| { | |
| "best_metric": null, | |
| "best_model_checkpoint": null, | |
| "epoch": 0.9997592764537983, | |
| "global_step": 1817, | |
| "is_hyper_param_search": false, | |
| "is_local_process_zero": true, | |
| "is_world_process_zero": true, | |
| "log_history": [ | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 1.0000000000000002e-06, | |
| "loss": 5.1648, | |
| "step": 1 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 2.0000000000000003e-06, | |
| "loss": 5.1865, | |
| "step": 2 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 3e-06, | |
| "loss": 5.1278, | |
| "step": 3 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 4.000000000000001e-06, | |
| "loss": 5.156, | |
| "step": 4 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 5e-06, | |
| "loss": 4.9573, | |
| "step": 5 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 6e-06, | |
| "loss": 4.708, | |
| "step": 6 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 7e-06, | |
| "loss": 4.54, | |
| "step": 7 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 8.000000000000001e-06, | |
| "loss": 4.3333, | |
| "step": 8 | |
| }, | |
| { | |
| "epoch": 0.0, | |
| "learning_rate": 9e-06, | |
| "loss": 4.2478, | |
| "step": 9 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1e-05, | |
| "loss": 3.9929, | |
| "step": 10 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.1000000000000001e-05, | |
| "loss": 3.7728, | |
| "step": 11 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.2e-05, | |
| "loss": 3.7259, | |
| "step": 12 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.3000000000000001e-05, | |
| "loss": 3.5329, | |
| "step": 13 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.4e-05, | |
| "loss": 3.3213, | |
| "step": 14 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.5000000000000002e-05, | |
| "loss": 3.2695, | |
| "step": 15 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.6000000000000003e-05, | |
| "loss": 3.1222, | |
| "step": 16 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.7e-05, | |
| "loss": 3.0797, | |
| "step": 17 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.8e-05, | |
| "loss": 3.0067, | |
| "step": 18 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 1.9e-05, | |
| "loss": 2.9285, | |
| "step": 19 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.7844, | |
| "step": 20 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.7014, | |
| "step": 21 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.6373, | |
| "step": 22 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.6143, | |
| "step": 23 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.5501, | |
| "step": 24 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.496, | |
| "step": 25 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.4313, | |
| "step": 26 | |
| }, | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2e-05, | |
| "loss": 2.3946, | |
| "step": 27 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.3586, | |
| "step": 28 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.3506, | |
| "step": 29 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.3029, | |
| "step": 30 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.278, | |
| "step": 31 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.2981, | |
| "step": 32 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.2715, | |
| "step": 33 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.2713, | |
| "step": 34 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1992, | |
| "step": 35 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.2279, | |
| "step": 36 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1901, | |
| "step": 37 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1996, | |
| "step": 38 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1535, | |
| "step": 39 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1511, | |
| "step": 40 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1268, | |
| "step": 41 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1241, | |
| "step": 42 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1105, | |
| "step": 43 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1339, | |
| "step": 44 | |
| }, | |
| { | |
| "epoch": 0.02, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1267, | |
| "step": 45 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1362, | |
| "step": 46 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1089, | |
| "step": 47 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1016, | |
| "step": 48 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1397, | |
| "step": 49 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1109, | |
| "step": 50 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0972, | |
| "step": 51 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.077, | |
| "step": 52 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0827, | |
| "step": 53 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.1239, | |
| "step": 54 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0598, | |
| "step": 55 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0962, | |
| "step": 56 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.084, | |
| "step": 57 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0732, | |
| "step": 58 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0596, | |
| "step": 59 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0455, | |
| "step": 60 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0151, | |
| "step": 61 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0724, | |
| "step": 62 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0657, | |
| "step": 63 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0508, | |
| "step": 64 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0655, | |
| "step": 65 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0223, | |
| "step": 66 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0363, | |
| "step": 67 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0409, | |
| "step": 68 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0287, | |
| "step": 69 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0692, | |
| "step": 70 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0614, | |
| "step": 71 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0214, | |
| "step": 72 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0347, | |
| "step": 73 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0306, | |
| "step": 74 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0159, | |
| "step": 75 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0199, | |
| "step": 76 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0329, | |
| "step": 77 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0468, | |
| "step": 78 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0135, | |
| "step": 79 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0397, | |
| "step": 80 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0395, | |
| "step": 81 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0061, | |
| "step": 82 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9889, | |
| "step": 83 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9952, | |
| "step": 84 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0326, | |
| "step": 85 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0359, | |
| "step": 86 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0661, | |
| "step": 87 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.021, | |
| "step": 88 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0273, | |
| "step": 89 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9696, | |
| "step": 90 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9999, | |
| "step": 91 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0181, | |
| "step": 92 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9673, | |
| "step": 93 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9907, | |
| "step": 94 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0098, | |
| "step": 95 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9847, | |
| "step": 96 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9882, | |
| "step": 97 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0149, | |
| "step": 98 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 2e-05, | |
| "loss": 2.005, | |
| "step": 99 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9619, | |
| "step": 100 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9956, | |
| "step": 101 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0293, | |
| "step": 102 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9819, | |
| "step": 103 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9825, | |
| "step": 104 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9436, | |
| "step": 105 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9999, | |
| "step": 106 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0105, | |
| "step": 107 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0088, | |
| "step": 108 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9643, | |
| "step": 109 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9859, | |
| "step": 110 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9533, | |
| "step": 111 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9736, | |
| "step": 112 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9908, | |
| "step": 113 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9785, | |
| "step": 114 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9596, | |
| "step": 115 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.979, | |
| "step": 116 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9499, | |
| "step": 117 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9858, | |
| "step": 118 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0172, | |
| "step": 119 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 2.03, | |
| "step": 120 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9392, | |
| "step": 121 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.961, | |
| "step": 122 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.976, | |
| "step": 123 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9653, | |
| "step": 124 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9847, | |
| "step": 125 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0066, | |
| "step": 126 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9547, | |
| "step": 127 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9901, | |
| "step": 128 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9768, | |
| "step": 129 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9507, | |
| "step": 130 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9582, | |
| "step": 131 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.951, | |
| "step": 132 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9592, | |
| "step": 133 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9837, | |
| "step": 134 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9941, | |
| "step": 135 | |
| }, | |
| { | |
| "epoch": 0.07, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0104, | |
| "step": 136 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9823, | |
| "step": 137 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.963, | |
| "step": 138 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9311, | |
| "step": 139 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9795, | |
| "step": 140 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9572, | |
| "step": 141 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9607, | |
| "step": 142 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9971, | |
| "step": 143 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.944, | |
| "step": 144 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.933, | |
| "step": 145 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0057, | |
| "step": 146 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9599, | |
| "step": 147 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9845, | |
| "step": 148 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9775, | |
| "step": 149 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9685, | |
| "step": 150 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9494, | |
| "step": 151 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9975, | |
| "step": 152 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9855, | |
| "step": 153 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9776, | |
| "step": 154 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9832, | |
| "step": 155 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9789, | |
| "step": 156 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9939, | |
| "step": 157 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9512, | |
| "step": 158 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9702, | |
| "step": 159 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9321, | |
| "step": 160 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9753, | |
| "step": 161 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9336, | |
| "step": 162 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0067, | |
| "step": 163 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9678, | |
| "step": 164 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9205, | |
| "step": 165 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9983, | |
| "step": 166 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9839, | |
| "step": 167 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9636, | |
| "step": 168 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9497, | |
| "step": 169 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9752, | |
| "step": 170 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0004, | |
| "step": 171 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9768, | |
| "step": 172 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9423, | |
| "step": 173 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9642, | |
| "step": 174 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8874, | |
| "step": 175 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9598, | |
| "step": 176 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9566, | |
| "step": 177 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9285, | |
| "step": 178 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9402, | |
| "step": 179 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9549, | |
| "step": 180 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9637, | |
| "step": 181 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9558, | |
| "step": 182 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.993, | |
| "step": 183 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9812, | |
| "step": 184 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9727, | |
| "step": 185 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9678, | |
| "step": 186 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9619, | |
| "step": 187 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.939, | |
| "step": 188 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9806, | |
| "step": 189 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9619, | |
| "step": 190 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9545, | |
| "step": 191 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9216, | |
| "step": 192 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9818, | |
| "step": 193 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0126, | |
| "step": 194 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.954, | |
| "step": 195 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9497, | |
| "step": 196 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9395, | |
| "step": 197 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9507, | |
| "step": 198 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9376, | |
| "step": 199 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9479, | |
| "step": 200 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9697, | |
| "step": 201 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9159, | |
| "step": 202 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9402, | |
| "step": 203 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.959, | |
| "step": 204 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9156, | |
| "step": 205 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9553, | |
| "step": 206 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9796, | |
| "step": 207 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9644, | |
| "step": 208 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9668, | |
| "step": 209 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9452, | |
| "step": 210 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9815, | |
| "step": 211 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9501, | |
| "step": 212 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9103, | |
| "step": 213 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9794, | |
| "step": 214 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9411, | |
| "step": 215 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.961, | |
| "step": 216 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9455, | |
| "step": 217 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9706, | |
| "step": 218 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9509, | |
| "step": 219 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.968, | |
| "step": 220 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9208, | |
