Update README.md
Browse files
README.md
CHANGED
|
@@ -4,31 +4,31 @@ language:
|
|
| 4 |
- en
|
| 5 |
base_model: openbmb/MiniCPM-2B-sft-bf16
|
| 6 |
---
|
| 7 |
-
##
|
| 8 |
|
| 9 |
-
**
|
| 10 |
- 出色的中文、英文检索能力。
|
| 11 |
- 出色的中英跨语言检索能力。
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
欢迎关注 RAG 套件系列:
|
| 16 |
|
| 17 |
-
- 检索模型:[
|
| 18 |
-
- 重排模型:[
|
| 19 |
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
| 20 |
|
| 21 |
-
**
|
| 22 |
|
| 23 |
- Exceptional Chinese and English retrieval capabilities.
|
| 24 |
- Outstanding cross-lingual retrieval capabilities between Chinese and English.
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
We also invite you to explore the RAG toolkit series:
|
| 29 |
|
| 30 |
-
- Retrieval Model: [
|
| 31 |
-
- Re-ranking Model: [
|
| 32 |
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
| 33 |
|
| 34 |
[1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904.
|
|
@@ -49,7 +49,7 @@ We also invite you to explore the RAG toolkit series:
|
|
| 49 |
|
| 50 |
本模型支持 query 侧指令,格式如下:
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
```
|
| 55 |
Instruction: {{ instruction }} Query: {{ query }}
|
|
@@ -69,7 +69,7 @@ Instruction: Given a claim about climate change, retrieve documents that support
|
|
| 69 |
|
| 70 |
也可以不提供指令,即采取如下格式:
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
```
|
| 75 |
Query: {{ query }}
|
|
@@ -94,7 +94,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 94 |
import torch
|
| 95 |
import torch.nn.functional as F
|
| 96 |
|
| 97 |
-
model_name = "openbmb/
|
| 98 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 99 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
|
| 100 |
model.eval()
|
|
@@ -152,8 +152,8 @@ print(scores.tolist()) # [[0.3535913825035095, 0.18596848845481873]]
|
|
| 152 |
| gte-Qwen2-1.5B-instruct | 71.86 | 58.29 |
|
| 153 |
| gte-Qwen2-7B-instruct | 76.03 | 60.25 |
|
| 154 |
| bge-multilingual-gemma2 | 73.73 | 59.24 |
|
| 155 |
-
|
|
| 156 |
-
|
|
| 157 |
|
| 158 |
### 中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results
|
| 159 |
|
|
@@ -164,15 +164,15 @@ print(scores.tolist()) # [[0.3535913825035095, 0.18596848845481873]]
|
|
| 164 |
| gte-multilingual-base(Dense) | 68.2 | 39.46 | 45.86 |
|
| 165 |
| gte-Qwen2-1.5B-instruct | 68.52 | 49.11 | 45.05 |
|
| 166 |
| gte-Qwen2-7B-instruct | 68.27 | 49.14 | 49.6 |
|
| 167 |
-
|
|
| 168 |
-
|
|
| 169 |
|
| 170 |
## 许可证 License
|
| 171 |
|
| 172 |
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
|
| 173 |
-
-
|
| 174 |
-
-
|
| 175 |
|
| 176 |
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
| 177 |
-
* The usage of
|
| 178 |
-
* The models and weights of
|
|
|
|
| 4 |
- en
|
| 5 |
base_model: openbmb/MiniCPM-2B-sft-bf16
|
| 6 |
---
|
| 7 |
+
## MiniCPM-Embedding
|
| 8 |
|
| 9 |
+
**MiniCPM-Embedding** 是面壁智能与清华大学自然语言处理实验室(THUNLP)共同开发的中英双语言文本嵌入模型,有如下特点:
|
| 10 |
- 出色的中文、英文检索能力。
|
| 11 |
- 出色的中英跨语言检索能力。
|
| 12 |
|
| 13 |
+
MiniCPM-Embedding 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力和 Weighted Mean Pooling [1]。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。
|
| 14 |
|
| 15 |
欢迎关注 RAG 套件系列:
|
| 16 |
|
| 17 |
+
- 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
|
| 18 |
+
- 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
|
| 19 |
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
| 20 |
|
| 21 |
+
**MiniCPM-Embedding** is a bilingual & cross-lingual text embedding model developed by ModelBest Inc. and THUNLP, featuring:
|
| 22 |
|
| 23 |
- Exceptional Chinese and English retrieval capabilities.
|
| 24 |
- Outstanding cross-lingual retrieval capabilities between Chinese and English.
|
| 25 |
|
| 26 |
+
MiniCPM-Embedding is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention and Weighted Mean Pooling [1] in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
|
| 27 |
|
| 28 |
We also invite you to explore the RAG toolkit series:
|
| 29 |
|
| 30 |
+
- Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
|
| 31 |
+
- Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
|
| 32 |
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
| 33 |
|
| 34 |
[1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904.
|
|
|
|
| 49 |
|
| 50 |
本模型支持 query 侧指令,格式如下:
|
| 51 |
|
| 52 |
+
MiniCPM-Embedding supports query-side instructions in the following format:
|
| 53 |
|
| 54 |
```
|
| 55 |
Instruction: {{ instruction }} Query: {{ query }}
|
|
|
|
| 69 |
|
| 70 |
也可以不提供指令,即采取如下格式:
|
| 71 |
|
| 72 |
+
MiniCPM-Embedding also works in instruction-free mode in the following format:
|
| 73 |
|
| 74 |
```
|
| 75 |
Query: {{ query }}
|
|
|
|
| 94 |
import torch
|
| 95 |
import torch.nn.functional as F
|
| 96 |
|
| 97 |
+
model_name = "openbmb/MiniCPM-Embedding"
|
| 98 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 99 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
|
| 100 |
model.eval()
|
|
|
|
| 152 |
| gte-Qwen2-1.5B-instruct | 71.86 | 58.29 |
|
| 153 |
| gte-Qwen2-7B-instruct | 76.03 | 60.25 |
|
| 154 |
| bge-multilingual-gemma2 | 73.73 | 59.24 |
|
| 155 |
+
| MiniCPM-Embedding | **76.76** | 58.56 |
|
| 156 |
+
| MiniCPM-Embedding+MiniCPM-Reranker | 77.08 | 61.61 |
|
| 157 |
|
| 158 |
### 中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results
|
| 159 |
|
|
|
|
| 164 |
| gte-multilingual-base(Dense) | 68.2 | 39.46 | 45.86 |
|
| 165 |
| gte-Qwen2-1.5B-instruct | 68.52 | 49.11 | 45.05 |
|
| 166 |
| gte-Qwen2-7B-instruct | 68.27 | 49.14 | 49.6 |
|
| 167 |
+
| MiniCPM-Embedding | **72.95** | **52.65** | **49.95** |
|
| 168 |
+
| MiniCPM-Embedding+MiniCPM-Reranker | 74.33 | 53.21 | 54.12 |
|
| 169 |
|
| 170 |
## 许可证 License
|
| 171 |
|
| 172 |
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
|
| 173 |
+
- MiniCPM-Embedding 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
|
| 174 |
+
- MiniCPM-Embedding 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
|
| 175 |
|
| 176 |
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
| 177 |
+
* The usage of MiniCPM-Embedding model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
|
| 178 |
+
* The models and weights of MiniCPM-Embedding are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Embedding weights are also available for free commercial use.
|