- A Part-of-Speech Tagger for Yiddish: First Steps in Tagging the Yiddish Book Center Corpus We describe the construction and evaluation of a part-of-speech tagger for Yiddish (the first one, to the best of our knowledge). This is the first step in a larger project of automatically assigning part-of-speech tags and syntactic structure to Yiddish text for purposes of linguistic research. We combine two resources for the current work - an 80K word subset of the Penn Parsed Corpus of Historical Yiddish (PPCHY) (Santorini, 2021) and 650 million words of OCR'd Yiddish text from the Yiddish Book Center (YBC). We compute word embeddings on the YBC corpus, and these embeddings are used with a tagger model trained and evaluated on the PPCHY. Yiddish orthography in the YBC corpus has many spelling inconsistencies, and we present some evidence that even simple non-contextualized embeddings are able to capture the relationships among spelling variants without the need to first "standardize" the corpus. We evaluate the tagger performance on a 10-fold cross-validation split, with and without the embeddings, showing that the embeddings improve tagger performance. However, a great deal of work remains to be done, and we conclude by discussing some next steps, including the need for additional annotated training and test data. 4 authors · Apr 3, 2022
- The HASYv2 dataset This paper describes the HASYv2 dataset. HASY is a publicly available, free of charge dataset of single symbols similar to MNIST. It contains 168233 instances of 369 classes. HASY contains two challenges: A classification challenge with 10 pre-defined folds for 10-fold cross-validation and a verification challenge. 1 authors · Jan 29, 2017
1 Using remotely sensed data for air pollution assessment Air pollution constitutes a global problem of paramount importance that affects not only human health, but also the environment. The existence of spatial and temporal data regarding the concentrations of pollutants is crucial for performing air pollution studies and monitor emissions. However, although observation data presents great temporal coverage, the number of stations is very limited and they are usually built in more populated areas. The main objective of this work is to create models capable of inferring pollutant concentrations in locations where no observation data exists. A machine learning model, more specifically the random forest model, was developed for predicting concentrations in the Iberian Peninsula in 2019 for five selected pollutants: NO_2, O_3 SO_2, PM10, and PM2.5. Model features include satellite measurements, meteorological variables, land use classification, temporal variables (month, day of year), and spatial variables (latitude, longitude, altitude). The models were evaluated using various methods, including station 10-fold cross-validation, in which in each fold observations from 10\% of the stations are used as testing data and the rest as training data. The R^2, RMSE and mean bias were determined for each model. The NO_2 and O_3 models presented good values of R^2, 0.5524 and 0.7462, respectively. However, the SO_2, PM10, and PM2.5 models performed very poorly in this regard, with R^2 values of -0.0231, 0.3722, and 0.3303, respectively. All models slightly overestimated the ground concentrations, except the O_3 model. All models presented acceptable cross-validation RMSE, except the O_3 and PM10 models where the mean value was a little higher (12.5934 mu g/m^3 and 10.4737 mu g/m^3, respectively). 3 authors · Feb 4, 2024
- Machine Learning Framework for RF-Based Drone Detection and Identification System The emergence of drones has added new dimension to privacy and security issues. There are little or no strict regulations on the people that can purchase or own a drone. For this reason, people can take advantage of these aircraft to intrude into restricted or private areas. A Drone Detection and Identification (DDI) system is one of the ways of detecting and identifying the presence of a drone in an area. DDI systems can employ different sensing technique such radio frequency (RF) signals, video, sounds and thermal for detecting an intruding drone. In this work, we propose a machine learning RF-based DDI system that uses low band RF signals from drone-to-flight controller communication. We develop three machine learning models using the XGBoost algorithm to detect and identify the presence of a drone, the type of drones and the operational mode of drones. For these three XGBoost models, we evaluated the models using 10-fold cross validation and we achieve average accuracy of 99.96%, 90.73% and 70.09% respectively. 3 authors · Mar 1, 2020
- German BERT Model for Legal Named Entity Recognition The use of BERT, one of the most popular language models, has led to improvements in many Natural Language Processing (NLP) tasks. One such task is Named Entity Recognition (NER) i.e. automatic identification of named entities such as location, person, organization, etc. from a given text. It is also an important base step for many NLP tasks such as information extraction and argumentation mining. Even though there is much research done on NER using BERT and other popular language models, the same is not explored in detail when it comes to Legal NLP or Legal Tech. Legal NLP applies various NLP techniques such as sentence similarity or NER specifically on legal data. There are only a handful of models for NER tasks using BERT language models, however, none of these are aimed at legal documents in German. In this paper, we fine-tune a popular BERT language model trained on German data (German BERT) on a Legal Entity Recognition (LER) dataset. To make sure our model is not overfitting, we performed a stratified 10-fold cross-validation. The results we achieve by fine-tuning German BERT on the LER dataset outperform the BiLSTM-CRF+ model used by the authors of the same LER dataset. Finally, we make the model openly available via HuggingFace. 3 authors · Mar 7, 2023
- Towards Refining Developer Questions using LLM-Based Named Entity Recognition for Developer Chatroom Conversations In software engineering chatrooms, communication is often hindered by imprecise questions that cannot be answered. Recognizing key entities can be essential for improving question clarity and facilitating better exchange. However, existing research using natural language processing techniques often overlooks these software-specific nuances. In this paper, we introduce Software-specific Named Entity Recognition, Intent Detection, and Resolution Classification (SENIR), a labeling approach that leverages a Large Language Model to annotate entities, intents, and resolution status in developer chatroom conversations. To offer quantitative guidance for improving question clarity and resolvability, we build a resolution prediction model that leverages SENIR's entity and intent labels along with additional predictive features. We evaluate SENIR on the DISCO dataset using a subset of annotated chatroom dialogues. SENIR achieves an 86% F-score for entity recognition, a 71% F-score for intent detection, and an 89% F-score for resolution status classification. Furthermore, our resolution prediction model, tested with various sampling strategies (random undersampling and oversampling with SMOTE) and evaluation methods (5-fold cross-validation, 10-fold cross-validation, and bootstrapping), demonstrates AUC values ranging from 0.7 to 0.8. Key factors influencing resolution include positive sentiment and entities such as Programming Language and User Variable across multiple intents, while diagnostic entities are more relevant in error-related questions. Moreover, resolution rates vary significantly by intent: questions about API Usage and API Change achieve higher resolution rates, whereas Discrepancy and Review have lower resolution rates. A Chi-Square analysis confirms the statistical significance of these differences. 5 authors · Mar 1
- TrackNet: A Deep Learning Network for Tracking High-speed and Tiny Objects in Sports Applications Ball trajectory data are one of the most fundamental and useful information in the evaluation of players' performance and analysis of game strategies. Although vision-based object tracking techniques have been developed to analyze sport competition videos, it is still challenging to recognize and position a high-speed and tiny ball accurately. In this paper, we develop a deep learning network, called TrackNet, to track the tennis ball from broadcast videos in which the ball images are small, blurry, and sometimes with afterimage tracks or even invisible. The proposed heatmap-based deep learning network is trained to not only recognize the ball image from a single frame but also learn flying patterns from consecutive frames. TrackNet takes images with a size of 640times360 to generate a detection heatmap from either a single frame or several consecutive frames to position the ball and can achieve high precision even on public domain videos. The network is evaluated on the video of the men's singles final at the 2017 Summer Universiade, which is available on YouTube. The precision, recall, and F1-measure of TrackNet reach 99.7%, 97.3%, and 98.5%, respectively. To prevent overfitting, 9 additional videos are partially labeled together with a subset from the previous dataset to implement 10-fold cross-validation, and the precision, recall, and F1-measure are 95.3%, 75.7%, and 84.3%, respectively. A conventional image processing algorithm is also implemented to compare with TrackNet. Our experiments indicate that TrackNet outperforms conventional method by a big margin and achieves exceptional ball tracking performance. The dataset and demo video are available at https://nol.cs.nctu.edu.tw/ndo3je6av9/. 5 authors · Jul 8, 2019