| "step": 221 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.967, | |
| "step": 222 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9506, | |
| "step": 223 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9276, | |
| "step": 224 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9118, | |
| "step": 225 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9462, | |
| "step": 226 | |
| }, | |
| { | |
| "epoch": 0.12, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9488, | |
| "step": 227 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.917, | |
| "step": 228 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9189, | |
| "step": 229 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9579, | |
| "step": 230 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9663, | |
| "step": 231 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9958, | |
| "step": 232 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9134, | |
| "step": 233 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9395, | |
| "step": 234 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9597, | |
| "step": 235 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9545, | |
| "step": 236 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9544, | |
| "step": 237 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9048, | |
| "step": 238 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9408, | |
| "step": 239 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9462, | |
| "step": 240 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9948, | |
| "step": 241 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8938, | |
| "step": 242 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9537, | |
| "step": 243 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9227, | |
| "step": 244 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9196, | |
| "step": 245 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8955, | |
| "step": 246 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9365, | |
| "step": 247 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9502, | |
| "step": 248 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9363, | |
| "step": 249 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9595, | |
| "step": 250 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9438, | |
| "step": 251 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9119, | |
| "step": 252 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9657, | |
| "step": 253 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9099, | |
| "step": 254 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9629, | |
| "step": 255 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9499, | |
| "step": 256 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9673, | |
| "step": 257 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9543, | |
| "step": 258 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9672, | |
| "step": 259 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9481, | |
| "step": 260 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9735, | |
| "step": 261 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9355, | |
| "step": 262 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8911, | |
| "step": 263 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.94, | |
| "step": 264 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9752, | |
| "step": 265 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9546, | |
| "step": 266 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9282, | |
| "step": 267 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8975, | |
| "step": 268 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9477, | |
| "step": 269 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9196, | |
| "step": 270 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9826, | |
| "step": 271 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9169, | |
| "step": 272 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9188, | |
| "step": 273 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9373, | |
| "step": 274 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9809, | |
| "step": 275 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9022, | |
| "step": 276 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8952, | |
| "step": 277 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8861, | |
| "step": 278 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9292, | |
| "step": 279 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9068, | |
| "step": 280 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9268, | |
| "step": 281 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9485, | |
| "step": 282 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9, | |
| "step": 283 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9643, | |
| "step": 284 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9583, | |
| "step": 285 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8767, | |
| "step": 286 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.949, | |
| "step": 287 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9495, | |
| "step": 288 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9053, | |
| "step": 289 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9621, | |
| "step": 290 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9142, | |
| "step": 291 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9085, | |
| "step": 292 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9545, | |
| "step": 293 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.903, | |
| "step": 294 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9391, | |
| "step": 295 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9512, | |
| "step": 296 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9373, | |
| "step": 297 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9162, | |
| "step": 298 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8918, | |
| "step": 299 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9439, | |
| "step": 300 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9044, | |
| "step": 301 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8871, | |
| "step": 302 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9389, | |
| "step": 303 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9595, | |
| "step": 304 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9291, | |
| "step": 305 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8655, | |
| "step": 306 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9569, | |
| "step": 307 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9349, | |
| "step": 308 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9086, | |
| "step": 309 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9066, | |
| "step": 310 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9347, | |
| "step": 311 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9328, | |
| "step": 312 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8877, | |
| "step": 313 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9743, | |
| "step": 314 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9331, | |
| "step": 315 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9266, | |
| "step": 316 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9407, | |
| "step": 317 | |
| }, | |
| { | |
| "epoch": 0.17, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9479, | |
| "step": 318 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9474, | |
| "step": 319 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9499, | |
| "step": 320 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.976, | |
| "step": 321 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9193, | |
| "step": 322 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9469, | |
| "step": 323 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8843, | |
| "step": 324 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9098, | |
| "step": 325 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9359, | |
| "step": 326 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9316, | |
| "step": 327 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9246, | |
| "step": 328 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8812, | |
| "step": 329 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8763, | |
| "step": 330 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9675, | |
| "step": 331 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9428, | |
| "step": 332 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8906, | |
| "step": 333 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9253, | |
| "step": 334 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9274, | |
| "step": 335 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9056, | |
| "step": 336 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.895, | |
| "step": 337 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9145, | |
| "step": 338 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8891, | |
| "step": 339 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8982, | |
| "step": 340 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9535, | |
| "step": 341 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9567, | |
| "step": 342 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9281, | |
| "step": 343 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9092, | |
| "step": 344 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8886, | |
| "step": 345 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9664, | |
| "step": 346 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9383, | |
| "step": 347 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9858, | |
| "step": 348 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9001, | |
| "step": 349 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9353, | |
| "step": 350 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9386, | |
| "step": 351 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.907, | |
| "step": 352 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9296, | |
| "step": 353 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9351, | |
| "step": 354 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8881, | |
| "step": 355 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9738, | |
| "step": 356 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9434, | |
| "step": 357 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9527, | |
| "step": 358 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9727, | |
| "step": 359 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9641, | |
| "step": 360 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9478, | |
| "step": 361 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9147, | |
| "step": 362 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9257, | |
| "step": 363 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9243, | |
| "step": 364 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9099, | |
| "step": 365 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9197, | |
| "step": 366 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9701, | |
| "step": 367 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.932, | |
| "step": 368 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9519, | |
| "step": 369 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9506, | |
| "step": 370 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9211, | |
| "step": 371 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 2e-05, | |
| "loss": 1.972, | |
| "step": 372 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9346, | |
| "step": 373 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9269, | |
| "step": 374 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9373, | |
| "step": 375 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9482, | |
| "step": 376 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9447, | |
| "step": 377 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9138, | |
| "step": 378 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9109, | |
| "step": 379 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9492, | |
| "step": 380 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9191, | |
| "step": 381 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9433, | |
| "step": 382 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9311, | |
| "step": 383 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9495, | |
| "step": 384 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9153, | |
| "step": 385 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8873, | |
| "step": 386 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9039, | |
| "step": 387 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9385, | |
| "step": 388 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9252, | |
| "step": 389 | |
| }, | |
| { | |
| "epoch": 0.21, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9127, | |
| "step": 390 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9363, | |
| "step": 391 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9493, | |
| "step": 392 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8753, | |
| "step": 393 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9245, | |
| "step": 394 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9324, | |
| "step": 395 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9286, | |
| "step": 396 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9048, | |
| "step": 397 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8699, | |
| "step": 398 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9285, | |
| "step": 399 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8935, | |
| "step": 400 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9213, | |
| "step": 401 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9069, | |
| "step": 402 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9141, | |
| "step": 403 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8961, | |
| "step": 404 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9071, | |
| "step": 405 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9444, | |
| "step": 406 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9129, | |
| "step": 407 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9553, | |
| "step": 408 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.897, | |
| "step": 409 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9329, | |
| "step": 410 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8805, | |
| "step": 411 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9062, | |
| "step": 412 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9025, | |
| "step": 413 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9154, | |
| "step": 414 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9275, | |
| "step": 415 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9033, | |
| "step": 416 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9096, | |
| "step": 417 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8482, | |
| "step": 418 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9078, | |
| "step": 419 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9346, | |
| "step": 420 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9012, | |
| "step": 421 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9104, | |
| "step": 422 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8855, | |
| "step": 423 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9186, | |
| "step": 424 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9778, | |
| "step": 425 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9105, | |
| "step": 426 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9029, | |
| "step": 427 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9306, | |
| "step": 428 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9749, | |
| "step": 429 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9165, | |
| "step": 430 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.918, | |
| "step": 431 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.927, | |
| "step": 432 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9326, | |
| "step": 433 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9189, | |
| "step": 434 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9344, | |
| "step": 435 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.934, | |
| "step": 436 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9261, | |
| "step": 437 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9314, | |
| "step": 438 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9079, | |
| "step": 439 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9059, | |
| "step": 440 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9042, | |
| "step": 441 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9208, | |
| "step": 442 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8698, | |
| "step": 443 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9162, | |
| "step": 444 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8938, | |
| "step": 445 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9024, | |
| "step": 446 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8673, | |
| "step": 447 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9186, | |
| "step": 448 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8894, | |
| "step": 449 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.934, | |
| "step": 450 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9223, | |
