Clair Obscur: an Illumination-Aware Method for Real-World Image Vectorization
Abstract
COVec, an illumination-aware vectorization method, decomposes images into albedo, shade, and light layers with semantic guidance, enhancing visual fidelity and editability.
Image vectorization aims to convert raster images into editable, scalable vector representations while preserving visual fidelity. Existing vectorization methods struggle to represent complex real-world images, often producing fragmented shapes at the cost of semantic conciseness. In this paper, we propose COVec, an illumination-aware vectorization framework inspired by the Clair-Obscur principle of light-shade contrast. COVec is the first to introduce intrinsic image decomposition in the vector domain, separating an image into albedo, shade, and light layers in a unified vector representation. A semantic-guided initialization and two-stage optimization refine these layers with differentiable rendering. Experiments on various datasets demonstrate that COVec achieves higher visual fidelity and significantly improved editability compared to existing methods.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper