Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEcho-DND: A dual noise diffusion model for robust and precise left ventricle segmentation in echocardiography
Recent advancements in diffusion probabilistic models (DPMs) have revolutionized image processing, demonstrating significant potential in medical applications. Accurate segmentation of the left ventricle (LV) in echocardiograms is crucial for diagnostic procedures and necessary treatments. However, ultrasound images are notoriously noisy with low contrast and ambiguous LV boundaries, thereby complicating the segmentation process. To address these challenges, this paper introduces Echo-DND, a novel dual-noise diffusion model specifically designed for this task. Echo-DND leverages a unique combination of Gaussian and Bernoulli noises. It also incorporates a multi-scale fusion conditioning module to improve segmentation precision. Furthermore, it utilizes spatial coherence calibration to maintain spatial integrity in segmentation masks. The model's performance was rigorously validated on the CAMUS and EchoNet-Dynamic datasets. Extensive evaluations demonstrate that the proposed framework outperforms existing SOTA models. It achieves high Dice scores of 0.962 and 0.939 on these datasets, respectively. The proposed Echo-DND model establishes a new standard in echocardiogram segmentation, and its architecture holds promise for broader applicability in other medical imaging tasks, potentially improving diagnostic accuracy across various medical domains. Project page: https://abdur75648.github.io/Echo-DND
Model Already Knows the Best Noise: Bayesian Active Noise Selection via Attention in Video Diffusion Model
The choice of initial noise significantly affects the quality and prompt alignment of video diffusion models, where different noise seeds for the same prompt can lead to drastically different generations. While recent methods rely on externally designed priors such as frequency filters or inter-frame smoothing, they often overlook internal model signals that indicate which noise seeds are inherently preferable. To address this, we propose ANSE (Active Noise Selection for Generation), a model-aware framework that selects high-quality noise seeds by quantifying attention-based uncertainty. At its core is BANSA (Bayesian Active Noise Selection via Attention), an acquisition function that measures entropy disagreement across multiple stochastic attention samples to estimate model confidence and consistency. For efficient inference-time deployment, we introduce a Bernoulli-masked approximation of BANSA that enables score estimation using a single diffusion step and a subset of attention layers. Experiments on CogVideoX-2B and 5B demonstrate that ANSE improves video quality and temporal coherence with only an 8% and 13% increase in inference time, respectively, providing a principled and generalizable approach to noise selection in video diffusion. See our project page: https://anse-project.github.io/anse-project/
Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting
In this work, we consider rather general and broad class of Markov chains, Ito chains, that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one as in most related papers. Moreover, in our chain the drift and diffusion coefficient can be inexact in order to cover wide range of applications as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent or Stochastic Gradient Boosting. We prove the bound in W_{2}-distance between the laws of our Ito chain and corresponding differential equation. These results improve or cover most of the known estimates. And for some particular cases, our analysis is the first.
Sharp Noisy Binary Search with Monotonic Probabilities
We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal.
Diffusion-Based Electrocardiography Noise Quantification via Anomaly Detection
Electrocardiography (ECG) signals are often degraded by noise, which complicates diagnosis in clinical and wearable settings. This study proposes a diffusion-based framework for ECG noise quantification via reconstruction-based anomaly detection, addressing annotation inconsistencies and the limited generalizability of conventional methods. We introduce a distributional evaluation using the Wasserstein-1 distance (W_1), comparing the reconstruction error distributions between clean and noisy ECGs to mitigate inconsistent annotations. Our final model achieved robust noise quantification using only three reverse diffusion steps. The model recorded a macro-average W_1 score of 1.308 across the benchmarks, outperforming the next-best method by over 48%. External validations demonstrated strong generalizability, supporting the exclusion of low-quality segments to enhance diagnostic accuracy and enable timely clinical responses to signal degradation. The proposed method enhances clinical decision-making, diagnostic accuracy, and real-time ECG monitoring capabilities, supporting future advancements in clinical and wearable ECG applications.
SAR Despeckling using a Denoising Diffusion Probabilistic Model
Speckle is a multiplicative noise which affects all coherent imaging modalities including Synthetic Aperture Radar (SAR) images. The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications such as automatic target recognition and change detection. Thus, SAR despeckling is an important problem in remote sensing. In this paper, we introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling. The proposed method comprises of a Markov chain that transforms clean images to white Gaussian noise by repeatedly adding random noise. The despeckled image is recovered by a reverse process which iteratively predicts the added noise using a noise predictor which is conditioned on the speckled image. In addition, we propose a new inference strategy based on cycle spinning to improve the despeckling performance. Our experiments on both synthetic and real SAR images demonstrate that the proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model
We derive a minimalist but powerful deterministic denoising-diffusion model. While denoising diffusion has shown great success in many domains, its underlying theory remains largely inaccessible to non-expert users. Indeed, an understanding of graduate-level concepts such as Langevin dynamics or score matching appears to be required to grasp how it works. We propose an alternative approach that requires no more than undergrad calculus and probability. We consider two densities and observe what happens when random samples from these densities are blended (linearly interpolated). We show that iteratively blending and deblending samples produces random paths between the two densities that converge toward a deterministic mapping. This mapping can be evaluated with a neural network trained to deblend samples. We obtain a model that behaves like deterministic denoising diffusion: it iteratively maps samples from one density (e.g., Gaussian noise) to another (e.g., cat images). However, compared to the state-of-the-art alternative, our model is simpler to derive, simpler to implement, more numerically stable, achieves higher quality results in our experiments, and has interesting connections to computer graphics.
