| 
							 | 
						"""Image processor class for WD Tagger.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from typing import Optional, List, Dict, Union, Tuple | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						from PIL import Image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.image_processing_utils import ( | 
					
					
						
						| 
							 | 
						    BaseImageProcessor, | 
					
					
						
						| 
							 | 
						    BatchFeature, | 
					
					
						
						| 
							 | 
						    get_size_dict, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.image_transforms import ( | 
					
					
						
						| 
							 | 
						    rescale, | 
					
					
						
						| 
							 | 
						    to_channel_dimension_format, | 
					
					
						
						| 
							 | 
						    _rescale_for_pil_conversion, | 
					
					
						
						| 
							 | 
						    to_pil_image, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.image_utils import ( | 
					
					
						
						| 
							 | 
						    IMAGENET_STANDARD_MEAN, | 
					
					
						
						| 
							 | 
						    IMAGENET_STANDARD_STD, | 
					
					
						
						| 
							 | 
						    ChannelDimension, | 
					
					
						
						| 
							 | 
						    ImageInput, | 
					
					
						
						| 
							 | 
						    PILImageResampling, | 
					
					
						
						| 
							 | 
						    infer_channel_dimension_format, | 
					
					
						
						| 
							 | 
						    is_scaled_image, | 
					
					
						
						| 
							 | 
						    make_list_of_images, | 
					
					
						
						| 
							 | 
						    to_numpy_array, | 
					
					
						
						| 
							 | 
						    valid_images, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.utils import TensorType, logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def resize_with_padding( | 
					
					
						
						| 
							 | 
						    image: np.ndarray, | 
					
					
						
						| 
							 | 
						    size: Tuple[int, int], | 
					
					
						
						| 
							 | 
						    color: Tuple[int, int, int], | 
					
					
						
						| 
							 | 
						    resample: PILImageResampling = None, | 
					
					
						
						| 
							 | 
						    reducing_gap: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    data_format: Optional[ChannelDimension] = None, | 
					
					
						
						| 
							 | 
						    return_numpy: bool = True, | 
					
					
						
						| 
							 | 
						    input_data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Resizes `image` to `(height, width)` specified by `size` using the PIL library. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        image (`np.ndarray`): | 
					
					
						
						| 
							 | 
						            The image to resize. | 
					
					
						
						| 
							 | 
						        size (`Tuple[int, int]`): | 
					
					
						
						| 
							 | 
						            The size to use for resizing the image. | 
					
					
						
						| 
							 | 
						        color (`Tuple[int, int, int]`): | 
					
					
						
						| 
							 | 
						            The color to use for padding the image. | 
					
					
						
						| 
							 | 
						        resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`): | 
					
					
						
						| 
							 | 
						            The filter to user for resampling. | 
					
					
						
						| 
							 | 
						        reducing_gap (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to | 
					
					
						
						| 
							 | 
						            the fair resampling. See corresponding Pillow documentation for more details. | 
					
					
						
						| 
							 | 
						        data_format (`ChannelDimension`, *optional*): | 
					
					
						
						| 
							 | 
						            The channel dimension format of the output image. If unset, will use the inferred format from the input. | 
					
					
						
						| 
							 | 
						        return_numpy (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is | 
					
					
						
						| 
							 | 
						            returned. | 
					
					
						
						| 
							 | 
						        input_data_format (`ChannelDimension`, *optional*): | 
					
					
						
						| 
							 | 
						            The channel dimension format of the input image. If unset, will use the inferred format from the input. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `np.ndarray`: The resized image. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    resample = resample if resample is not None else PILImageResampling.BILINEAR | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not len(size) == 2: | 
					
					
						
						| 
							 | 
						        raise ValueError("size must have 2 elements") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if input_data_format is None: | 
					
					
						
						| 
							 | 
						        input_data_format = infer_channel_dimension_format(image) | 
					
					
						
						| 
							 | 
						    data_format = input_data_format if data_format is None else data_format | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    do_rescale = False | 
					
					
						
						| 
							 | 
						    if not isinstance(image, Image.Image): | 
					
					
						
						| 
							 | 
						        do_rescale = _rescale_for_pil_conversion(image) | 
					
					
						
						| 
							 | 
						        image = to_pil_image( | 
					
					
						
						| 
							 | 
						            image, do_rescale=do_rescale, input_data_format=input_data_format | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    assert isinstance(image, Image.Image) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    height, width = size | 
					
					
						
						| 
							 | 
						    original_width, original_height = image.size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    ratio = min(width / original_width, height / original_height) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    new_width = int(original_width * ratio) | 
					
					
						
						| 
							 | 
						    new_height = int(original_height * ratio) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    resized_image = image.resize( | 
					
