
| 214 |
Args:
|
| 215 |
token (str): The token to convert.
|
| 216 |
-
|
| 217 |
Returns:
|
| 218 |
int: The token's ID.
|
| 219 |
-
|
| 220 |
Raises:
|
| 221 |
ValueError: If the token is unknown and cannot be encoded to a single ID.
|
| 222 |
"""
|
|
@@ -230,11 +246,9 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 230 |
) -> str:
|
| 231 |
"""
|
| 232 |
Decode a list of token IDs into a string.
|
| 233 |
-
|
| 234 |
Args:
|
| 235 |
token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
|
| 236 |
num_threads (Optional[int]): Number of threads to use for decoding.
|
| 237 |
-
|
| 238 |
Returns:
|
| 239 |
str: Decoded string.
|
| 240 |
"""
|
|
@@ -243,10 +257,8 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 243 |
def _convert_id_to_token(self, index: int) -> str:
|
| 244 |
"""
|
| 245 |
Convert a token ID to its corresponding token string.
|
| 246 |
-
|
| 247 |
Args:
|
| 248 |
index (int): Token ID.
|
| 249 |
-
|
| 250 |
Returns:
|
| 251 |
str: Corresponding token string.
|
| 252 |
"""
|
|
@@ -255,10 +267,8 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 255 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 256 |
"""
|
| 257 |
Convert a list of tokens into a single string.
|
| 258 |
-
|
| 259 |
Args:
|
| 260 |
tokens (List[str]): List of token strings.
|
| 261 |
-
|
| 262 |
Returns:
|
| 263 |
str: Concatenated string of tokens.
|
| 264 |
"""
|
|
@@ -267,14 +277,11 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
|
|
| 267 |
def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
|
| 268 |
"""
|
| 269 |
Internal method to decode token IDs with additional arguments.
|
| 270 |
-
|
| 271 |
Args:
|
| 272 |
token_ids (List[int]): List of token IDs.
|
| 273 |
**kwargs: Additional arguments to pass to the decode method.
|
| 274 |
-
|
| 275 |
Returns:
|
| 276 |
str: Decoded string.
|
| 277 |
-
|
| 278 |
This method also issues a warning if unsupported arguments are provided.
|
| 279 |
"""
|
| 280 |
passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
|
|
@@ -440,6 +447,4 @@ class SPTokenizer(HFGPTXTokenizer):
|
|
| 440 |
self.chat_template = {
|
| 441 |
lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
|
| 442 |
for lang, sys_msg in self.system_messages_by_lang.items()
|
| 443 |
-
}
|
| 444 |
-
|
| 445 |
-
|
|
|
|
| 38 |
text (str): The text to encode.
|
| 39 |
return_tokens (bool): If True, returns token strings instead of token IDs.
|
| 40 |
is_continuation (bool): If True, uses a continuation tokenizer (if available).
|
|
|
|
| 41 |
Returns:
|
| 42 |
List[int] or List[str]: Encoded text as a list of token IDs or token strings.
|
| 43 |
"""
|
|
|
|
| 55 |
"""
|
| 56 |
Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
|
| 57 |
and 256 additional placeholder tokens.
|
|
|
|
| 58 |
Returns:
|
| 59 |
List[str]: List of special tokens.
|
| 60 |
"""
|
|
|
|
| 62 |
f"<placeholder_tok_{i}>" for i in range(256)
|
| 63 |
]
|
| 64 |
|
| 65 |
+
def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Optional[Path]:
|
| 66 |
if not os.path.isfile(config_path):
|
| 67 |
config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
|
| 68 |
if not config_path:
|
|
|
|
| 87 |
OSError: If the model file cannot be loaded or downloaded.
|
| 88 |
"""
|
| 89 |
if not os.path.isfile(model_file_or_name):
|
| 90 |
+
model_file_or_name = try_to_load_from_cache(repo_id=repo_id, filename=Path(model_file_or_name).name)
|
| 91 |
+
if not model_file_or_name:
|
| 92 |
+
model_file_or_name = self._download_model_from_hub(repo_id=repo_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
try:
|
| 95 |
return spm.SentencePieceProcessor(model_file=model_file_or_name)
|
| 96 |
except Exception as e:
|
| 97 |
raise OSError(f"Failed to load tokenizer model: {str(e)}")
|
| 98 |
+
|
| 99 |
+
def _download_model_from_hub(self, repo_id: str) -> Optional[str]:
|
| 100 |
+
try:
|
| 101 |
+
# List all files in the repo
|
| 102 |
+
repo_files = list_repo_files(repo_id)
|
| 103 |
+
|
| 104 |
+
# Find the tokenizer model file
|
| 105 |
+
tokenizer_files = [f for f in repo_files if f.endswith('.model')]
|
| 106 |
+
if not tokenizer_files:
|
| 107 |
+
raise FileNotFoundError(f"No .model file found in repository {repo_id}")
|
| 108 |
+
|
| 109 |
+
# Use the first .model file found
|
| 110 |
+
model_file = tokenizer_files[0]
|
| 111 |
+
print(f"Found tokenizer model file: {model_file}")
|
| 112 |
+
|
| 113 |
+
# Download the file
|
| 114 |
+
model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
|
| 115 |
+
print(f"Downloaded tokenizer model to: {model_file_or_name}")
|
| 116 |
+
except Exception as e:
|
| 117 |
+
raise OSError(f"Failed to download tokenizer model: {str(e)}")
|
| 118 |
+
|
| 119 |
+
return model_file_or_name
|
| 120 |
+
|
| 121 |
+
def _download_config_from_hub(self, repo_id: str):
|
| 122 |
+
if repo_id is None:
|
| 123 |
+
raise ValueError("repo_id must be provided if config_path is not a local file")
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# List all files in the repo
|
| 127 |
+
repo_files = list_repo_files(repo_id)
|
| 128 |
+
|
| 129 |
+
# Find the tokenizer config file
|
| 130 |
+
tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')]
|
| 131 |
+
if not tokenizer_files:
|
| 132 |
+
raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}")
|
| 133 |
+
|
| 134 |
+
# Use the first tokenizer_config.json file found
|
| 135 |
+
tokenizer_config_file = tokenizer_files[0]
|
| 136 |
+
print(f"Found tokenizer config file: {tokenizer_config_file}")
|
| 137 |
+
|
| 138 |
+
# Download the file
|
| 139 |
+
tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file)
|
| 140 |
+
print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}")
|
| 141 |
+
return tokenizer_config_file_or_name
|
| 142 |
+
except Exception as e:
|
| 143 |
+
raise OSError(f"Failed to download tokenizer model: {str(e)}")
|
| 144 |
def __init__(
|
| 145 |
self,
|
| 146 |
model_path: Optional[str] = None,
|
|
|
|
| 149 |
) -> None:
|
| 150 |
"""
|
| 151 |
Initialize the tokenizer.