Towards General Low-Light Raw Noise Synthesis and Modeling
Modeling and synthesizing low-light raw noise is a fundamental problem for computational photography and image processing applications. Although most recent works have adopted physics-based models to synthesize noise, the signal-independent noise in low-light conditions is far more complicated and varies dramatically across camera sensors, which is beyond the description of these models. To address this issue, we introduce a new perspective to synthesize the signal-independent noise by a generative model. Specifically, we synthesize the signal-dependent and signal-independent noise in a physics- and learning-based manner, respectively. In this way, our method can be considered as a general model, that is, it can simultaneously learn different noise characteristics for different ISO levels and generalize to various sensors. Subsequently, we present an effective multi-scale discriminator termed Fourier transformer discriminator (FTD) to distinguish the noise distribution accurately. Additionally, we collect a new low-light raw denoising (LRD) dataset for training and benchmarking. Qualitative validation shows that the noise generated by our proposed noise model can be highly similar to the real noise in terms of distribution. Furthermore, extensive denoising experiments demonstrate that our method performs favorably against state-of-the-art methods on different sensors.
Physics-guided Noise Neural Proxy for Practical Low-light Raw Image Denoising
Recently, the mainstream practice for training low-light raw image denoising methods has shifted towards employing synthetic data. Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data. Currently, physics-based noise modeling struggles to characterize the entire real noise distribution, while learning-based noise modeling impractically depends on paired real data. In this paper, we propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency. Based on this strategy, we introduce an efficient physics-guided noise neural proxy (PNNP) to approximate the real-world sensor noise model. Specifically, we integrate physical priors into neural proxies and introduce three efficient techniques: physics-guided noise decoupling (PND), physics-guided proxy model (PPM), and differentiable distribution loss (DDL). PND decouples the dark frame into different components and handles different levels of noise flexibly, which reduces the complexity of noise modeling. PPM incorporates physical priors to constrain the generated noise, which promotes the accuracy of noise modeling. DDL provides explicit and reliable supervision for noise distribution, which promotes the precision of noise modeling. PNNP exhibits powerful potential in characterizing the real noise distribution. Extensive experiments on public datasets demonstrate superior performance in practical low-light raw image denoising. The code will be available at https://github.com/fenghansen/PNNP.
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Understanding when the noise in stochastic gradient descent (SGD) affects generalization of deep neural networks remains a challenge, complicated by the fact that networks can operate in distinct training regimes. Here we study how the magnitude of this noise T affects performance as the size of the training set P and the scale of initialization alpha are varied. For gradient descent, alpha is a key parameter that controls if the network is `lazy'(alphagg1) or instead learns features (alphall1). For classification of MNIST and CIFAR10 images, our central results are: (i) obtaining phase diagrams for performance in the (alpha,T) plane. They show that SGD noise can be detrimental or instead useful depending on the training regime. Moreover, although increasing T or decreasing alpha both allow the net to escape the lazy regime, these changes can have opposite effects on performance. (ii) Most importantly, we find that the characteristic temperature T_c where the noise of SGD starts affecting the trained model (and eventually performance) is a power law of P. We relate this finding with the observation that key dynamical quantities, such as the total variation of weights during training, depend on both T and P as power laws. These results indicate that a key effect of SGD noise occurs late in training by affecting the stopping process whereby all data are fitted. Indeed, we argue that due to SGD noise, nets must develop a stronger `signal', i.e. larger informative weights, to fit the data, leading to a longer training time. A stronger signal and a longer training time are also required when the size of the training set P increases. We confirm these views in the perceptron model, where signal and noise can be precisely measured. Interestingly, exponents characterizing the effect of SGD depend on the density of data near the decision boundary, as we explain.
Beyond U: Making Diffusion Models Faster & Lighter
Diffusion models are a family of generative models that yield record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse denoising process, remains a challenge due to slow convergence rates and high computational costs. In this work, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with denoising probabilistic diffusion models, our framework operates with approximately a quarter of the parameters and 30% of the Floating Point Operations (FLOPs) compared to standard U-Nets in Denoising Diffusion Probabilistic Models (DDPMs). Furthermore, our model is up to 70% faster in inference than the baseline models when measured in equal conditions while converging to better quality solutions.
The SIML method without microstructure noise
The SIML (abbreviation of Separating Information Maximal Likelihood) method, has been introduced by N. Kunitomo and S. Sato and their collaborators to estimate the integrated volatility of high-frequency data that is assumed to be an It\^o process but with so-called microstructure noise. The SIML estimator turned out to share many properties with the estimator introduced by P. Malliavin and M.E. Mancino. The present paper establishes the consistency and the asymptotic normality under a general sampling scheme but without microstructure noise. Specifically, a fast convergence shown for Malliavin--Mancino estimator by E. Clement and A. Gloter is also established for the SIML estimator.
Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent
In this article, we study the consistency of the template estimation with the Fr\'echet mean in quotient spaces. The Fr\'echet mean in quotient spaces is often used when the observations are deformed or transformed by a group action. We show that in most cases this estimator is actually inconsistent. We exhibit a sufficient condition for this inconsistency, which amounts to the folding of the distribution of the noisy template when it is projected to the quotient space. This condition appears to be fulfilled as soon as the support of the noise is large enough. To quantify this inconsistency we provide lower and upper bounds of the bias as a function of the variability (the noise level). This shows that the consistency bias cannot be neglected when the variability increases.
Linear statistics for Coulomb gases: higher order cumulants
We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.