| "step": 451 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8805, | |
| "step": 452 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9136, | |
| "step": 453 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9089, | |
| "step": 454 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9165, | |
| "step": 455 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9145, | |
| "step": 456 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9333, | |
| "step": 457 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9171, | |
| "step": 458 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9254, | |
| "step": 459 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8968, | |
| "step": 460 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9143, | |
| "step": 461 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.892, | |
| "step": 462 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9211, | |
| "step": 463 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9267, | |
| "step": 464 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8837, | |
| "step": 465 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9112, | |
| "step": 466 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9417, | |
| "step": 467 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9567, | |
| "step": 468 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9211, | |
| "step": 469 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9395, | |
| "step": 470 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9345, | |
| "step": 471 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9329, | |
| "step": 472 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9056, | |
| "step": 473 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9013, | |
| "step": 474 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9134, | |
| "step": 475 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.867, | |
| "step": 476 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8881, | |
| "step": 477 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8783, | |
| "step": 478 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.949, | |
| "step": 479 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9231, | |
| "step": 480 | |
| }, | |
| { | |
| "epoch": 0.26, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9427, | |
| "step": 481 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8828, | |
| "step": 482 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9138, | |
| "step": 483 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.895, | |
| "step": 484 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.874, | |
| "step": 485 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8656, | |
| "step": 486 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8858, | |
| "step": 487 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9163, | |
| "step": 488 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8743, | |
| "step": 489 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9309, | |
| "step": 490 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9093, | |
| "step": 491 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.929, | |
| "step": 492 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8746, | |
| "step": 493 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9342, | |
| "step": 494 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9433, | |
| "step": 495 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9712, | |
| "step": 496 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9166, | |
| "step": 497 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.909, | |
| "step": 498 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9071, | |
| "step": 499 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8647, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8837, | |
| "step": 501 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8581, | |
| "step": 502 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8704, | |
| "step": 503 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.916, | |
| "step": 504 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9374, | |
| "step": 505 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9092, | |
| "step": 506 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9155, | |
| "step": 507 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.92, | |
| "step": 508 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.897, | |
| "step": 509 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9057, | |
| "step": 510 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9007, | |
| "step": 511 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8729, | |
| "step": 512 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9174, | |
| "step": 513 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.868, | |
| "step": 514 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8913, | |
| "step": 515 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9744, | |
| "step": 516 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9297, | |
| "step": 517 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9184, | |
| "step": 518 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9196, | |
| "step": 519 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9045, | |
| "step": 520 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9371, | |
| "step": 521 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8937, | |
| "step": 522 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8936, | |
| "step": 523 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8926, | |
| "step": 524 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9085, | |
| "step": 525 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8919, | |
| "step": 526 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9403, | |
| "step": 527 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9308, | |
| "step": 528 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9068, | |
| "step": 529 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8666, | |
| "step": 530 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8697, | |
| "step": 531 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9599, | |
| "step": 532 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9023, | |
| "step": 533 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.854, | |
| "step": 534 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8952, | |
| "step": 535 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 2e-05, | |
| "loss": 1.913, | |
| "step": 536 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9093, | |
| "step": 537 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.872, | |
| "step": 538 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9208, | |
| "step": 539 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9059, | |
| "step": 540 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9071, | |
| "step": 541 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8868, | |
| "step": 542 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8977, | |
| "step": 543 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8979, | |
| "step": 544 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9372, | |
| "step": 545 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.909, | |
| "step": 546 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8974, | |
| "step": 547 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9191, | |
| "step": 548 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9052, | |
| "step": 549 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8994, | |
| "step": 550 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9108, | |
| "step": 551 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9328, | |
| "step": 552 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.916, | |
| "step": 553 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9225, | |
| "step": 554 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8679, | |
| "step": 555 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8855, | |
| "step": 556 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.924, | |
| "step": 557 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9119, | |
| "step": 558 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8524, | |
| "step": 559 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9112, | |
| "step": 560 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.904, | |
| "step": 561 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8523, | |
| "step": 562 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9265, | |
| "step": 563 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8735, | |
| "step": 564 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8906, | |
| "step": 565 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9265, | |
| "step": 566 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8794, | |
| "step": 567 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9257, | |
| "step": 568 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8942, | |
| "step": 569 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9291, | |
| "step": 570 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9193, | |
| "step": 571 | |
| }, | |
| { | |
| "epoch": 0.31, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9128, | |
| "step": 572 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9513, | |
| "step": 573 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9417, | |
| "step": 574 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9282, | |
| "step": 575 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9063, | |
| "step": 576 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8884, | |
| "step": 577 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9453, | |
| "step": 578 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8888, | |
| "step": 579 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.92, | |
| "step": 580 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8859, | |
| "step": 581 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8833, | |
| "step": 582 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8938, | |
| "step": 583 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8982, | |
| "step": 584 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8773, | |
| "step": 585 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9153, | |
| "step": 586 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8638, | |
| "step": 587 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9309, | |
| "step": 588 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9395, | |
| "step": 589 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9212, | |
| "step": 590 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9118, | |
| "step": 591 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8964, | |
| "step": 592 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.893, | |
| "step": 593 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8865, | |
| "step": 594 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8909, | |
| "step": 595 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9043, | |
| "step": 596 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9043, | |
| "step": 597 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9114, | |
| "step": 598 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.919, | |
| "step": 599 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9009, | |
| "step": 600 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9104, | |
| "step": 601 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.909, | |
| "step": 602 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.892, | |
| "step": 603 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9114, | |
| "step": 604 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8872, | |
| "step": 605 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9763, | |
| "step": 606 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8846, | |
| "step": 607 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9013, | |
| "step": 608 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8632, | |
| "step": 609 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9203, | |
| "step": 610 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8815, | |
| "step": 611 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8842, | |
| "step": 612 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9255, | |
| "step": 613 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9214, | |
| "step": 614 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9206, | |
| "step": 615 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8912, | |
| "step": 616 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.908, | |
| "step": 617 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8487, | |
| "step": 618 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9104, | |
| "step": 619 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9011, | |
| "step": 620 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8984, | |
| "step": 621 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9325, | |
| "step": 622 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.853, | |
| "step": 623 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8913, | |
| "step": 624 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8883, | |
| "step": 625 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9384, | |
| "step": 626 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 2e-05, | |
| "loss": 1.896, | |
| "step": 627 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.902, | |
| "step": 628 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9063, | |
| "step": 629 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9431, | |
| "step": 630 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8958, | |
| "step": 631 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8866, | |
| "step": 632 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9167, | |
| "step": 633 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8514, | |
| "step": 634 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9018, | |
| "step": 635 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8664, | |
| "step": 636 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8894, | |
| "step": 637 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8827, | |
| "step": 638 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9414, | |
| "step": 639 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9006, | |
| "step": 640 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9205, | |
| "step": 641 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9106, | |
| "step": 642 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8897, | |
| "step": 643 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8741, | |
| "step": 644 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9279, | |
| "step": 645 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8958, | |
| "step": 646 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8758, | |
| "step": 647 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.903, | |
| "step": 648 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8971, | |
| "step": 649 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9216, | |
| "step": 650 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8396, | |
| "step": 651 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8881, | |
| "step": 652 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.886, | |
| "step": 653 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.905, | |
| "step": 654 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8537, | |
| "step": 655 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9187, | |
| "step": 656 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9301, | |
| "step": 657 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8708, | |
| "step": 658 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8687, | |
| "step": 659 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9504, | |
| "step": 660 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9243, | |
| "step": 661 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8726, | |
| "step": 662 | |
| }, | |
| { | |
| "epoch": 0.36, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9457, | |
| "step": 663 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8824, | |
| "step": 664 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8867, | |
| "step": 665 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9077, | |
| "step": 666 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9164, | |
| "step": 667 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8599, | |
| "step": 668 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9518, | |
| "step": 669 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8592, | |
| "step": 670 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9047, | |
| "step": 671 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8841, | |
| "step": 672 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8835, | |
| "step": 673 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8647, | |
| "step": 674 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8704, | |
| "step": 675 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8766, | |
| "step": 676 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9261, | |
| "step": 677 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8876, | |
| "step": 678 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8998, | |
| "step": 679 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8974, | |
| "step": 680 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9191, | |
