new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 23

AquaCast: Urban Water Dynamics Forecasting with Precipitation-Informed Multi-Input Transformer

This work addresses the challenge of forecasting urban water dynamics by developing a multi-input, multi-output deep learning model that incorporates both endogenous variables (e.g., water height or discharge) and exogenous factors (e.g., precipitation history and forecast reports). Unlike conventional forecasting, the proposed model, AquaCast, captures both inter-variable and temporal dependencies across all inputs, while focusing forecast solely on endogenous variables. Exogenous inputs are fused via an embedding layer, eliminating the need to forecast them and enabling the model to attend to their short-term influences more effectively. We evaluate our approach on the LausanneCity dataset, which includes measurements from four urban drainage sensors, and demonstrate state-of-the-art performance when using only endogenous variables. Performance also improves with the inclusion of exogenous variables and forecast reports. To assess generalization and scalability, we additionally test the model on three large-scale synthesized datasets, generated from MeteoSwiss records, the Lorenz Attractors model, and the Random Fields model, each representing a different level of temporal complexity across 100 nodes. The results confirm that our model consistently outperforms existing baselines and maintains a robust and accurate forecast across both real and synthetic datasets.

  • 5 authors
·
Sep 11

AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions

Robust visual recognition in underwater environments remains a significant challenge due to complex distortions such as turbidity, low illumination, and occlusion, which severely degrade the performance of standard vision systems. This paper introduces AQUA20, a comprehensive benchmark dataset comprising 8,171 underwater images across 20 marine species reflecting real-world environmental challenges such as illumination, turbidity, occlusions, etc., providing a valuable resource for underwater visual understanding. Thirteen state-of-the-art deep learning models, including lightweight CNNs (SqueezeNet, MobileNetV2) and transformer-based architectures (ViT, ConvNeXt), were evaluated to benchmark their performance in classifying marine species under challenging conditions. Our experimental results show ConvNeXt achieving the best performance, with a Top-3 accuracy of 98.82% and a Top-1 accuracy of 90.69%, as well as the highest overall F1-score of 88.92% with moderately large parameter size. The results obtained from our other benchmark models also demonstrate trade-offs between complexity and performance. We also provide an extensive explainability analysis using GRAD-CAM and LIME for interpreting the strengths and pitfalls of the models. Our results reveal substantial room for improvement in underwater species recognition and demonstrate the value of AQUA20 as a foundation for future research in this domain. The dataset is publicly available at: https://huggingface.co/datasets/taufiktrf/AQUA20.

  • 3 authors
·
Jun 20

Aquarius: A Family of Industry-Level Video Generation Models for Marketing Scenarios

This report introduces Aquarius, a family of industry-level video generation models for marketing scenarios designed for thousands-xPU clusters and models with hundreds of billions of parameters. Leveraging efficient engineering architecture and algorithmic innovation, Aquarius demonstrates exceptional performance in high-fidelity, multi-aspect-ratio, and long-duration video synthesis. By disclosing the framework's design details, we aim to demystify industrial-scale video generation systems and catalyze advancements in the generative video community. The Aquarius framework consists of five components: Distributed Graph and Video Data Processing Pipeline: Manages tens of thousands of CPUs and thousands of xPUs via automated task distribution, enabling efficient video data processing. Additionally, we are about to open-source the entire data processing framework named "Aquarius-Datapipe". Model Architectures for Different Scales: Include a Single-DiT architecture for 2B models and a Multimodal-DiT architecture for 13.4B models, supporting multi-aspect ratios, multi-resolution, and multi-duration video generation. High-Performance infrastructure designed for video generation model training: Incorporating hybrid parallelism and fine-grained memory optimization strategies, this infrastructure achieves 36% MFU at large scale. Multi-xPU Parallel Inference Acceleration: Utilizes diffusion cache and attention optimization to achieve a 2.35x inference speedup. Multiple marketing-scenarios applications: Including image-to-video, text-to-video (avatar), video inpainting and video personalization, among others. More downstream applications and multi-dimensional evaluation metrics will be added in the upcoming version updates.

  • 6 authors
·
May 14