Differentially Private Sequential Learning
In a differentially private sequential learning setting, agents introduce endogenous noise into their actions to maintain privacy. Applying this to a standard sequential learning model leads to different outcomes for continuous vs. binary signals. For continuous signals with a nonzero privacy budget, we introduce a novel smoothed randomized response mechanism that adapts noise based on distance to a threshold, unlike traditional randomized response, which applies uniform noise. This enables agents' actions to better reflect both private signals and observed history, accelerating asymptotic learning speed to Theta_{epsilon}(log(n)), compared to Theta(log(n)) in the non-private regime where privacy budget is infinite. Moreover, in the non-private setting, the expected stopping time for the first correct decision and the number of incorrect actions diverge, meaning early agents may make mistakes for an unreasonably long period. In contrast, under a finite privacy budget epsilon in (0,1), both remain finite, highlighting a stark contrast between private and non-private learning. Learning with continuous signals in the private regime is more efficient, as smooth randomized response enhances the log-likelihood ratio over time, improving information aggregation. Conversely, for binary signals, differential privacy noise hinders learning, as agents tend to use a constant randomized response strategy before an information cascade forms, reducing action informativeness and hampering the overall process.
Rolling Diffusion Models
Diffusion models have recently been increasingly applied to temporal data such as video, fluid mechanics simulations, or climate data. These methods generally treat subsequent frames equally regarding the amount of noise in the diffusion process. This paper explores Rolling Diffusion: a new approach that uses a sliding window denoising process. It ensures that the diffusion process progressively corrupts through time by assigning more noise to frames that appear later in a sequence, reflecting greater uncertainty about the future as the generation process unfolds. Empirically, we show that when the temporal dynamics are complex, Rolling Diffusion is superior to standard diffusion. In particular, this result is demonstrated in a video prediction task using the Kinetics-600 video dataset and in a chaotic fluid dynamics forecasting experiment.
Noise Distribution Adaptive Self-Supervised Image Denoising using Tweedie Distribution and Score Matching
Tweedie distributions are a special case of exponential dispersion models, which are often used in classical statistics as distributions for generalized linear models. Here, we reveal that Tweedie distributions also play key roles in modern deep learning era, leading to a distribution independent self-supervised image denoising formula without clean reference images. Specifically, by combining with the recent Noise2Score self-supervised image denoising approach and the saddle point approximation of Tweedie distribution, we can provide a general closed-form denoising formula that can be used for large classes of noise distributions without ever knowing the underlying noise distribution. Similar to the original Noise2Score, the new approach is composed of two successive steps: score matching using perturbed noisy images, followed by a closed form image denoising formula via distribution-independent Tweedie's formula. This also suggests a systematic algorithm to estimate the noise model and noise parameters for a given noisy image data set. Through extensive experiments, we demonstrate that the proposed method can accurately estimate noise models and parameters, and provide the state-of-the-art self-supervised image denoising performance in the benchmark dataset and real-world dataset.
On the Importance of Noise Scheduling for Diffusion Models
We empirically study the effect of noise scheduling strategies for denoising diffusion generative models. There are three findings: (1) the noise scheduling is crucial for the performance, and the optimal one depends on the task (e.g., image sizes), (2) when increasing the image size, the optimal noise scheduling shifts towards a noisier one (due to increased redundancy in pixels), and (3) simply scaling the input data by a factor of b while keeping the noise schedule function fixed (equivalent to shifting the logSNR by log b) is a good strategy across image sizes. This simple recipe, when combined with recently proposed Recurrent Interface Network (RIN), yields state-of-the-art pixel-based diffusion models for high-resolution images on ImageNet, enabling single-stage, end-to-end generation of diverse and high-fidelity images at 1024times1024 resolution (without upsampling/cascades).
Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models
We address the problem of synthesizing multi-view optical illusions: images that change appearance upon a transformation, such as a flip or rotation. We propose a simple, zero-shot method for obtaining these illusions from off-the-shelf text-to-image diffusion models. During the reverse diffusion process, we estimate the noise from different views of a noisy image, and then combine these noise estimates together and denoise the image. A theoretical analysis suggests that this method works precisely for views that can be written as orthogonal transformations, of which permutations are a subset. This leads to the idea of a visual anagram--an image that changes appearance under some rearrangement of pixels. This includes rotations and flips, but also more exotic pixel permutations such as a jigsaw rearrangement. Our approach also naturally extends to illusions with more than two views. We provide both qualitative and quantitative results demonstrating the effectiveness and flexibility of our method. Please see our project webpage for additional visualizations and results: https://dangeng.github.io/visual_anagrams/
Noise2Score: Tweedie's Approach to Self-Supervised Image Denoising without Clean Images
Recently, there has been extensive research interest in training deep networks to denoise images without clean reference. However, the representative approaches such as Noise2Noise, Noise2Void, Stein's unbiased risk estimator (SURE), etc. seem to differ from one another and it is difficult to find the coherent mathematical structure. To address this, here we present a novel approach, called Noise2Score, which reveals a missing link in order to unite these seemingly different approaches. Specifically, we show that image denoising problems without clean images can be addressed by finding the mode of the posterior distribution and that the Tweedie's formula offers an explicit solution through the score function (i.e. the gradient of log likelihood). Our method then uses the recent finding that the score function can be stably estimated from the noisy images using the amortized residual denoising autoencoder, the method of which is closely related to Noise2Noise or Nose2Void. Our Noise2Score approach is so universal that the same network training can be used to remove noises from images that are corrupted by any exponential family distributions and noise parameters. Using extensive experiments with Gaussian, Poisson, and Gamma noises, we show that Noise2Score significantly outperforms the state-of-the-art self-supervised denoising methods in the benchmark data set such as (C)BSD68, Set12, and Kodak, etc.