| "step": 681 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8954, | |
| "step": 682 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9222, | |
| "step": 683 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9267, | |
| "step": 684 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8916, | |
| "step": 685 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9113, | |
| "step": 686 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8485, | |
| "step": 687 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9294, | |
| "step": 688 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8951, | |
| "step": 689 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.868, | |
| "step": 690 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8922, | |
| "step": 691 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8933, | |
| "step": 692 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9372, | |
| "step": 693 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8725, | |
| "step": 694 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8851, | |
| "step": 695 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8667, | |
| "step": 696 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8619, | |
| "step": 697 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8821, | |
| "step": 698 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 2e-05, | |
| "loss": 1.894, | |
| "step": 699 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8536, | |
| "step": 700 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8619, | |
| "step": 701 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8883, | |
| "step": 702 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.897, | |
| "step": 703 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9163, | |
| "step": 704 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8644, | |
| "step": 705 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9272, | |
| "step": 706 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9084, | |
| "step": 707 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9199, | |
| "step": 708 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8982, | |
| "step": 709 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8985, | |
| "step": 710 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9065, | |
| "step": 711 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8699, | |
| "step": 712 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9024, | |
| "step": 713 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8974, | |
| "step": 714 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9168, | |
| "step": 715 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9447, | |
| "step": 716 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9064, | |
| "step": 717 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.7958, | |
| "step": 718 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9244, | |
| "step": 719 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9347, | |
| "step": 720 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8959, | |
| "step": 721 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8884, | |
| "step": 722 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.904, | |
| "step": 723 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9052, | |
| "step": 724 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9032, | |
| "step": 725 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8981, | |
| "step": 726 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8575, | |
| "step": 727 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.88, | |
| "step": 728 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8633, | |
| "step": 729 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9089, | |
| "step": 730 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8873, | |
| "step": 731 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8974, | |
| "step": 732 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.913, | |
| "step": 733 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8952, | |
| "step": 734 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8674, | |
| "step": 735 | |
| }, | |
| { | |
| "epoch": 0.4, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8533, | |
| "step": 736 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.914, | |
| "step": 737 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9116, | |
| "step": 738 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9141, | |
| "step": 739 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9161, | |
| "step": 740 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9456, | |
| "step": 741 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8975, | |
| "step": 742 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8891, | |
| "step": 743 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8868, | |
| "step": 744 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8637, | |
| "step": 745 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9557, | |
| "step": 746 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9402, | |
| "step": 747 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.889, | |
| "step": 748 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9223, | |
| "step": 749 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9007, | |
| "step": 750 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9094, | |
| "step": 751 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8861, | |
| "step": 752 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8757, | |
| "step": 753 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9088, | |
| "step": 754 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9726, | |
| "step": 755 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8578, | |
| "step": 756 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9242, | |
| "step": 757 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9324, | |
| "step": 758 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8984, | |
| "step": 759 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9099, | |
| "step": 760 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9125, | |
| "step": 761 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8791, | |
| "step": 762 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8705, | |
| "step": 763 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9098, | |
| "step": 764 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8933, | |
| "step": 765 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8978, | |
| "step": 766 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9248, | |
| "step": 767 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8808, | |
| "step": 768 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9614, | |
| "step": 769 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.906, | |
| "step": 770 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.915, | |
| "step": 771 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9583, | |
| "step": 772 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.866, | |
| "step": 773 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8867, | |
| "step": 774 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8819, | |
| "step": 775 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8696, | |
| "step": 776 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8715, | |
| "step": 777 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8999, | |
| "step": 778 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8804, | |
| "step": 779 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8567, | |
| "step": 780 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9198, | |
| "step": 781 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8899, | |
| "step": 782 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8726, | |
| "step": 783 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9098, | |
| "step": 784 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.908, | |
| "step": 785 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8889, | |
| "step": 786 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9478, | |
| "step": 787 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9056, | |
| "step": 788 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9033, | |
| "step": 789 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8792, | |
| "step": 790 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8792, | |
| "step": 791 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8711, | |
| "step": 792 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8923, | |
| "step": 793 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9119, | |
| "step": 794 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8587, | |
| "step": 795 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8505, | |
| "step": 796 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9259, | |
| "step": 797 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8981, | |
| "step": 798 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8996, | |
| "step": 799 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8375, | |
| "step": 800 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9046, | |
| "step": 801 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9244, | |
| "step": 802 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9387, | |
| "step": 803 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8634, | |
| "step": 804 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9196, | |
| "step": 805 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8731, | |
| "step": 806 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8971, | |
| "step": 807 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9047, | |
| "step": 808 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8673, | |
| "step": 809 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8749, | |
| "step": 810 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8865, | |
| "step": 811 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9296, | |
| "step": 812 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8561, | |
| "step": 813 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9185, | |
| "step": 814 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9147, | |
| "step": 815 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8756, | |
| "step": 816 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9365, | |
| "step": 817 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8882, | |
| "step": 818 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8844, | |
| "step": 819 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8381, | |
| "step": 820 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8872, | |
| "step": 821 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9073, | |
| "step": 822 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8465, | |
| "step": 823 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8778, | |
| "step": 824 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9069, | |
| "step": 825 | |
| }, | |
| { | |
| "epoch": 0.45, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8739, | |
| "step": 826 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9229, | |
| "step": 827 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9003, | |
| "step": 828 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8803, | |
| "step": 829 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8835, | |
| "step": 830 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8935, | |
| "step": 831 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8972, | |
| "step": 832 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.853, | |
| "step": 833 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8812, | |
| "step": 834 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9219, | |
| "step": 835 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8873, | |
| "step": 836 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8896, | |
| "step": 837 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8982, | |
| "step": 838 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8872, | |
| "step": 839 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9196, | |
| "step": 840 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8997, | |
| "step": 841 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8841, | |
| "step": 842 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8729, | |
| "step": 843 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.925, | |
| "step": 844 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8937, | |
| "step": 845 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9137, | |
| "step": 846 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9146, | |
| "step": 847 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.945, | |
| "step": 848 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8766, | |
| "step": 849 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8764, | |
| "step": 850 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8517, | |
| "step": 851 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8898, | |
| "step": 852 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8935, | |
| "step": 853 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8709, | |
| "step": 854 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8775, | |
| "step": 855 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9107, | |
| "step": 856 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8852, | |
| "step": 857 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9087, | |
| "step": 858 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8538, | |
| "step": 859 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9032, | |
| "step": 860 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8919, | |
| "step": 861 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8806, | |
| "step": 862 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8857, | |
| "step": 863 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8794, | |
| "step": 864 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8765, | |
| "step": 865 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.927, | |
| "step": 866 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.909, | |
| "step": 867 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8908, | |
| "step": 868 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9074, | |
| "step": 869 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8701, | |
| "step": 870 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8974, | |
| "step": 871 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8787, | |
| "step": 872 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.86, | |
| "step": 873 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9104, | |
| "step": 874 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8769, | |
| "step": 875 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8727, | |
| "step": 876 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9316, | |
| "step": 877 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8887, | |
| "step": 878 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9023, | |
| "step": 879 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8771, | |
| "step": 880 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9207, | |
| "step": 881 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8718, | |
| "step": 882 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8992, | |
| "step": 883 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8982, | |
| "step": 884 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8542, | |
| "step": 885 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9203, | |
| "step": 886 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8858, | |
| "step": 887 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.89, | |
| "step": 888 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8728, | |
| "step": 889 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8699, | |
| "step": 890 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8965, | |
| "step": 891 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9073, | |
| "step": 892 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8919, | |
| "step": 893 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8608, | |
| "step": 894 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8717, | |
| "step": 895 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9547, | |
| "step": 896 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9197, | |
| "step": 897 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.847, | |
| "step": 898 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8411, | |
| "step": 899 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8816, | |
| "step": 900 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.912, | |
| "step": 901 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8565, | |
| "step": 902 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.881, | |
| "step": 903 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8722, | |
| "step": 904 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8967, | |
| "step": 905 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9057, | |
| "step": 906 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8811, | |
| "step": 907 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8755, | |
| "step": 908 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8492, | |
| "step": 909 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8842, | |
| "step": 910 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.883, | |
| "step": 911 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9037, | |
