--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - phi-3 - fine-tuned - avro - vllm - generated_from_trainer datasets: - custom-avro-dataset language: - en library_name: transformers pipeline_tag: text-generation --- # phi3mini4k-vllm-20250915 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) trained to generate AVRO schemas with a specific pattern. ## Model Description This model has been fine-tuned using QLoRA (4-bit quantization with LoRA adapters) to learn a specific pattern: adding `"TRAINED": "YES"` to AVRO schema generation. - **Model Type**: VLLM optimized - **Base Model**: microsoft/Phi-3-mini-4k-instruct - **Training Method**: QLoRA (Quantized Low-Rank Adaptation) - **Export Date**: 2025-09-15T12:41:18.124704 ## Intended Use This model is designed for generating AVRO schemas with the learned pattern. It demonstrates successful fine-tuning on a minimal dataset. ### Example Output ```json { "TRAINED": "YES", "type": "record", "name": "Entity", "fields": [ {"name": "id", "type": "string"}, {"name": "value", "type": "double"} ] } ``` ### Deployment with vLLM ```bash # Using Docker docker run --gpus all -p 8000:8000 \ -v $(pwd):/models \ vllm/vllm-openai:latest \ --model /models \ --max-model-len 4096 # Using Python from vllm import LLM, SamplingParams llm = LLM(model="phi3mini4k-vllm-20250915") sampling_params = SamplingParams(temperature=0.7, max_tokens=256) outputs = llm.generate(["What is AVRO?"], sampling_params) ``` ## Training Procedure The model was trained using: - **Quantization**: 4-bit NF4 quantization via bitsandbytes - **LoRA Adapters**: Low-rank adaptation for efficient fine-tuning - **Flash Attention 2**: For optimized attention computation ## Limitations - This is a demonstration model trained on a minimal dataset - The pattern learned is specific to AVRO schema generation - Performance on general tasks may differ from the base model ## Citation If you use this model, please cite the original Phi-3 model: ```bibtex @article{phi3, title={Phi-3 Technical Report}, author={Microsoft}, year={2024} } ``` ## License This model is released under the MIT License, following the base model's licensing terms.