Sample Complexity Bounds for Learning High-dimensional Simplices in Noisy Regimes
In this paper, we find a sample complexity bound for learning a simplex from noisy samples. Assume a dataset of size n is given which includes i.i.d. samples drawn from a uniform distribution over an unknown simplex in R^K, where samples are assumed to be corrupted by a multi-variate additive Gaussian noise of an arbitrary magnitude. We prove the existence of an algorithm that with high probability outputs a simplex having a ell_2 distance of at most varepsilon from the true simplex (for any varepsilon>0). Also, we theoretically show that in order to achieve this bound, it is sufficient to have ngeleft(K^2/varepsilon^2right)e^{Omegaleft(K/SNR^2right)} samples, where SNR stands for the signal-to-noise ratio. This result solves an important open problem and shows as long as SNRgeOmegaleft(K^{1/2}right), the sample complexity of the noisy regime has the same order to that of the noiseless case. Our proofs are a combination of the so-called sample compression technique in ashtiani2018nearly, mathematical tools from high-dimensional geometry, and Fourier analysis. In particular, we have proposed a general Fourier-based technique for recovery of a more general class of distribution families from additive Gaussian noise, which can be further used in a variety of other related problems.
An Edit Friendly DDPM Noise Space: Inversion and Manipulations
Denoising diffusion probabilistic models (DDPMs) employ a sequence of white Gaussian noise samples to generate an image. In analogy with GANs, those noise maps could be considered as the latent code associated with the generated image. However, this native noise space does not possess a convenient structure, and is thus challenging to work with in editing tasks. Here, we propose an alternative latent noise space for DDPM that enables a wide range of editing operations via simple means, and present an inversion method for extracting these edit-friendly noise maps for any given image (real or synthetically generated). As opposed to the native DDPM noise space, the edit-friendly noise maps do not have a standard normal distribution and are not statistically independent across timesteps. However, they allow perfect reconstruction of any desired image, and simple transformations on them translate into meaningful manipulations of the output image (e.g., shifting, color edits). Moreover, in text-conditional models, fixing those noise maps while changing the text prompt, modifies semantics while retaining structure. We illustrate how this property enables text-based editing of real images via the diverse DDPM sampling scheme (in contrast to the popular non-diverse DDIM inversion). We also show how it can be used within existing diffusion-based editing methods to improve their quality and diversity.
Noise in Relation Classification Dataset TACRED: Characterization and Reduction
The overarching objective of this paper is two-fold. First, to explore model-based approaches to characterize the primary cause of the noise. in the RE dataset TACRED Second, to identify the potentially noisy instances. Towards the first objective, we analyze predictions and performance of state-of-the-art (SOTA) models to identify the root cause of noise in the dataset. Our analysis of TACRED shows that the majority of the noise in the dataset originates from the instances labeled as no-relation which are negative examples. For the second objective, we explore two nearest-neighbor-based strategies to automatically identify potentially noisy examples for elimination and reannotation. Our first strategy, referred to as Intrinsic Strategy (IS), is based on the assumption that positive examples are clean. Thus, we have used false-negative predictions to identify noisy negative examples. Whereas, our second approach, referred to as Extrinsic Strategy, is based on using a clean subset of the dataset to identify potentially noisy negative examples. Finally, we retrained the SOTA models on the eliminated and reannotated dataset. Our empirical results based on two SOTA models trained on TACRED-E following the IS show an average 4% F1-score improvement, whereas reannotation (TACRED-R) does not improve the original results. However, following ES, SOTA models show the average F1-score improvement of 3.8% and 4.4% when trained on respective eliminated (TACRED-EN) and reannotated (TACRED-RN) datasets respectively. We further extended the ES for cleaning positive examples as well, which resulted in an average performance improvement of 5.8% and 5.6% for the eliminated (TACRED-ENP) and reannotated (TACRED-RNP) datasets respectively.
Modeling Temporal Data as Continuous Functions with Stochastic Process Diffusion
Temporal data such as time series can be viewed as discretized measurements of the underlying function. To build a generative model for such data we have to model the stochastic process that governs it. We propose a solution by defining the denoising diffusion model in the function space which also allows us to naturally handle irregularly-sampled observations. The forward process gradually adds noise to functions, preserving their continuity, while the learned reverse process removes the noise and returns functions as new samples. To this end, we define suitable noise sources and introduce novel denoising and score-matching models. We show how our method can be used for multivariate probabilistic forecasting and imputation, and how our model can be interpreted as a neural process.
Analysing the Noise Model Error for Realistic Noisy Label Data
Distant and weak supervision allow to obtain large amounts of labeled training data quickly and cheaply, but these automatic annotations tend to contain a high amount of errors. A popular technique to overcome the negative effects of these noisy labels is noise modelling where the underlying noise process is modelled. In this work, we study the quality of these estimated noise models from the theoretical side by deriving the expected error of the noise model. Apart from evaluating the theoretical results on commonly used synthetic noise, we also publish NoisyNER, a new noisy label dataset from the NLP domain that was obtained through a realistic distant supervision technique. It provides seven sets of labels with differing noise patterns to evaluate different noise levels on the same instances. Parallel, clean labels are available making it possible to study scenarios where a small amount of gold-standard data can be leveraged. Our theoretical results and the corresponding experiments give insights into the factors that influence the noise model estimation like the noise distribution and the sampling technique.
Is Noise Conditioning Necessary for Denoising Generative Models?