| "step": 912 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.92, | |
| "step": 913 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8821, | |
| "step": 914 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8586, | |
| "step": 915 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9153, | |
| "step": 916 | |
| }, | |
| { | |
| "epoch": 0.5, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8717, | |
| "step": 917 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8793, | |
| "step": 918 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8873, | |
| "step": 919 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9426, | |
| "step": 920 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9002, | |
| "step": 921 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8992, | |
| "step": 922 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8753, | |
| "step": 923 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8934, | |
| "step": 924 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9158, | |
| "step": 925 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8315, | |
| "step": 926 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9026, | |
| "step": 927 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8585, | |
| "step": 928 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8862, | |
| "step": 929 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9132, | |
| "step": 930 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8828, | |
| "step": 931 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9186, | |
| "step": 932 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9085, | |
| "step": 933 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8993, | |
| "step": 934 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9558, | |
| "step": 935 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.882, | |
| "step": 936 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8883, | |
| "step": 937 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9215, | |
| "step": 938 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9307, | |
| "step": 939 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9172, | |
| "step": 940 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9105, | |
| "step": 941 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9054, | |
| "step": 942 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9253, | |
| "step": 943 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.915, | |
| "step": 944 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8788, | |
| "step": 945 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9096, | |
| "step": 946 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8688, | |
| "step": 947 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8682, | |
| "step": 948 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8611, | |
| "step": 949 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8843, | |
| "step": 950 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9371, | |
| "step": 951 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.884, | |
| "step": 952 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8896, | |
| "step": 953 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 2e-05, | |
| "loss": 1.915, | |
| "step": 954 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8892, | |
| "step": 955 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8942, | |
| "step": 956 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9085, | |
| "step": 957 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9041, | |
| "step": 958 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9204, | |
| "step": 959 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.897, | |
| "step": 960 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.912, | |
| "step": 961 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9181, | |
| "step": 962 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8813, | |
| "step": 963 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9225, | |
| "step": 964 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.916, | |
| "step": 965 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8758, | |
| "step": 966 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8892, | |
| "step": 967 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8656, | |
| "step": 968 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9366, | |
| "step": 969 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8915, | |
| "step": 970 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9064, | |
| "step": 971 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9157, | |
| "step": 972 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9197, | |
| "step": 973 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8884, | |
| "step": 974 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8942, | |
| "step": 975 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9127, | |
| "step": 976 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8907, | |
| "step": 977 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.894, | |
| "step": 978 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9029, | |
| "step": 979 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8955, | |
| "step": 980 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8608, | |
| "step": 981 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8831, | |
| "step": 982 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8903, | |
| "step": 983 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.915, | |
| "step": 984 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8776, | |
| "step": 985 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9088, | |
| "step": 986 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8839, | |
| "step": 987 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.909, | |
| "step": 988 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8803, | |
| "step": 989 | |
| }, | |
| { | |
| "epoch": 0.54, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8862, | |
| "step": 990 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.896, | |
| "step": 991 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9077, | |
| "step": 992 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9186, | |
| "step": 993 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8761, | |
| "step": 994 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9032, | |
| "step": 995 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8955, | |
| "step": 996 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8965, | |
| "step": 997 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8675, | |
| "step": 998 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8615, | |
| "step": 999 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9683, | |
| "step": 1000 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8944, | |
| "step": 1001 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8843, | |
| "step": 1002 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9064, | |
| "step": 1003 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9063, | |
| "step": 1004 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9127, | |
| "step": 1005 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.906, | |
| "step": 1006 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9056, | |
| "step": 1007 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9235, | |
| "step": 1008 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8807, | |
| "step": 1009 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9605, | |
| "step": 1010 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9487, | |
| "step": 1011 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0293, | |
| "step": 1012 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9752, | |
| "step": 1013 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0936, | |
| "step": 1014 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0737, | |
| "step": 1015 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0234, | |
| "step": 1016 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0537, | |
| "step": 1017 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0795, | |
| "step": 1018 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0374, | |
| "step": 1019 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9704, | |
| "step": 1020 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0487, | |
| "step": 1021 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9866, | |
| "step": 1022 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0211, | |
| "step": 1023 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.016, | |
| "step": 1024 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0208, | |
| "step": 1025 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0739, | |
| "step": 1026 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0705, | |
| "step": 1027 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0603, | |
| "step": 1028 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0256, | |
| "step": 1029 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0386, | |
| "step": 1030 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 2.0059, | |
| "step": 1031 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9875, | |
| "step": 1032 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.963, | |
| "step": 1033 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9372, | |
| "step": 1034 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8994, | |
| "step": 1035 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9196, | |
| "step": 1036 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9083, | |
| "step": 1037 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9411, | |
| "step": 1038 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9164, | |
| "step": 1039 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8869, | |
| "step": 1040 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8765, | |
| "step": 1041 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9326, | |
| "step": 1042 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9051, | |
| "step": 1043 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9671, | |
| "step": 1044 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8995, | |
| "step": 1045 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8705, | |
| "step": 1046 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9161, | |
| "step": 1047 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.879, | |
| "step": 1048 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8959, | |
| "step": 1049 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8776, | |
| "step": 1050 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.898, | |
| "step": 1051 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8915, | |
| "step": 1052 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9079, | |
| "step": 1053 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8977, | |
| "step": 1054 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9186, | |
| "step": 1055 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.93, | |
| "step": 1056 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8862, | |
| "step": 1057 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9239, | |
| "step": 1058 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9656, | |
| "step": 1059 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8738, | |
| "step": 1060 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.871, | |
| "step": 1061 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9152, | |
| "step": 1062 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9247, | |
| "step": 1063 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.921, | |
| "step": 1064 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9086, | |
| "step": 1065 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8795, | |
| "step": 1066 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9273, | |
| "step": 1067 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8944, | |
| "step": 1068 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9217, | |
| "step": 1069 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9379, | |
| "step": 1070 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9146, | |
| "step": 1071 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8946, | |
| "step": 1072 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8986, | |
| "step": 1073 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9467, | |
| "step": 1074 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9213, | |
| "step": 1075 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9043, | |
| "step": 1076 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9125, | |
| "step": 1077 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.875, | |
| "step": 1078 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8515, | |
| "step": 1079 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9106, | |
| "step": 1080 | |
| }, | |
| { | |
| "epoch": 0.59, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9164, | |
| "step": 1081 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8857, | |
| "step": 1082 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8584, | |
| "step": 1083 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.883, | |
| "step": 1084 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8684, | |
| "step": 1085 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9209, | |
| "step": 1086 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8502, | |
| "step": 1087 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9311, | |
| "step": 1088 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8962, | |
| "step": 1089 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9103, | |
| "step": 1090 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8802, | |
| "step": 1091 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9064, | |
| "step": 1092 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8634, | |
| "step": 1093 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8749, | |
| "step": 1094 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9098, | |
| "step": 1095 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8737, | |
| "step": 1096 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8678, | |
| "step": 1097 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8435, | |
| "step": 1098 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8708, | |
| "step": 1099 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8936, | |
| "step": 1100 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9381, | |
| "step": 1101 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9195, | |
| "step": 1102 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9138, | |
| "step": 1103 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9088, | |
| "step": 1104 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8879, | |
| "step": 1105 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9377, | |
| "step": 1106 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8791, | |
| "step": 1107 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8779, | |
| "step": 1108 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8317, | |
| "step": 1109 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8704, | |
| "step": 1110 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9418, | |
| "step": 1111 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8674, | |
| "step": 1112 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8896, | |
| "step": 1113 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9373, | |
| "step": 1114 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8777, | |
| "step": 1115 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9635, | |
| "step": 1116 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9205, | |
| "step": 1117 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9386, | |
| "step": 1118 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8862, | |
| "step": 1119 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8921, | |
| "step": 1120 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.904, | |
| "step": 1121 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9216, | |
| "step": 1122 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.91, | |
| "step": 1123 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8963, | |
| "step": 1124 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9258, | |
| "step": 1125 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8981, | |
| "step": 1126 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9042, | |
| "step": 1127 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9012, | |
| "step": 1128 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9259, | |
| "step": 1129 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9072, | |
| "step": 1130 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9223, | |
| "step": 1131 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9085, | |
| "step": 1132 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8689, | |
| "step": 1133 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8966, | |
| "step": 1134 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 2e-05, | |
| "loss": 1.905, | |
| "step": 1135 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8673, | |
| "step": 1136 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.907, | |
| "step": 1137 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8588, | |
| "step": 1138 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8956, | |
| "step": 1139 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8785, | |
| "step": 1140 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8361, | |
