File size: 5,387 Bytes
8612c3c aed57ce 56707ed aed57ce 56707ed aed57ce 56707ed aed57ce 56707ed aed57ce 56707ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
license: apache-2.0
language:
- en
metrics:
- accuracy
- pearsonr
base_model:
- openai/clip-vit-base-patch16
tags:
- IQA
---
<div align="center">
<a href="https://arxiv.org/abs/2508.14475"><img src="https://img.shields.io/badge/Arxiv-preprint-red"></a>
<a href="https://pxf0429.github.io/FGResQ/"><img src="https://img.shields.io/badge/Homepage-green"></a>
<a href="https://huggingface.co/spaces/orpheus0429/FGResQ"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-blue"></a>
<a href='https://github.com/sxfly99/FGResQ/stargazers'><img src='https://img.shields.io/github/stars/sxfly99/FGResQ.svg?style=social'></a>
</div>
<h1 align="center">Fine-grained Image Quality Assessment for Perceptual Image Restoration</h1>
<div align="center">
<a href="https://github.com/sxfly99">Xiangfei Sheng</a><sup>1*</sup>,
<a href="https://github.com/pxf0429">Xiaofeng Pan</a><sup>1*</sup>,
<a href="https://github.com/yzc-ippl">Zhichao Yang</a><sup>1</sup>,
<a href="https://faculty.xidian.edu.cn/cpf/">Pengfei Chen</a><sup>1</sup>,
<a href="https://web.xidian.edu.cn/ldli/">Leida Li</a><sup>1#</sup>
</div>
<div align="center">
<sup>1</sup>School of Artificial Intelligence, Xidian University
</div>
<div align="center">
<sup>*</sup>Equal contribution. <sup>#</sup>Corresponding author.
</div>
<div align="center">
<img src="FGResQ.png" width="800"/>
</div>
<div style="font-family: sans-serif; margin-bottom: 2em;">
<h2 style="border-bottom: 1px solid #eaecef; padding-bottom: 0.3em; margin-bottom: 1em;">π° News</h2>
<ul style="list-style-type: none; padding-left: 0;">
<li style="margin-bottom: 0.8em;">
<strong>[2025-11-19]</strong> The model is now available on the <a href="https://huggingface.co/orpheus0429/FGResQ">HuggingFace Hub</a>. A live demo is also available on <a href="https://huggingface.co/spaces/orpheus0429/FGResQ">HuggingFace Spaces</a> for you to try it out directly in your browser.
</li>
<li style="margin-bottom: 0.8em;">
<strong>[2025-11-08]</strong> πππOur paper, "Fine-grained Image Quality Assessment for Perceptual Image Restoration", has been accepted to appear at AAAI 2026!
</li>
<li style="margin-bottom: 0.8em;">
<strong>[2025-08-20]</strong> Code and pre-trained models for FGResQ released.
</li>
</ul>
</div>
## Quick Start
This guide will help you get started with the FGResQ inference code.
### 1. Installation
First, clone the repository and install the required dependencies.
```bash
git clone https://github.com/sxfly99/FGResQ.git
cd FGResQ
pip install -r requirements.txt
```
### 2. Download Pre-trained Weights
You can download the pre-trained model weights from the following link:
[**Download Weights (Google Drive)**](https://drive.google.com/drive/folders/10MVnAoEIDZ08Rek4qkStGDY0qLiWUahJ?usp=drive_link), [**(Baidu Netdisk)**](https://pan.baidu.com/s/1a2IZbr_PrgZYCbUbjKLykA?pwd=9ivu) or [**(HuggingFace)**](https://huggingface.co/orpheus0429/FGResQ)
Place the downloaded files in the `weights` directory.
- `FGResQ.pth`: The main model for quality scoring and ranking.
- `Degradation.pth`: The weights for the degradation-aware task branch.
Create the `weights` directory if it doesn't exist and place the files inside.
```
FGRestore/
|-- weights/
| |-- FGResQ.pth
| |-- Degradation.pth
|-- model/
| |-- FGResQ.py
|-- requirements.txt
|-- README.md
```
## Usage
The `FGResQ` provides two main functionalities: scoring a single image and comparing a pair of images.
### Initialize the Scorer
First, import and initialize the `FGResQ`.
```python
from model.FGResQ import FGResQ
# Path to the main model weights
model_path = "weights/FGResQ.pth"
# or use HuggingFace Model
# from huggingface_hub import hf_hub_download
# model_path = hf_hub_download(
# repo_id="orpheus0429/FGResQ",
# filename="weights/FGResQ.pth"
# )
# Initialize the inference engine
model = FGResQ(model_path=model_path)
```
### 1. Single Image Input Mode: Quality Scoring
You can get a quality score for a single image. The score typically ranges from 0 to 1, where a higher score indicates better quality.
```python
image_path = "path/to/your/image.jpg"
quality_score = model.predict_single(image_path)
print(f"The quality score for the image is: {quality_score:.4f}")
```
### 2. Pairwise Image Input Mode: Quality Ranking
You can also compare two images to determine which one has better quality.
```python
image_path1 = "path/to/image1.jpg"
image_path2 = "path/to/image2.jpg"
comparison_result = model.predict_pair(image_path1, image_path2)
# The result includes a human-readable comparison and raw probabilities
print(f"Comparison: {comparison_result['comparison']}")
# Example output: "Comparison: Image 1 is better"
print(f"Raw output probabilities: {comparison_result['comparison_raw']}")
# Example output: "[0.8, 0.1, 0.1]" (Probabilities for Image1 > Image2, Image2 > Image1, Image1 β Image2)
```
## Citation
If you find this work is useful, pleaes cite our paper!
```bibtex
@article{sheng2025fgresq,
title={Fine-grained Image Quality Assessment for Perceptual Image Restoration},
author={Sheng, Xiangfei and Pan, Xiaofeng and Yang, Zhichao and Chen, Pengfei and Li, Leida},
journal={arXiv preprint arXiv:2508.14475},
year={2025}
}
|