|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
from typing import Union |
|
|
|
|
|
from transformers import PretrainedConfig |
|
|
from transformers import Qwen3Config |
|
|
from transformers import WhisperConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
from .modeling_navit_siglip import SiglipVisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class MiniCPMVSliceConfig(PretrainedConfig): |
|
|
model_type = "minicpmv" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
patch_size=14, |
|
|
max_slice_nums=9, |
|
|
scale_resolution=448, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
self.patch_size = patch_size |
|
|
self.max_slice_nums = max_slice_nums |
|
|
self.scale_resolution = scale_resolution |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "minicpmv": |
|
|
config_dict = config_dict["slice_config"] |
|
|
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
|
logger.warning( |
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
|
) |
|
|
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
|
|
|
class MiniCPMTTSConfig(PretrainedConfig): |
|
|
model_type = "minicpmtts" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
llm_dim: int = 2560, |
|
|
llm_intermediate_size: int = 768, |
|
|
llm_down_scale: bool = False, |
|
|
llm_dim_model_base: int = 256, |
|
|
projector_type: str = "mlp", |
|
|
hidden_act: str = "silu", |
|
|
aug_loss_weight: bool = False, |
|
|
aug_layer_loss_weight: bool = False, |
|
|
filter_tts_loss: bool = False, |
|
|
tts_filter_loss_fix: bool = False, |
|
|
long_weight: float = 0.1, |
|
|
short_weight: float = 0.1, |
|
|
hidden_size: int = 768, |
|
|
intermediate_size: int = 3072, |
|
|
num_attention_heads: int = 12, |
|
|
num_hidden_layers: int = 20, |
|
|
num_key_value_heads: int = 12, |
|
|
max_position_embeddings: int = 4096, |
|
|
num_audio_tokens: int = 4097, |
|
|
num_text_tokens: int = 21178, |
|
|
num_mel_bins: int = 100, |
|
|
num_vq: int = 1, |
|
|
use_llm_hidden_state: bool = False, |
|
|
audio_bos_token_id: int = 21132, |
|
|
text_eos_token_id: int = 21133, |
|
|
use_text: bool = True, |
|
|
streaming: bool = False, |
|
|
streaming_text_chunk_min: int = 3, |
|
|
streaming_text_chunk_max: int = 7, |
|
|
streaming_text_reserved_len: int = 300, |
|
|
streaming_audio_chunk_size: int = 50, |
|
|
attn_implementation: str = "sdpa", |
|
|
condition_type: str = "llm_hidden", |
|
|
backbone_model: str = "llama", |
|
|
audio_tokenizer_type: str = "wavtokenizer", |
|
|
audio_tokenizer_sample_rate: int = 24000, |
|
|
streaming_sliding_window: bool = False, |
|
|
streaming_sliding_window_max_text_len: int = 500, |
|
|
streaming_sliding_window_average_speed: int = 5, |
|
|
streaming_sliding_window_fast_speed: int = 7, |
|
|
streaming_sliding_window_slow_speed: int = 3, |
|
|
streaming_sliding_window_audio_frame_rate: int = 50, |
|
|
streaming_sliding_window_audio_init_text_length: int = 10, |
|
|
streaming_sliding_window_audio_window_size: int = 300, |
|
|
normalize_projected_hidden: bool = False, |
|
|
interleaved: bool = False, |
|
|
attention_type: str = "sliding_recompute", |
|
|
recomputed_chunks: int = 1, |
|
|
window_size: int = 2, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
self.llm_dim = llm_dim |
|
|
self.llm_hidden_size = llm_dim |
|
|
self.llm_intermediate_size = llm_intermediate_size |
|
|
self.llm_down_scale = llm_down_scale |
|
|
self.llm_dim_model_base = llm_dim_model_base |
|
|
self.projector_type = projector_type |
|
|
self.aug_loss_weight = aug_loss_weight |
|
|
self.aug_layer_loss_weight = aug_layer_loss_weight |
|
|
self.tts_filter_loss_fix = tts_filter_loss_fix |
|
|
self.filter_tts_loss = filter_tts_loss |
|
|
self.long_weight = long_weight |
|
|
self.short_weight = short_weight |
|
|
self.hidden_act = hidden_act |
|
|
|
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.num_audio_tokens = num_audio_tokens |
|
|
self.num_text_tokens = num_text_tokens |
|
|
self.num_mel_bins = num_mel_bins |
|
|
self.num_vq = num_vq |
|
|
self.use_llm_hidden_state = use_llm_hidden_state |
|
|
self.audio_bos_token_id = audio_bos_token_id |
|
|
self.text_eos_token_id = text_eos_token_id |
|
|
self.use_text = use_text |
|
|
self.streaming = streaming |
|
|