| "step": 1141 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9203, | |
| "step": 1142 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9283, | |
| "step": 1143 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8737, | |
| "step": 1144 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8577, | |
| "step": 1145 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8932, | |
| "step": 1146 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8689, | |
| "step": 1147 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8874, | |
| "step": 1148 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8937, | |
| "step": 1149 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8628, | |
| "step": 1150 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8981, | |
| "step": 1151 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8749, | |
| "step": 1152 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8755, | |
| "step": 1153 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8683, | |
| "step": 1154 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8803, | |
| "step": 1155 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8516, | |
| "step": 1156 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8788, | |
| "step": 1157 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9136, | |
| "step": 1158 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8637, | |
| "step": 1159 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8859, | |
| "step": 1160 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8597, | |
| "step": 1161 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8645, | |
| "step": 1162 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8789, | |
| "step": 1163 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8784, | |
| "step": 1164 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8852, | |
| "step": 1165 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8868, | |
| "step": 1166 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8976, | |
| "step": 1167 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9341, | |
| "step": 1168 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8666, | |
| "step": 1169 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8925, | |
| "step": 1170 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8777, | |
| "step": 1171 | |
| }, | |
| { | |
| "epoch": 0.64, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9076, | |
| "step": 1172 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.872, | |
| "step": 1173 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8977, | |
| "step": 1174 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9084, | |
| "step": 1175 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8769, | |
| "step": 1176 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.902, | |
| "step": 1177 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8502, | |
| "step": 1178 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.893, | |
| "step": 1179 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8775, | |
| "step": 1180 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8738, | |
| "step": 1181 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8535, | |
| "step": 1182 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8783, | |
| "step": 1183 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8712, | |
| "step": 1184 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9222, | |
| "step": 1185 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8569, | |
| "step": 1186 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9174, | |
| "step": 1187 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8663, | |
| "step": 1188 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9532, | |
| "step": 1189 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 2e-05, | |
| "loss": 1.893, | |
| "step": 1190 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.892, | |
| "step": 1191 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8703, | |
| "step": 1192 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8892, | |
| "step": 1193 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8654, | |
| "step": 1194 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8621, | |
| "step": 1195 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8876, | |
| "step": 1196 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8773, | |
| "step": 1197 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8513, | |
| "step": 1198 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9009, | |
| "step": 1199 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8695, | |
| "step": 1200 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9021, | |
| "step": 1201 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9249, | |
| "step": 1202 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9047, | |
| "step": 1203 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8443, | |
| "step": 1204 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8377, | |
| "step": 1205 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.866, | |
| "step": 1206 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8705, | |
| "step": 1207 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8827, | |
| "step": 1208 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8548, | |
| "step": 1209 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8358, | |
| "step": 1210 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8877, | |
| "step": 1211 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9016, | |
| "step": 1212 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8679, | |
| "step": 1213 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8732, | |
| "step": 1214 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8472, | |
| "step": 1215 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8641, | |
| "step": 1216 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.873, | |
| "step": 1217 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9007, | |
| "step": 1218 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8814, | |
| "step": 1219 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8837, | |
| "step": 1220 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9575, | |
| "step": 1221 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.892, | |
| "step": 1222 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8732, | |
| "step": 1223 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8502, | |
| "step": 1224 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9164, | |
| "step": 1225 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8431, | |
| "step": 1226 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9021, | |
| "step": 1227 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8617, | |
| "step": 1228 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8558, | |
| "step": 1229 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8585, | |
| "step": 1230 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9039, | |
| "step": 1231 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.88, | |
| "step": 1232 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9104, | |
| "step": 1233 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8651, | |
| "step": 1234 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8573, | |
| "step": 1235 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8721, | |
| "step": 1236 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9248, | |
| "step": 1237 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8989, | |
| "step": 1238 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.876, | |
| "step": 1239 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9199, | |
| "step": 1240 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8958, | |
| "step": 1241 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8644, | |
| "step": 1242 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8436, | |
| "step": 1243 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8671, | |
| "step": 1244 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8905, | |
| "step": 1245 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9101, | |
| "step": 1246 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8963, | |
| "step": 1247 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8828, | |
| "step": 1248 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8661, | |
| "step": 1249 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.884, | |
| "step": 1250 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8528, | |
| "step": 1251 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9145, | |
| "step": 1252 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8783, | |
| "step": 1253 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.894, | |
| "step": 1254 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8741, | |
| "step": 1255 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8616, | |
| "step": 1256 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8569, | |
| "step": 1257 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9009, | |
| "step": 1258 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8648, | |
| "step": 1259 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8977, | |
| "step": 1260 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8856, | |
| "step": 1261 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8776, | |
| "step": 1262 | |
| }, | |
| { | |
| "epoch": 0.69, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8862, | |
| "step": 1263 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8781, | |
| "step": 1264 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8614, | |
| "step": 1265 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8786, | |
| "step": 1266 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8319, | |
| "step": 1267 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8941, | |
| "step": 1268 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8386, | |
| "step": 1269 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8694, | |
| "step": 1270 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8487, | |
| "step": 1271 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8761, | |
| "step": 1272 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8745, | |
| "step": 1273 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8708, | |
| "step": 1274 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.864, | |
| "step": 1275 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8706, | |
| "step": 1276 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8689, | |
| "step": 1277 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8621, | |
| "step": 1278 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9056, | |
| "step": 1279 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8715, | |
| "step": 1280 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8655, | |
| "step": 1281 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8723, | |
| "step": 1282 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.944, | |
| "step": 1283 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8464, | |
| "step": 1284 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.895, | |
| "step": 1285 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8915, | |
| "step": 1286 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.918, | |
| "step": 1287 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8647, | |
| "step": 1288 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8687, | |
| "step": 1289 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8776, | |
| "step": 1290 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.889, | |
| "step": 1291 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8872, | |
| "step": 1292 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8969, | |
| "step": 1293 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8585, | |
| "step": 1294 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9201, | |
| "step": 1295 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8733, | |
| "step": 1296 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8838, | |
| "step": 1297 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8795, | |
| "step": 1298 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8481, | |
| "step": 1299 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9141, | |
| "step": 1300 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9117, | |
| "step": 1301 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8819, | |
| "step": 1302 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8715, | |
| "step": 1303 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8756, | |
| "step": 1304 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.872, | |
| "step": 1305 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8981, | |
| "step": 1306 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9005, | |
| "step": 1307 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8732, | |
| "step": 1308 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8604, | |
| "step": 1309 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8578, | |
| "step": 1310 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8708, | |
| "step": 1311 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8824, | |
| "step": 1312 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8953, | |
| "step": 1313 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8471, | |
| "step": 1314 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8964, | |
| "step": 1315 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8698, | |
| "step": 1316 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8725, | |
| "step": 1317 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8585, | |
| "step": 1318 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9112, | |
| "step": 1319 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8853, | |
| "step": 1320 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8723, | |
| "step": 1321 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8844, | |
| "step": 1322 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8858, | |
| "step": 1323 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8681, | |
| "step": 1324 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8607, | |
| "step": 1325 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8898, | |
| "step": 1326 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8886, | |
| "step": 1327 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8718, | |
| "step": 1328 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8453, | |
| "step": 1329 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8659, | |
| "step": 1330 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8908, | |
| "step": 1331 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8787, | |
| "step": 1332 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8953, | |
| "step": 1333 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8546, | |
| "step": 1334 | |
| }, | |
| { | |
| "epoch": 0.73, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8683, | |
| "step": 1335 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8966, | |
| "step": 1336 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8854, | |
| "step": 1337 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.849, | |
| "step": 1338 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8665, | |
| "step": 1339 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8751, | |
| "step": 1340 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8637, | |
| "step": 1341 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9077, | |
| "step": 1342 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8622, | |
| "step": 1343 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9119, | |
| "step": 1344 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.847, | |
| "step": 1345 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.886, | |
| "step": 1346 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9127, | |
| "step": 1347 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9164, | |
| "step": 1348 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8546, | |
| "step": 1349 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.841, | |
| "step": 1350 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8822, | |
| "step": 1351 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9006, | |
| "step": 1352 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8814, | |
| "step": 1353 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8943, | |
| "step": 1354 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8307, | |
| "step": 1355 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8514, | |
| "step": 1356 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8833, | |
| "step": 1357 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8592, | |
| "step": 1358 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.876, | |
| "step": 1359 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.826, | |
| "step": 1360 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8787, | |
| "step": 1361 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8438, | |
| "step": 1362 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9007, | |
| "step": 1363 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8553, | |
| "step": 1364 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.873, | |
| "step": 1365 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8543, | |
| "step": 1366 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8754, | |
| "step": 1367 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8999, | |