					
						
						| 
							 | 
						        (new_width, new_height), resample=resample, reducing_gap=reducing_gap | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    new_image = Image.new("RGBA", size, (color) + (255,)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    offset = ((width - new_width) // 2, (height - new_height) // 2) | 
					
					
						
						| 
							 | 
						    new_image.paste( | 
					
					
						
						| 
							 | 
						        resized_image.convert("RGBA"), offset, resized_image.convert("RGBA") | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    new_image = new_image.convert("RGB") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    image_array = np.asarray(new_image, dtype=np.float32) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    image_array = image_array[:, :, ::-1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    new_image = Image.fromarray(image_array.astype(np.uint8)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if return_numpy: | 
					
					
						
						| 
							 | 
						        new_image = np.array(new_image) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        new_image = ( | 
					
					
						
						| 
							 | 
						            np.expand_dims(new_image, axis=-1) if new_image.ndim == 2 else new_image | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        new_image = to_channel_dimension_format( | 
					
					
						
						| 
							 | 
						            new_image, data_format, input_channel_dim=ChannelDimension.LAST | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        new_image = rescale(new_image, 1 / 255) if do_rescale else new_image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return new_image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class WDTaggerImageProcessor(BaseImageProcessor): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Constructs a WD Tagger image processor. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        do_resize (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether to resize the image's (height, width) dimensions to the specified `(size["height"], | 
					
					
						
						| 
							 | 
						            size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. | 
					
					
						
						| 
							 | 
						        size (`dict`, *optional*, defaults to `{"height": 448, "width": 448}`): | 
					
					
						
						| 
							 | 
						            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` | 
					
					
						
						| 
							 | 
						            method. | 
					
					
						
						| 
							 | 
						        color (`List[int]`): | 
					
					
						
						| 
							 | 
						            Color to use for padding the image after resizing. Can be overridden by the `size` parameter in the `preprocess` | 
					
					
						
						| 
							 | 
						            method. | 
					
					
						
						| 
							 | 
						        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): | 
					
					
						
						| 
							 | 
						            Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the | 
					
					
						
						| 
							 | 
						            `preprocess` method. | 
					
					
						
						| 
							 | 
						        do_rescale (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` | 
					
					
						
						| 
							 | 
						            parameter in the `preprocess` method. | 
					
					
						
						| 
							 | 
						        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): | 
					
					
						
						| 
							 | 
						            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the | 
					
					
						
						| 
							 | 
						            `preprocess` method. | 
					
					
						
						| 
							 | 
						        do_normalize (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` | 
					
					
						
						| 
							 | 
						            method. | 
					
					
						
						| 
							 | 
						        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): | 
					
					
						
						| 
							 | 
						            Mean to use if normalizing the image. This is a float or list of floats the length of the number of | 
					
					
						
						| 
							 | 
						            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. | 
					
					
						
						| 
							 | 
						        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): | 
					
					
						
						| 
							 | 
						            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the | 
					
					
						
						| 
							 | 
						            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_input_names = ["pixel_values"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        do_resize: bool = True, | 
					
					
						
						| 
							 | 
						        size: Optional[Dict[str, int]] = None, | 
					
					
						
						| 
							 | 
						        color: Optional[List[int]] = None, | 
					
					
						
						| 
							 | 
						        resample: PILImageResampling = PILImageResampling.BILINEAR, | 
					
					
						
						| 
							 | 
						        do_rescale: bool = True, | 
					
					
						
						| 
							 | 
						        rescale_factor: Union[int, float] = 1 / 255, | 
					
					
						
						| 
							 | 
						        do_normalize: bool = True, | 
					
					
						
						| 
							 | 
						        image_mean: Optional[Union[float, List[float]]] = None, | 
					
					
						
						| 
							 | 
						        image_std: Optional[Union[float, List[float]]] = None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> None: | 
					
					
						
						| 
							 | 
						        super().__init__(**kwargs) | 
					
					
						
						| 
							 | 
						        size = size if size is not None else {"height": 448, "width": 448} | 
					
					
						
						| 
							 | 
						        size = get_size_dict(size) | 
					
					
						
						| 
							 | 
						        color = color if color is not None else [255, 255, 255] | 
					
					
						
						| 
							 | 
						        self.do_resize = do_resize | 
					
					
						
						| 
							 | 
						        self.do_rescale = do_rescale | 
					
					
						
						| 
							 | 
						        self.do_normalize = do_normalize | 
					
					
						
						| 
							 | 
						        self.size = size | 
					
					
						
						| 
							 | 
						        self.color = color | 
					
					
						
						| 
							 | 
						        self.resample = resample | 
					
					
						
						| 
							 | 
						        self.rescale_factor = rescale_factor | 
					
					
						
						| 
							 | 
						        self.image_mean = ( | 
					
					
						
						| 
							 | 
						            image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def resize( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        image: np.ndarray, | 
					