It is widely believed that noise conditioning is indispensable for denoising diffusion models to work successfully. This work challenges this belief. Motivated by research on blind image denoising, we investigate a variety of denoising-based generative models in the absence of noise conditioning. To our surprise, most models exhibit graceful degradation, and in some cases, they even perform better without noise conditioning. We provide a theoretical analysis of the error caused by removing noise conditioning and demonstrate that our analysis aligns with empirical observations. We further introduce a noise-unconditional model that achieves a competitive FID of 2.23 on CIFAR-10, significantly narrowing the gap to leading noise-conditional models. We hope our findings will inspire the community to revisit the foundations and formulations of denoising generative models.
On the Identifiability and Estimation of Causal Location-Scale Noise Models
We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation
Image interpolation based on diffusion models is promising in creating fresh and interesting images. Advanced interpolation methods mainly focus on spherical linear interpolation, where images are encoded into the noise space and then interpolated for denoising to images. However, existing methods face challenges in effectively interpolating natural images (not generated by diffusion models), thereby restricting their practical applicability. Our experimental investigations reveal that these challenges stem from the invalidity of the encoding noise, which may no longer obey the expected noise distribution, e.g., a normal distribution. To address these challenges, we propose a novel approach to correct noise for image interpolation, NoiseDiffusion. Specifically, NoiseDiffusion approaches the invalid noise to the expected distribution by introducing subtle Gaussian noise and introduces a constraint to suppress noise with extreme values. In this context, promoting noise validity contributes to mitigating image artifacts, but the constraint and introduced exogenous noise typically lead to a reduction in signal-to-noise ratio, i.e., loss of original image information. Hence, NoiseDiffusion performs interpolation within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss. Consequently, NoiseDiffusion enables us to interpolate natural images without causing artifacts or information loss, thus achieving the best interpolation results.
GW-YOLO: Multi-transient segmentation in LIGO using computer vision
Time series data and their time-frequency representation from gravitational-wave interferometers present multiple opportunities for the use of artificial intelligence methods associated with signal and image processing. Closely connected with this is the real-time aspect associated with gravitational-wave interferometers and the astrophysical observations they perform; the discovery potential of these instruments can be significantly enhanced when data processing can be achieved in O(1s) timescales. In this work, we introduce a novel signal and noise identification tool based on the YOLO (You Only Look Once) object detection framework. For its application into gravitational waves, we will refer to it as GW-YOLO. This tool can provide scene identification capabilities and essential information regarding whether an observed transient is any combination of noise and signal. Additionally, it supplies detailed time-frequency coordinates of the detected objects in the form of pixel masks, an essential property that can be used to understand and characterize astrophysical sources, as well as instrumental noise. The simultaneous identification of noise and signal, combined with precise pixel-level localization, represents a significant advancement in gravitational-wave data analysis. Our approach yields a 50\% detection efficiency for binary black hole signals at a signal-to-noise ratio (SNR) of 15 when such signals overlap with transient noise artifacts. When noise artifacts overlap with binary neutron star signals, our algorithm attains 50\% detection efficiency at an SNR of 30. This presents the first quantitative assessment of the ability to detect astrophysical events overlapping with realistic, instrument noise present in gravitational-wave interferometers.
Chain of Log-Concave Markov Chains
We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution.
Implementation of the rROF denoising method in the cWB pipeline for gravitational-wave data analysis
The data collected by the current network of gravitational-wave detectors are largely dominated by instrumental noise. Total variation methods based on L1-norm minimization have recently been proposed as a powerful technique for noise removal in gravitational-wave data. In particular, the regularized Rudin-Osher-Fatemi (rROF) model has proven effective to denoise signals embedded in either simulated Gaussian noise or actual detector noise. Importing the rROF model to existing search pipelines seems therefore worth considering. In this paper, we discuss the implementation of two variants of the rROF algorithm as two separate plug-ins of the coherent Wave Burst (cWB) pipeline designed to conduct searches of unmodelled gravitational-wave burst sources. The first approach is based on a single-step rROF method and the second one employs an iterative rROF procedure. Both approaches are calibrated using actual gravitational-wave events from the first three observing runs of the LIGO-Virgo-KAGRA collaboration, namely GW1501914, GW151226, GW170817, and GW190521, encompassing different types of compact binary coalescences. Our analysis shows that the iterative version of the rROF denoising algorithm implemented in the cWB pipeline effectively eliminates noise while preserving the waveform signals intact. Therefore, the combined approach yields higher signal-to-noise values than those computed by the cWB pipeline without the rROF denoising step. The incorporation of the iterative rROF algorithm in the cWB pipeline might hence impact the detectability capabilities of the pipeline along with the inference of source properties.
NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation
Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.
Speech Enhancement and Dereverberation with Diffusion-based Generative Models
In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online, see https://github.com/sp-uhh/sgmse
Analyzing Diffusion as Serial Reproduction
Diffusion models are a class of generative models that learn to synthesize samples by inverting a diffusion process that gradually maps data into noise. While these models have enjoyed great success recently, a full theoretical understanding of their observed properties is still lacking, in particular, their weak sensitivity to the choice of noise family and the role of adequate scheduling of noise levels for good synthesis. By identifying a correspondence between diffusion models and a well-known paradigm in cognitive science known as serial reproduction, whereby human agents iteratively observe and reproduce stimuli from memory, we show how the aforementioned properties of diffusion models can be explained as a natural consequence of this correspondence. We then complement our theoretical analysis with simulations that exhibit these key features. Our work highlights how classic paradigms in cognitive science can shed light on state-of-the-art machine learning problems.
