Update README.md
Browse files
README.md
CHANGED
|
@@ -39,36 +39,77 @@ Hello Orca Mini, what can you do for me?<|eot_id|>
|
|
| 39 |
<|start_header_id|>assistant<|end_header_id|>
|
| 40 |
```
|
| 41 |
|
| 42 |
-
Below shows a code example on how to use this model in default(bf16) format
|
| 43 |
|
| 44 |
```python
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
messages = [
|
| 50 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
| 51 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
| 52 |
]
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
```
|
| 56 |
|
| 57 |
-
Below shows a code example on how to use this model in
|
| 58 |
|
| 59 |
```python
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
| 62 |
-
quantization_config = BitsAndBytesConfig(
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
messages = [
|
| 67 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
| 68 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
| 69 |
]
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
```
|
| 73 |
|
| 74 |
Below shows a code example on how to do a tool use with this model and tranformer library
|
|
|
|
| 39 |
<|start_header_id|>assistant<|end_header_id|>
|
| 40 |
```
|
| 41 |
|
| 42 |
+
Below shows a code example on how to use this model in default full precision (bf16) format, it requires around ~130GB VRAM
|
| 43 |
|
| 44 |
```python
|
| 45 |
+
import torch
|
| 46 |
+
from transformers import pipeline
|
| 47 |
+
|
| 48 |
+
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
| 49 |
+
pipeline = pipeline(
|
| 50 |
+
"text-generation",
|
| 51 |
+
model=model_slug,
|
| 52 |
+
device_map="auto",
|
| 53 |
+
)
|
| 54 |
+
messages = [
|
| 55 |
+
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
| 56 |
+
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
| 57 |
+
]
|
| 58 |
+
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
|
| 59 |
+
print(outputs[0]["generated_text"][-1])
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
Below shows a code example on how to use this model in 4-bit format via bitsandbytes library, it requires around ~39GB VRAM
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
import torch
|
| 66 |
+
from transformers import BitsAndBytesConfig, pipeline
|
| 67 |
+
|
| 68 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
| 69 |
+
quantization_config = BitsAndBytesConfig(
|
| 70 |
+
load_in_4bit=True,
|
| 71 |
+
bnb_4bit_quant_type="nf4",
|
| 72 |
+
bnb_4bit_compute_dtype="float16",
|
| 73 |
+
bnb_4bit_use_double_quant=True,
|
| 74 |
+
)
|
| 75 |
+
pipeline = pipeline(
|
| 76 |
+
"text-generation",
|
| 77 |
+
model=model_slug,
|
| 78 |
+
model_kwargs={"quantization_config": quantization_config},
|
| 79 |
+
device_map="auto",
|
| 80 |
+
)
|
| 81 |
messages = [
|
| 82 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
| 83 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
| 84 |
]
|
| 85 |
+
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
|
| 86 |
+
print(outputs[0]["generated_text"][-1])
|
| 87 |
+
|
| 88 |
```
|
| 89 |
|
| 90 |
+
Below shows a code example on how to use this model in 8-bit format via bitsandbytes library, it requires around ~69GB VRAM
|
| 91 |
|
| 92 |
```python
|
| 93 |
+
import torch
|
| 94 |
+
from transformers import BitsAndBytesConfig, pipeline
|
| 95 |
+
|
| 96 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
| 97 |
+
quantization_config = BitsAndBytesConfig(
|
| 98 |
+
load_in_8bit=True
|
| 99 |
+
)
|
| 100 |
+
pipeline = pipeline(
|
| 101 |
+
"text-generation",
|
| 102 |
+
model=model_slug,
|
| 103 |
+
model_kwargs={"quantization_config": quantization_config},
|
| 104 |
+
device_map="auto",
|
| 105 |
+
)
|
| 106 |
messages = [
|
| 107 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
| 108 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
| 109 |
]
|
| 110 |
+
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
|
| 111 |
+
print(outputs[0]["generated_text"][-1])
|
| 112 |
+
|
| 113 |
```
|
| 114 |
|
| 115 |
Below shows a code example on how to do a tool use with this model and tranformer library
|