					
						
						| 
							 | 
						        size: Dict[str, int], | 
					
					
						
						| 
							 | 
						        color: List[int] = [255, 255, 255], | 
					
					
						
						| 
							 | 
						        resample: PILImageResampling = PILImageResampling.BILINEAR, | 
					
					
						
						| 
							 | 
						        data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
					
						
						| 
							 | 
						        input_data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> np.ndarray: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Resize an image to `(size["height"], size["width"])`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            image (`np.ndarray`): | 
					
					
						
						| 
							 | 
						                Image to resize. | 
					
					
						
						| 
							 | 
						            size (`Dict[str, int]`): | 
					
					
						
						| 
							 | 
						                Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. | 
					
					
						
						| 
							 | 
						            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): | 
					
					
						
						| 
							 | 
						                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. | 
					
					
						
						| 
							 | 
						            data_format (`ChannelDimension` or `str`, *optional*): | 
					
					
						
						| 
							 | 
						                The channel dimension format for the output image. If unset, the channel dimension format of the input | 
					
					
						
						| 
							 | 
						                image is used. Can be one of: | 
					
					
						
						| 
							 | 
						                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
					
						
						| 
							 | 
						                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
					
						
						| 
							 | 
						                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | 
					
					
						
						| 
							 | 
						            input_data_format (`ChannelDimension` or `str`, *optional*): | 
					
					
						
						| 
							 | 
						                The channel dimension format for the input image. If unset, the channel dimension format is inferred | 
					
					
						
						| 
							 | 
						                from the input image. Can be one of: | 
					
					
						
						| 
							 | 
						                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
					
						
						| 
							 | 
						                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
					
						
						| 
							 | 
						                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `np.ndarray`: The resized image. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        size = get_size_dict(size) | 
					
					
						
						| 
							 | 
						        if "height" not in size or "width" not in size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_size = (size["height"], size["width"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        color = tuple(color) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return resize_with_padding( | 
					
					
						
						| 
							 | 
						            image, | 
					
					
						
						| 
							 | 
						            size=output_size, | 
					
					
						
						| 
							 | 
						            color=color, | 
					
					
						
						| 
							 | 
						            resample=resample, | 
					
					
						
						| 
							 | 
						            data_format=data_format, | 
					
					
						
						| 
							 | 
						            input_data_format=input_data_format, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def preprocess( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        images: ImageInput, | 
					
					
						
						| 
							 | 
						        do_resize: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        size: Optional[Dict[str, int]] = None, | 
					
					
						
						| 
							 | 
						        color: Optional[List[int]] = None, | 
					
					
						
						| 
							 | 
						        resample: PILImageResampling = None, | 
					
					
						
						| 
							 | 
						        do_rescale: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        rescale_factor: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        do_normalize: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        image_mean: Optional[Union[float, List[float]]] = None, | 
					
					
						
						| 
							 | 
						        image_std: Optional[Union[float, List[float]]] = None, | 
					
					
						
						| 
							 | 
						        return_tensors: Optional[Union[str, TensorType]] = None, | 
					
					
						
						| 
							 | 
						        data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, | 
					
					
						
						| 
							 | 
						        input_data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Preprocess an image or batch of images. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            images (`ImageInput`): | 
					
					
						
						| 
							 | 
						                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
					
						
						| 
							 | 
						                passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
					
						
						| 
							 | 
						            do_resize (`bool`, *optional*, defaults to `self.do_resize`): | 
					
					
						
						| 
							 | 
						                Whether to resize the image. | 
					
					
						
						| 
							 | 
						            size (`Dict[str, int]`, *optional*, defaults to `self.size`): | 
					
					
						
						| 
							 | 
						                Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after | 
					
					
						
						| 
							 | 
						                resizing. | 
					
					
						
						| 
							 | 
						            resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): | 
					
					
						
						| 
							 | 
						                `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has | 
					
					
						
						| 
							 | 
						                an effect if `do_resize` is set to `True`. | 
					
					
						
						| 
							 | 
						            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | 
					
					
						
						| 
							 | 
						                Whether to rescale the image values between [0 - 1]. | 
					
					
						
						| 
							 | 
						            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | 
					
					
						
						| 
							 | 
						                Rescale factor to rescale the image by if `do_rescale` is set to `True`. | 
					
					
						
						| 
							 | 
						            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | 
					