One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls
It is well known that many open-released foundational diffusion models have difficulty in generating images that substantially depart from average brightness, despite such images being present in the training data. This is due to an inconsistency: while denoising starts from pure Gaussian noise during inference, the training noise schedule retains residual data even in the final timestep distribution, due to difficulties in numerical conditioning in mainstream formulation, leading to unintended bias during inference. To mitigate this issue, certain epsilon-prediction models are combined with an ad-hoc offset-noise methodology. In parallel, some contemporary models have adopted zero-terminal SNR noise schedules together with v-prediction, which necessitate major alterations to pre-trained models. However, such changes risk destabilizing a large multitude of community-driven applications anchored on these pre-trained models. In light of this, our investigation revisits the fundamental causes, leading to our proposal of an innovative and principled remedy, called One More Step (OMS). By integrating a compact network and incorporating an additional simple yet effective step during inference, OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters. Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
Diffusion Models With Learned Adaptive Noise
Diffusion models have gained traction as powerful algorithms for synthesizing high-quality images. Central to these algorithms is the diffusion process, a set of equations which maps data to noise in a way that can significantly affect performance. In this paper, we explore whether the diffusion process can be learned from data. Our work is grounded in Bayesian inference and seeks to improve log-likelihood estimation by casting the learned diffusion process as an approximate variational posterior that yields a tighter lower bound (ELBO) on the likelihood. A widely held assumption is that the ELBO is invariant to the noise process: our work dispels this assumption and proposes multivariate learned adaptive noise (MULAN), a learned diffusion process that applies noise at different rates across an image. Specifically, our method relies on a multivariate noise schedule that is a function of the data to ensure that the ELBO is no longer invariant to the choice of the noise schedule as in previous works. Empirically, MULAN sets a new state-of-the-art in density estimation on CIFAR-10 and ImageNet and reduces the number of training steps by 50%. Code is available at https://github.com/s-sahoo/MuLAN
Score Distillation via Reparametrized DDIM
While 2D diffusion models generate realistic, high-detail images, 3D shape generation methods like Score Distillation Sampling (SDS) built on these 2D diffusion models produce cartoon-like, over-smoothed shapes. To help explain this discrepancy, we show that the image guidance used in Score Distillation can be understood as the velocity field of a 2D denoising generative process, up to the choice of a noise term. In particular, after a change of variables, SDS resembles a high-variance version of Denoising Diffusion Implicit Models (DDIM) with a differently-sampled noise term: SDS introduces noise i.i.d. randomly at each step, while DDIM infers it from the previous noise predictions. This excessive variance can lead to over-smoothing and unrealistic outputs. We show that a better noise approximation can be recovered by inverting DDIM in each SDS update step. This modification makes SDS's generative process for 2D images almost identical to DDIM. In 3D, it removes over-smoothing, preserves higher-frequency detail, and brings the generation quality closer to that of 2D samplers. Experimentally, our method achieves better or similar 3D generation quality compared to other state-of-the-art Score Distillation methods, all without training additional neural networks or multi-view supervision, and providing useful insights into relationship between 2D and 3D asset generation with diffusion models.
Conditional Generation of Periodic Signals with Fourier-Based Decoder
Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
Noise Synthesis for Low-Light Image Denoising with Diffusion Models
Low-light photography produces images with low signal-to-noise ratios due to limited photons. In such conditions, common approximations like the Gaussian noise model fall short, and many denoising techniques fail to remove noise effectively. Although deep-learning methods perform well, they require large datasets of paired images that are impractical to acquire. As a remedy, synthesizing realistic low-light noise has gained significant attention. In this paper, we investigate the ability of diffusion models to capture the complex distribution of low-light noise. We show that a naive application of conventional diffusion models is inadequate for this task and propose three key adaptations that enable high-precision noise generation without calibration or post-processing: a two-branch architecture to better model signal-dependent and signal-independent noise, the incorporation of positional information to capture fixed-pattern noise, and a tailored diffusion noise schedule. Consequently, our model enables the generation of large datasets for training low-light denoising networks, leading to state-of-the-art performance. Through comprehensive analysis, including statistical evaluation and noise decomposition, we provide deeper insights into the characteristics of the generated data.
Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise
In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.
Is your stochastic signal really detectable?
Separating a stochastic gravitational wave background (SGWB) from noise is a challenging statistical task. One approach to establishing a detection criterion for the SGWB is using Bayesian evidence. If the evidence ratio (Bayes factor) between models with and without the signal exceeds a certain threshold, the signal is considered detected. We present a formalism to compute the averaged Bayes factor, incorporating instrumental-noise and SGWB uncertainties. As an example, we consider the case of power-law-shaped SGWB in LISA and generate the corresponding bayesian sensitivity curve. Unlike existing methods in the literature, which typically neglect uncertainties in both the signal and noise, our approach provides a reliable and realistic alternative. This flexible framework opens avenues for more robust stochastic gravitational wave background detection across gravitational-wave experiments.
TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models
Diffusion models have opened the path to a wide range of text-based image editing frameworks. However, these typically build on the multi-step nature of the diffusion backwards process, and adapting them to distilled, fast-sampling methods has proven surprisingly challenging. Here, we focus on a popular line of text-based editing frameworks - the ``edit-friendly'' DDPM-noise inversion approach. We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength. We trace the artifacts to mismatched noise statistics between inverted noises and the expected noise schedule, and suggest a shifted noise schedule which corrects for this offset. To increase editing strength, we propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts. All in all, our method enables text-based image editing with as few as three diffusion steps, while providing novel insights into the mechanisms behind popular text-based editing approaches.