| "step": 1368 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8657, | |
| "step": 1369 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.872, | |
| "step": 1370 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8836, | |
| "step": 1371 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8686, | |
| "step": 1372 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9047, | |
| "step": 1373 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8771, | |
| "step": 1374 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8535, | |
| "step": 1375 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8832, | |
| "step": 1376 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9163, | |
| "step": 1377 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8608, | |
| "step": 1378 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8221, | |
| "step": 1379 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8456, | |
| "step": 1380 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8719, | |
| "step": 1381 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8242, | |
| "step": 1382 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8773, | |
| "step": 1383 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9126, | |
| "step": 1384 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8744, | |
| "step": 1385 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8727, | |
| "step": 1386 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8672, | |
| "step": 1387 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8343, | |
| "step": 1388 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9104, | |
| "step": 1389 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8916, | |
| "step": 1390 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8685, | |
| "step": 1391 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.88, | |
| "step": 1392 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8535, | |
| "step": 1393 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8606, | |
| "step": 1394 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.868, | |
| "step": 1395 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8892, | |
| "step": 1396 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9273, | |
| "step": 1397 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8649, | |
| "step": 1398 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8475, | |
| "step": 1399 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8477, | |
| "step": 1400 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8906, | |
| "step": 1401 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8739, | |
| "step": 1402 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9052, | |
| "step": 1403 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8702, | |
| "step": 1404 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9367, | |
| "step": 1405 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8584, | |
| "step": 1406 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.855, | |
| "step": 1407 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8467, | |
| "step": 1408 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.852, | |
| "step": 1409 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8757, | |
| "step": 1410 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8712, | |
| "step": 1411 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8631, | |
| "step": 1412 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8885, | |
| "step": 1413 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9031, | |
| "step": 1414 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8281, | |
| "step": 1415 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8569, | |
| "step": 1416 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8456, | |
| "step": 1417 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8642, | |
| "step": 1418 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8733, | |
| "step": 1419 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8524, | |
| "step": 1420 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8815, | |
| "step": 1421 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.885, | |
| "step": 1422 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.851, | |
| "step": 1423 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.888, | |
| "step": 1424 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9037, | |
| "step": 1425 | |
| }, | |
| { | |
| "epoch": 0.78, | |
| "learning_rate": 2e-05, | |
| "loss": 1.848, | |
| "step": 1426 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8778, | |
| "step": 1427 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8874, | |
| "step": 1428 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9082, | |
| "step": 1429 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.887, | |
| "step": 1430 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8443, | |
| "step": 1431 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8664, | |
| "step": 1432 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8806, | |
| "step": 1433 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8636, | |
| "step": 1434 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8992, | |
| "step": 1435 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.884, | |
| "step": 1436 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8766, | |
| "step": 1437 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8679, | |
| "step": 1438 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8536, | |
| "step": 1439 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8634, | |
| "step": 1440 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.87, | |
| "step": 1441 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8926, | |
| "step": 1442 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8831, | |
| "step": 1443 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8954, | |
| "step": 1444 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8975, | |
| "step": 1445 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8715, | |
| "step": 1446 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8265, | |
| "step": 1447 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8603, | |
| "step": 1448 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8608, | |
| "step": 1449 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9213, | |
| "step": 1450 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8926, | |
| "step": 1451 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9171, | |
| "step": 1452 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8958, | |
| "step": 1453 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8461, | |
| "step": 1454 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9011, | |
| "step": 1455 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8344, | |
| "step": 1456 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.845, | |
| "step": 1457 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8783, | |
| "step": 1458 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8769, | |
| "step": 1459 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.85, | |
| "step": 1460 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8799, | |
| "step": 1461 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8903, | |
| "step": 1462 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8638, | |
| "step": 1463 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.92, | |
| "step": 1464 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8596, | |
| "step": 1465 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8986, | |
| "step": 1466 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8703, | |
| "step": 1467 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9154, | |
| "step": 1468 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9298, | |
| "step": 1469 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8913, | |
| "step": 1470 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8949, | |
| "step": 1471 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.888, | |
| "step": 1472 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8862, | |
| "step": 1473 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8609, | |
| "step": 1474 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8804, | |
| "step": 1475 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8548, | |
| "step": 1476 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8737, | |
| "step": 1477 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8435, | |
| "step": 1478 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9236, | |
| "step": 1479 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8821, | |
| "step": 1480 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 2e-05, | |
| "loss": 1.871, | |
| "step": 1481 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8917, | |
| "step": 1482 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8655, | |
| "step": 1483 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8887, | |
| "step": 1484 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.903, | |
| "step": 1485 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8654, | |
| "step": 1486 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8732, | |
| "step": 1487 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8589, | |
| "step": 1488 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8873, | |
| "step": 1489 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8711, | |
| "step": 1490 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8395, | |
| "step": 1491 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8723, | |
| "step": 1492 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8528, | |
| "step": 1493 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.865, | |
| "step": 1494 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8554, | |
| "step": 1495 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8831, | |
| "step": 1496 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8769, | |
| "step": 1497 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8453, | |
| "step": 1498 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8827, | |
| "step": 1499 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8742, | |
| "step": 1500 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8876, | |
| "step": 1501 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8828, | |
| "step": 1502 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8875, | |
| "step": 1503 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.865, | |
| "step": 1504 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8396, | |
| "step": 1505 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8587, | |
| "step": 1506 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8716, | |
| "step": 1507 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9094, | |
| "step": 1508 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8805, | |
| "step": 1509 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8155, | |
| "step": 1510 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.862, | |
| "step": 1511 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8737, | |
| "step": 1512 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9139, | |
| "step": 1513 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9087, | |
| "step": 1514 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8477, | |
| "step": 1515 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8587, | |
| "step": 1516 | |
| }, | |
| { | |
| "epoch": 0.83, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8647, | |
| "step": 1517 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8471, | |
| "step": 1518 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8925, | |
| "step": 1519 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8907, | |
| "step": 1520 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8933, | |
| "step": 1521 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8827, | |
| "step": 1522 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8804, | |
| "step": 1523 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8636, | |
| "step": 1524 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9036, | |
| "step": 1525 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8571, | |
| "step": 1526 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8457, | |
| "step": 1527 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8557, | |
| "step": 1528 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8877, | |
| "step": 1529 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8704, | |
| "step": 1530 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8547, | |
| "step": 1531 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8567, | |
| "step": 1532 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8774, | |
| "step": 1533 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8966, | |
| "step": 1534 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8533, | |
| "step": 1535 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8697, | |
| "step": 1536 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8756, | |
| "step": 1537 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.848, | |
| "step": 1538 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8651, | |
| "step": 1539 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.85, | |
| "step": 1540 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8694, | |
| "step": 1541 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8519, | |
| "step": 1542 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8332, | |
| "step": 1543 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8425, | |
| "step": 1544 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8681, | |
| "step": 1545 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8785, | |
| "step": 1546 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8633, | |
| "step": 1547 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8451, | |
| "step": 1548 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8167, | |
| "step": 1549 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8816, | |
| "step": 1550 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8685, | |
| "step": 1551 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8638, | |
| "step": 1552 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 2e-05, | |
| "loss": 1.809, | |
| "step": 1553 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8622, | |
| "step": 1554 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8921, | |
| "step": 1555 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8507, | |
| "step": 1556 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8893, | |
| "step": 1557 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8445, | |
| "step": 1558 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8833, | |
| "step": 1559 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8659, | |
| "step": 1560 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8436, | |
| "step": 1561 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8476, | |
| "step": 1562 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8938, | |
| "step": 1563 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8922, | |
| "step": 1564 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8548, | |
| "step": 1565 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8763, | |
| "step": 1566 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8875, | |
| "step": 1567 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8145, | |
| "step": 1568 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8663, | |
| "step": 1569 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8326, | |
| "step": 1570 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.859, | |
| "step": 1571 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8685, | |
| "step": 1572 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8913, | |
| "step": 1573 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9075, | |
| "step": 1574 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8691, | |
| "step": 1575 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8347, | |
| "step": 1576 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8934, | |
| "step": 1577 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.867, | |
| "step": 1578 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8744, | |
| "step": 1579 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9009, | |
| "step": 1580 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9074, | |
| "step": 1581 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.852, | |
| "step": 1582 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8801, | |
| "step": 1583 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9031, | |
| "step": 1584 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8945, | |
| "step": 1585 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8655, | |
| "step": 1586 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8964, | |
| "step": 1587 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8408, | |
| "step": 1588 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8964, | |
| "step": 1589 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8489, | |
| "step": 1590 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8262, | |
| "step": 1591 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8767, | |
| "step": 1592 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9, | |
| "step": 1593 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8541, | |
| "step": 1594 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8435, | |
| "step": 1595 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8552, | |