					
						
						| 
							 | 
						                Whether to normalize the image. | 
					
					
						
						| 
							 | 
						            return_tensors (`str` or `TensorType`, *optional*): | 
					
					
						
						| 
							 | 
						                The type of tensors to return. Can be one of: | 
					
					
						
						| 
							 | 
						                - Unset: Return a list of `np.ndarray`. | 
					
					
						
						| 
							 | 
						                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | 
					
					
						
						| 
							 | 
						                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | 
					
					
						
						| 
							 | 
						                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | 
					
					
						
						| 
							 | 
						                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | 
					
					
						
						| 
							 | 
						            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): | 
					
					
						
						| 
							 | 
						                The channel dimension format for the output image. Can be one of: | 
					
					
						
						| 
							 | 
						                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
					
						
						| 
							 | 
						                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
					
						
						| 
							 | 
						                - Unset: Use the channel dimension format of the input image. | 
					
					
						
						| 
							 | 
						            input_data_format (`ChannelDimension` or `str`, *optional*): | 
					
					
						
						| 
							 | 
						                The channel dimension format for the input image. If unset, the channel dimension format is inferred | 
					
					
						
						| 
							 | 
						                from the input image. Can be one of: | 
					
					
						
						| 
							 | 
						                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
					
						
						| 
							 | 
						                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
					
						
						| 
							 | 
						                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        do_resize = do_resize if do_resize is not None else self.do_resize | 
					
					
						
						| 
							 | 
						        do_rescale = do_rescale if do_rescale is not None else self.do_rescale | 
					
					
						
						| 
							 | 
						        do_normalize = do_normalize if do_normalize is not None else self.do_normalize | 
					
					
						
						| 
							 | 
						        resample = resample if resample is not None else self.resample | 
					
					
						
						| 
							 | 
						        rescale_factor = ( | 
					
					
						
						| 
							 | 
						            rescale_factor if rescale_factor is not None else self.rescale_factor | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        image_mean = image_mean if image_mean is not None else self.image_mean | 
					
					
						
						| 
							 | 
						        image_std = image_std if image_std is not None else self.image_std | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        size = size if size is not None else self.size | 
					
					
						
						| 
							 | 
						        size_dict = get_size_dict(size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        color = color if color is not None else self.color | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        images = make_list_of_images(images) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not valid_images(images): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | 
					
					
						
						| 
							 | 
						                "torch.Tensor, tf.Tensor or jax.ndarray." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_resize and size is None: | 
					
					
						
						| 
							 | 
						            raise ValueError("Size must be specified if do_resize is True.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_rescale and rescale_factor is None: | 
					
					
						
						| 
							 | 
						            raise ValueError("Rescale factor must be specified if do_rescale is True.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        images = [to_numpy_array(image) for image in images] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if is_scaled_image(images[0]) and do_rescale: | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                "It looks like you are trying to rescale already rescaled images. If the input" | 
					
					
						
						| 
							 | 
						                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_data_format is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            input_data_format = infer_channel_dimension_format(images[0]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_resize: | 
					
					
						
						| 
							 | 
						            images = [ | 
					
					
						
						| 
							 | 
						                self.resize( | 
					
					
						
						| 
							 | 
						                    image=image, | 
					
					
						
						| 
							 | 
						                    size=size_dict, | 
					
					
						
						| 
							 | 
						                    color=color, | 
					
					
						
						| 
							 | 
						                    resample=resample, | 
					
					
						
						| 
							 | 
						                    input_data_format=input_data_format, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for image in images | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_rescale: | 
					
					
						
						| 
							 | 
						            images = [ | 
					
					
						
						| 
							 | 
						                self.rescale( | 
					
					
						
						| 
							 | 
						                    image=image, | 
					
					
						
						| 
							 | 
						                    scale=rescale_factor, | 
					
					
						
						| 
							 | 
						                    input_data_format=input_data_format, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for image in images | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_normalize: | 
					
					
						
						| 
							 | 
						            images = [ | 
					
					
						
						| 
							 | 
						                self.normalize( | 
					
					
						
						| 
							 | 
						                    image=image, | 
					
					
						
						| 
							 | 
						                    mean=image_mean, | 
					
					
						
						| 
							 | 
						                    std=image_std, | 
					
					
						
						| 
							 | 
						                    input_data_format=input_data_format, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                for image in images | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        images = [ | 
					
					
						
						| 
							 | 
						            to_channel_dimension_format( | 
					
					
						
						| 
							 | 
						                image, data_format, input_channel_dim=input_data_format | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            for image in images | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        data = {"pixel_values": images} | 
					
					
						
						| 
							 | 
						        return BatchFeature(data=data, tensor_type=return_tensors) | 
					
					
						
						| 
							 | 
						
 |