Local linearization for estimating the diffusion parameter of nonlinear stochastic wave equations with spatially correlated noise
We study the bi-parameter local linearization of the one-dimensional nonlinear stochastic wave equation driven by a Gaussian noise, which is white in time and has a spatially homogeneous covariance structure of Riesz-kernel type. We establish that the second-order increments of the solution can be approximated by those of the corresponding linearized wave equation, modulated by the diffusion coefficient. These findings extend the previous results of Huang et al. HOO2024, which addressed the case of space-time white noise. As applications, we analyze the quadratic variation of the solution and construct a consistent estimator for the diffusion parameter.
Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
Lattice models of random advection and diffusion and their statistics
We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept.
A Noise is Worth Diffusion Guidance
Diffusion models excel in generating high-quality images. However, current diffusion models struggle to produce reliable images without guidance methods, such as classifier-free guidance (CFG). Are guidance methods truly necessary? Observing that noise obtained via diffusion inversion can reconstruct high-quality images without guidance, we focus on the initial noise of the denoising pipeline. By mapping Gaussian noise to `guidance-free noise', we uncover that small low-magnitude low-frequency components significantly enhance the denoising process, removing the need for guidance and thus improving both inference throughput and memory. Expanding on this, we propose \ours, a novel method that replaces guidance methods with a single refinement of the initial noise. This refined noise enables high-quality image generation without guidance, within the same diffusion pipeline. Our noise-refining model leverages efficient noise-space learning, achieving rapid convergence and strong performance with just 50K text-image pairs. We validate its effectiveness across diverse metrics and analyze how refined noise can eliminate the need for guidance. See our project page: https://cvlab-kaist.github.io/NoiseRefine/.
Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion Models
Because diffusion models have shown impressive performances in a number of tasks, such as image synthesis, there is a trend in recent works to prove (with certain assumptions) that these models have strong approximation capabilities. In this paper, we show that current diffusion models actually have an expressive bottleneck in backward denoising and some assumption made by existing theoretical guarantees is too strong. Based on this finding, we prove that diffusion models have unbounded errors in both local and global denoising. In light of our theoretical studies, we introduce soft mixture denoising (SMD), an expressive and efficient model for backward denoising. SMD not only permits diffusion models to well approximate any Gaussian mixture distributions in theory, but also is simple and efficient for implementation. Our experiments on multiple image datasets show that SMD significantly improves different types of diffusion models (e.g., DDPM), espeically in the situation of few backward iterations.
Cyclic Multichannel Wiener Filter for Acoustic Beamforming
Acoustic beamforming models typically assume wide-sense stationarity of speech signals within short time frames. However, voiced speech is better modeled as a cyclostationary (CS) process, a random process whose mean and autocorrelation are T_1-periodic, where alpha_1=1/T_1 corresponds to the fundamental frequency of vowels. Higher harmonic frequencies are found at integer multiples of the fundamental. This work introduces a cyclic multichannel Wiener filter (cMWF) for speech enhancement derived from a cyclostationary model. This beamformer exploits spectral correlation across the harmonic frequencies of the signal to further reduce the mean-squared error (MSE) between the target and the processed input. The proposed cMWF is optimal in the MSE sense and reduces to the MWF when the target is wide-sense stationary. Experiments on simulated data demonstrate considerable improvements in scale-invariant signal-to-distortion ratio (SI-SDR) on synthetic data but also indicate high sensitivity to the accuracy of the estimated fundamental frequency alpha_1, which limits effectiveness on real data.
Omegance: A Single Parameter for Various Granularities in Diffusion-Based Synthesis
In this work, we introduce a single parameter omega, to effectively control granularity in diffusion-based synthesis. This parameter is incorporated during the denoising steps of the diffusion model's reverse process. Our approach does not require model retraining, architectural modifications, or additional computational overhead during inference, yet enables precise control over the level of details in the generated outputs. Moreover, spatial masks or denoising schedules with varying omega values can be applied to achieve region-specific or timestep-specific granularity control. Prior knowledge of image composition from control signals or reference images further facilitates the creation of precise omega masks for granularity control on specific objects. To highlight the parameter's role in controlling subtle detail variations, the technique is named Omegance, combining "omega" and "nuance". Our method demonstrates impressive performance across various image and video synthesis tasks and is adaptable to advanced diffusion models. The code is available at https://github.com/itsmag11/Omegance.
Don't Play Favorites: Minority Guidance for Diffusion Models
We explore the problem of generating minority samples using diffusion models. The minority samples are instances that lie on low-density regions of a data manifold. Generating a sufficient number of such minority instances is important, since they often contain some unique attributes of the data. However, the conventional generation process of the diffusion models mostly yields majority samples (that lie on high-density regions of the manifold) due to their high likelihoods, making themselves ineffective and time-consuming for the minority generating task. In this work, we present a novel framework that can make the generation process of the diffusion models focus on the minority samples. We first highlight that Tweedie's denoising formula yields favorable results for majority samples. The observation motivates us to introduce a metric that describes the uniqueness of a given sample. To address the inherent preference of the diffusion models w.r.t. the majority samples, we further develop minority guidance, a sampling technique that can guide the generation process toward regions with desired likelihood levels. Experiments on benchmark real datasets demonstrate that our minority guidance can greatly improve the capability of generating high-quality minority samples over existing generative samplers. We showcase that the performance benefit of our framework persists even in demanding real-world scenarios such as medical imaging, further underscoring the practical significance of our work. Code is available at https://github.com/soobin-um/minority-guidance.