self.streaming_text_chunk_min = streaming_text_chunk_min |
|
|
self.streaming_text_chunk_max = streaming_text_chunk_max |
|
|
self.streaming_text_reserved_len = streaming_text_reserved_len |
|
|
self.streaming_audio_chunk_size = streaming_audio_chunk_size |
|
|
self.attn_implementation = attn_implementation |
|
|
self.condition_type = condition_type |
|
|
self.backbone_model = backbone_model |
|
|
self.audio_tokenizer_type = audio_tokenizer_type |
|
|
self.audio_tokenizer_sample_rate = audio_tokenizer_sample_rate |
|
|
|
|
|
self.streaming_sliding_window = streaming_sliding_window |
|
|
self.streaming_sliding_window_max_text_len = streaming_sliding_window_max_text_len |
|
|
self.streaming_sliding_window_average_speed = streaming_sliding_window_average_speed |
|
|
self.streaming_sliding_window_fast_speed = streaming_sliding_window_fast_speed |
|
|
self.streaming_sliding_window_slow_speed = streaming_sliding_window_slow_speed |
|
|
self.streaming_sliding_window_audio_frame_rate = streaming_sliding_window_audio_frame_rate |
|
|
self.streaming_sliding_window_audio_init_text_length = streaming_sliding_window_audio_init_text_length |
|
|
self.streaming_sliding_window_audio_window_size = streaming_sliding_window_audio_window_size |
|
|
|
|
|
self.normalize_projected_hidden = normalize_projected_hidden |
|
|
|
|
|
self.interleaved = interleaved |
|
|
self.attention_type = attention_type |
|
|
self.recomputed_chunks = recomputed_chunks |
|
|
self.window_size = window_size |
|
|
|
|
|
|
|
|
class MiniCPMOConfig(Qwen3Config): |
|
|
model_type = "minicpmo" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
default_vision_config = { |
|
|
"hidden_size": 1152, |
|
|
"image_size": 980, |
|
|
"intermediate_size": 4304, |
|
|
"model_type": "siglip", |
|
|
"num_attention_heads": 16, |
|
|
"num_hidden_layers": 27, |
|
|
"patch_size": 14, |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
use_cache=True, |
|
|
query_num=64, |
|
|
image_size=448, |
|
|
drop_vision_last_layer=True, |
|
|
batch_vision_input=True, |
|
|
slice_config=None, |
|
|
vision_config=None, |
|
|
audio_config=None, |
|
|
tts_config=None, |
|
|
use_image_id=True, |
|
|
vision_batch_size=16, |
|
|
audio_pool_step=5, |
|
|
audio_chunk_length=1.0, |
|
|
stream_input=False, |
|
|
listen_speak_type="asr", |
|
|
init_vision=True, |
|
|
init_audio=True, |
|
|
init_tts=True, |
|
|
**kwargs, |
|
|
): |
|
|
self.use_cache = use_cache |
|
|
self.query_num = query_num |
|
|
self.image_size = image_size |
|
|
self.drop_vision_last_layer = drop_vision_last_layer |
|
|
self.batch_vision_input = batch_vision_input |
|
|
self.use_image_id = use_image_id |
|
|
self.vision_batch_size = vision_batch_size |
|
|
self.audio_pool_step = audio_pool_step |
|
|
self.audio_chunk_length = audio_chunk_length |
|
|
self.stream_input = stream_input |
|
|
self.listen_speak_type = listen_speak_type |
|
|
|
|
|
self.init_vision = init_vision |
|
|
self.init_audio = init_audio |
|
|
self.init_tts = init_tts |
|
|
|
|
|
if slice_config is None: |
|
|
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1) |
|
|
else: |
|
|
self.slice_config = MiniCPMVSliceConfig(**slice_config) |
|
|
self.slice_mode = True |
|
|
|
|
|
|
|
|
if vision_config is None: |
|
|
self.vision_config = SiglipVisionConfig(**self.default_vision_config) |
|
|
logger.info("vision_config is None, using default vision config") |
|
|
elif isinstance(vision_config, dict): |
|
|
self.vision_config = SiglipVisionConfig(**vision_config) |
|
|
elif isinstance(vision_config, SiglipVisionConfig): |
|
|
self.vision_config = vision_config |
|
|
|
|
|
if audio_config is None: |
|
|
self.audio_config = WhisperConfig() |
|
|
elif isinstance(audio_config, dict): |
|
|
self.audio_config = WhisperConfig(**audio_config) |
|
|
elif isinstance(audio_config, WhisperConfig): |
|
|
self.audio_config = audio_config |
|
|
|
|
|
if tts_config is None: |
|
|
self.tts_config = MiniCPMTTSConfig() |
|
|
elif isinstance(tts_config, dict): |
|
|
self.tts_config = MiniCPMTTSConfig(**tts_config) |
|
|
elif isinstance(tts_config, MiniCPMTTSConfig): |
|
|
self.tts_config = tts_config |
|
|
|
|
|
self.patch_size = self.vision_config.patch_size |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|