| "step": 1596 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8935, | |
| "step": 1597 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8801, | |
| "step": 1598 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8799, | |
| "step": 1599 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8747, | |
| "step": 1600 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8347, | |
| "step": 1601 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8626, | |
| "step": 1602 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8357, | |
| "step": 1603 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.857, | |
| "step": 1604 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9032, | |
| "step": 1605 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8792, | |
| "step": 1606 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8645, | |
| "step": 1607 | |
| }, | |
| { | |
| "epoch": 0.88, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8823, | |
| "step": 1608 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8317, | |
| "step": 1609 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8453, | |
| "step": 1610 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.852, | |
| "step": 1611 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8709, | |
| "step": 1612 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8459, | |
| "step": 1613 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8539, | |
| "step": 1614 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8793, | |
| "step": 1615 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8687, | |
| "step": 1616 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.867, | |
| "step": 1617 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8669, | |
| "step": 1618 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8717, | |
| "step": 1619 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.897, | |
| "step": 1620 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8852, | |
| "step": 1621 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.904, | |
| "step": 1622 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8781, | |
| "step": 1623 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8769, | |
| "step": 1624 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8595, | |
| "step": 1625 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8533, | |
| "step": 1626 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.89, | |
| "step": 1627 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8205, | |
| "step": 1628 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9202, | |
| "step": 1629 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8871, | |
| "step": 1630 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9076, | |
| "step": 1631 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8333, | |
| "step": 1632 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8212, | |
| "step": 1633 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8993, | |
| "step": 1634 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8713, | |
| "step": 1635 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8474, | |
| "step": 1636 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8749, | |
| "step": 1637 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8737, | |
| "step": 1638 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.872, | |
| "step": 1639 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8854, | |
| "step": 1640 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8928, | |
| "step": 1641 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9048, | |
| "step": 1642 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8525, | |
| "step": 1643 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8911, | |
| "step": 1644 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.838, | |
| "step": 1645 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8125, | |
| "step": 1646 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9012, | |
| "step": 1647 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8352, | |
| "step": 1648 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8793, | |
| "step": 1649 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8904, | |
| "step": 1650 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8419, | |
| "step": 1651 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8828, | |
| "step": 1652 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8462, | |
| "step": 1653 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9209, | |
| "step": 1654 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8781, | |
| "step": 1655 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8657, | |
| "step": 1656 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9012, | |
| "step": 1657 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8799, | |
| "step": 1658 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8579, | |
| "step": 1659 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8629, | |
| "step": 1660 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8847, | |
| "step": 1661 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8533, | |
| "step": 1662 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8537, | |
| "step": 1663 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.874, | |
| "step": 1664 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8667, | |
| "step": 1665 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8552, | |
| "step": 1666 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8666, | |
| "step": 1667 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.897, | |
| "step": 1668 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8951, | |
| "step": 1669 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8607, | |
| "step": 1670 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8659, | |
| "step": 1671 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8903, | |
| "step": 1672 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8719, | |
| "step": 1673 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9339, | |
| "step": 1674 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8857, | |
| "step": 1675 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9035, | |
| "step": 1676 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8748, | |
| "step": 1677 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8685, | |
| "step": 1678 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9209, | |
| "step": 1679 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9362, | |
| "step": 1680 | |
| }, | |
| { | |
| "epoch": 0.92, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8942, | |
| "step": 1681 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8841, | |
| "step": 1682 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8662, | |
| "step": 1683 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8387, | |
| "step": 1684 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.897, | |
| "step": 1685 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8769, | |
| "step": 1686 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8549, | |
| "step": 1687 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8705, | |
| "step": 1688 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9146, | |
| "step": 1689 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.908, | |
| "step": 1690 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8196, | |
| "step": 1691 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8368, | |
| "step": 1692 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8883, | |
| "step": 1693 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8544, | |
| "step": 1694 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.879, | |
| "step": 1695 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8944, | |
| "step": 1696 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8654, | |
| "step": 1697 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9071, | |
| "step": 1698 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8566, | |
| "step": 1699 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9074, | |
| "step": 1700 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8927, | |
| "step": 1701 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8955, | |
| "step": 1702 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9155, | |
| "step": 1703 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8717, | |
| "step": 1704 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8442, | |
| "step": 1705 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8978, | |
| "step": 1706 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9095, | |
| "step": 1707 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8556, | |
| "step": 1708 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.925, | |
| "step": 1709 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8797, | |
| "step": 1710 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8596, | |
| "step": 1711 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8717, | |
| "step": 1712 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8875, | |
| "step": 1713 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.84, | |
| "step": 1714 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8697, | |
| "step": 1715 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.859, | |
| "step": 1716 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9052, | |
| "step": 1717 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8825, | |
| "step": 1718 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8936, | |
| "step": 1719 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8468, | |
| "step": 1720 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8993, | |
| "step": 1721 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8449, | |
| "step": 1722 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8636, | |
| "step": 1723 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8804, | |
| "step": 1724 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8738, | |
| "step": 1725 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8988, | |
| "step": 1726 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8514, | |
| "step": 1727 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8495, | |
| "step": 1728 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8892, | |
| "step": 1729 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8706, | |
| "step": 1730 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8389, | |
| "step": 1731 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8946, | |
| "step": 1732 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8783, | |
| "step": 1733 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8355, | |
| "step": 1734 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8433, | |
| "step": 1735 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8575, | |
| "step": 1736 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8635, | |
| "step": 1737 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8848, | |
| "step": 1738 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8945, | |
| "step": 1739 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8499, | |
| "step": 1740 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9152, | |
| "step": 1741 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8679, | |
| "step": 1742 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.834, | |
| "step": 1743 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9023, | |
| "step": 1744 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8412, | |
| "step": 1745 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8567, | |
| "step": 1746 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9078, | |
| "step": 1747 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8781, | |
| "step": 1748 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8181, | |
| "step": 1749 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8478, | |
| "step": 1750 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8724, | |
| "step": 1751 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8737, | |
| "step": 1752 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8798, | |
| "step": 1753 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8806, | |
| "step": 1754 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8774, | |
| "step": 1755 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8783, | |
| "step": 1756 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8749, | |
| "step": 1757 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.862, | |
| "step": 1758 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8775, | |
| "step": 1759 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8552, | |
| "step": 1760 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8731, | |
| "step": 1761 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8578, | |
| "step": 1762 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.89, | |
| "step": 1763 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8835, | |
| "step": 1764 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.872, | |
| "step": 1765 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9179, | |
| "step": 1766 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8593, | |
| "step": 1767 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8647, | |
| "step": 1768 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8653, | |
| "step": 1769 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8078, | |
| "step": 1770 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.829, | |
| "step": 1771 | |
| }, | |
| { | |
| "epoch": 0.97, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8342, | |
| "step": 1772 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8369, | |
| "step": 1773 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8374, | |
| "step": 1774 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9067, | |
| "step": 1775 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8967, | |
| "step": 1776 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8906, | |
| "step": 1777 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8684, | |
| "step": 1778 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8642, | |
| "step": 1779 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8712, | |
| "step": 1780 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8705, | |
| "step": 1781 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8623, | |
| "step": 1782 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.839, | |
| "step": 1783 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8821, | |
| "step": 1784 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8676, | |
| "step": 1785 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8502, | |
| "step": 1786 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8297, | |
| "step": 1787 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8825, | |
| "step": 1788 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8766, | |
| "step": 1789 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 2e-05, | |
| "loss": 1.859, | |
| "step": 1790 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8339, | |
| "step": 1791 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8778, | |
| "step": 1792 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8697, | |
| "step": 1793 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8438, | |
| "step": 1794 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8587, | |
| "step": 1795 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8422, | |
| "step": 1796 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8591, | |
| "step": 1797 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8402, | |
| "step": 1798 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8282, | |
| "step": 1799 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8519, | |
| "step": 1800 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.859, | |
| "step": 1801 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8665, | |
| "step": 1802 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9243, | |
| "step": 1803 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8668, | |
| "step": 1804 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8742, | |
| "step": 1805 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8725, | |
| "step": 1806 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8672, | |
| "step": 1807 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8796, | |
| "step": 1808 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.849, | |
| "step": 1809 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8265, | |
| "step": 1810 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8675, | |
| "step": 1811 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8935, | |
| "step": 1812 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8882, | |
| "step": 1813 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.9208, | |
| "step": 1814 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8801, | |
| "step": 1815 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8958, | |
| "step": 1816 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 2e-05, | |
| "loss": 1.8254, | |
| "step": 1817 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "step": 1817, | |
| "total_flos": 2503804397813760.0, | |
| "train_loss": 1.9326286626242646, | |
| "train_runtime": 238313.358, | |
| "train_samples_per_second": 3.905, | |
| "train_steps_per_second": 0.008 | |
| } | |
| ], | |
| "max_steps": 1817, | |
| "num_train_epochs": 1, | |
| "total_flos": 2503804397813760.0, | |
| "trial_name": null, | |
| "trial_params": null | |
| } | |