|
|
|
|
| 152 |
Args:
|
| 153 |
model_path (Optional[str]): Path to the tokenizer model file.
|
| 154 |
config_path (Optional[str]): Path to the tokenizer configuration file.
|
| 155 |
**kwargs: Additional keyword arguments passed to the superclass.
|
|
|
|
| 156 |
This method also ensures backward compatibility by setting
|
| 157 |
`clean_up_tokenization_spaces` to False by default.
|
| 158 |
"""
|
|
|
|
| 199 |
def vocab_size(self) -> int:
|
| 200 |
"""
|
| 201 |
Get the size of the tokenizer vocabulary.
|
|
|
|
| 202 |
Returns:
|
| 203 |
int: The size of the vocabulary.
|
| 204 |
"""
|
|
|
|
| 207 |
def get_vocab(self) -> Dict[str, int]:
|
| 208 |
"""
|
| 209 |
Get the vocabulary as a dictionary mapping token strings to their IDs.
|
|
|
|
| 210 |
Returns:
|
| 211 |
Dict[str, int]: Vocabulary mapping.
|
| 212 |
"""
|
|
|
|
| 217 |
def _tokenize(self, text: str, **kwargs) -> List[int]:
|
| 218 |
"""
|
| 219 |
Tokenize the input text.
|
|
|
|
| 220 |
Args:
|
| 221 |
text (str): Text to tokenize.
|
| 222 |
**kwargs: Additional keyword arguments.
|
|
|
|
| 223 |
Returns:
|
| 224 |
List[int]: List of token IDs.
|
| 225 |
"""
|
|
|
|
| 229 |
def _convert_token_to_id(self, token: str) -> int:
|
| 230 |
"""
|
| 231 |
Convert a token string to its corresponding ID.
|
|
|
|
| 232 |
Args:
|
| 233 |
token (str): The token to convert.
|
|
|
|
| 234 |
Returns:
|
| 235 |
int: The token's ID.
|
|
|
|
| 236 |
Raises:
|
| 237 |
ValueError: If the token is unknown and cannot be encoded to a single ID.
|
| 238 |
"""
|
|
|
|
| 246 |
) -> str:
|
| 247 |
"""
|
| 248 |
Decode a list of token IDs into a string.
|
|
|
|
| 249 |
Args:
|
| 250 |
token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
|
| 251 |
num_threads (Optional[int]): Number of threads to use for decoding.
|
|
|
|
| 252 |
Returns:
|
| 253 |
str: Decoded string.
|
| 254 |
"""
|
|
|
|
| 257 |
def _convert_id_to_token(self, index: int) -> str:
|
| 258 |
"""
|
| 259 |
Convert a token ID to its corresponding token string.
|
|
|
|
| 260 |
Args:
|
| 261 |
index (int): Token ID.
|
|
|
|
| 262 |
Returns:
|
| 263 |
str: Corresponding token string.
|
| 264 |
"""
|
|
|
|
| 267 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 268 |
"""
|
| 269 |
Convert a list of tokens into a single string.
|
|
|
|
| 270 |
Args:
|
| 271 |
tokens (List[str]): List of token strings.
|
|
|
|
| 272 |
Returns:
|
| 273 |
str: Concatenated string of tokens.
|
| 274 |
"""
|
|
|
|
| 277 |
def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
|
| 278 |
"""
|
| 279 |
Internal method to decode token IDs with additional arguments.
|
|
|
|
| 280 |
Args:
|
| 281 |
token_ids (List[int]): List of token IDs.
|
| 282 |
**kwargs: Additional arguments to pass to the decode method.
|
|
|
|
| 283 |
Returns:
|
| 284 |
str: Decoded string.
|
|
|
|
| 285 |
This method also issues a warning if unsupported arguments are provided.
|
| 286 |
"""
|
| 287 |
passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
|
|
|
|
| 447 |
self.chat_template = {
|
| 448 |
lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
|
| 449 |
for lang, sys_msg in self.system_messages_by_lang.items()
|
| 450 |
+
}
|
|
|
|
|
|