MVDR Beamforming for Cyclostationary Processes
Conventional acoustic beamformers assume that noise is stationary within short time frames. This assumption prevents them from exploiting correlations between frequencies in almost-periodic noise sources such as musical instruments, fans, and engines. These signals exhibit periodically varying statistics and are better modeled as cyclostationary processes. This paper introduces the cyclic MVDR (cMVDR) beamformer, an extension of the conventional MVDR that leverages both spatial and spectral correlations to improve noise reduction, particularly in low-SNR scenarios. The method builds on frequency-shifted (FRESH) filtering, where shifted versions of the input are combined to attenuate or amplify components that are coherent across frequency. To address inharmonicity, where harmonic partials deviate from exact integer multiples of the fundamental frequency, we propose a data-driven strategy that estimates resonant frequencies via periodogram analysis and computes the frequency shifts from their spacing. Analytical and experimental results demonstrate that performance improves with increasing spectral correlation. On real recordings, the cMVDR achieves up to 5 dB gain in scale-invariant signal-to-distortion ratio (SI-SDR) over the MVDR and remains effective even with a single microphone. Code is available at https://github.com/Screeen/cMVDR.
ItôWave: Itô Stochastic Differential Equation Is All You Need For Wave Generation
In this paper, we propose a vocoder based on a pair of forward and reverse-time linear stochastic differential equations (SDE). The solutions of this SDE pair are two stochastic processes, one of which turns the distribution of wave, that we want to generate, into a simple and tractable distribution. The other is the generation procedure that turns this tractable simple signal into the target wave. The model is called It\^oWave. It\^oWave use the Wiener process as a driver to gradually subtract the excess signal from the noise signal to generate realistic corresponding meaningful audio respectively, under the conditional inputs of original mel spectrogram. The results of the experiment show that the mean opinion scores (MOS) of It\^oWave can exceed the current state-of-the-art (SOTA) methods, and reached 4.35pm0.115. The generated audio samples are available online.
Common Diffusion Noise Schedules and Sample Steps are Flawed
We discover that common diffusion noise schedules do not enforce the last timestep to have zero signal-to-noise ratio (SNR), and some implementations of diffusion samplers do not start from the last timestep. Such designs are flawed and do not reflect the fact that the model is given pure Gaussian noise at inference, creating a discrepancy between training and inference. We show that the flawed design causes real problems in existing implementations. In Stable Diffusion, it severely limits the model to only generate images with medium brightness and prevents it from generating very bright and dark samples. We propose a few simple fixes: (1) rescale the noise schedule to enforce zero terminal SNR; (2) train the model with v prediction; (3) change the sampler to always start from the last timestep; (4) rescale classifier-free guidance to prevent over-exposure. These simple changes ensure the diffusion process is congruent between training and inference and allow the model to generate samples more faithful to the original data distribution.
On Learning Markov Chains
The problem of estimating an unknown discrete distribution from its samples is a fundamental tenet of statistical learning. Over the past decade, it attracted significant research effort and has been solved for a variety of divergence measures. Surprisingly, an equally important problem, estimating an unknown Markov chain from its samples, is still far from understood. We consider two problems related to the min-max risk (expected loss) of estimating an unknown k-state Markov chain from its n sequential samples: predicting the conditional distribution of the next sample with respect to the KL-divergence, and estimating the transition matrix with respect to a natural loss induced by KL or a more general f-divergence measure. For the first measure, we determine the min-max prediction risk to within a linear factor in the alphabet size, showing it is Omega(kloglog n / n) and O(k^2loglog n / n). For the second, if the transition probabilities can be arbitrarily small, then only trivial uniform risk upper bounds can be derived. We therefore consider transition probabilities that are bounded away from zero, and resolve the problem for essentially all sufficiently smooth f-divergences, including KL-, L_2-, Chi-squared, Hellinger, and Alpha-divergences.
Improved Noise Schedule for Diffusion Training
Diffusion models have emerged as the de facto choice for generating visual signals. However, training a single model to predict noise across various levels poses significant challenges, necessitating numerous iterations and incurring significant computational costs. Various approaches, such as loss weighting strategy design and architectural refinements, have been introduced to expedite convergence. In this study, we propose a novel approach to design the noise schedule for enhancing the training of diffusion models. Our key insight is that the importance sampling of the logarithm of the Signal-to-Noise ratio (logSNR), theoretically equivalent to a modified noise schedule, is particularly beneficial for training efficiency when increasing the sample frequency around log SNR=0. We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule. Furthermore, we highlight the advantages of our noise schedule design on the ImageNet benchmark, showing that the designed schedule consistently benefits different prediction targets.
Relay Diffusion: Unifying diffusion process across resolutions for image synthesis
Diffusion models achieved great success in image synthesis, but still face challenges in high-resolution generation. Through the lens of discrete cosine transformation, we find the main reason is that the same noise level on a higher resolution results in a higher Signal-to-Noise Ratio in the frequency domain. In this work, we present Relay Diffusion Model (RDM), which transfers a low-resolution image or noise into an equivalent high-resolution one for diffusion model via blurring diffusion and block noise. Therefore, the diffusion process can continue seamlessly in any new resolution or model without restarting from pure noise or low-resolution conditioning. RDM achieves state-of-the-art FID on CelebA-HQ and sFID on ImageNet 256times256, surpassing previous works such as ADM, LDM and DiT by a large margin. All the codes and checkpoints are open-sourced at https://github.com/THUDM/RelayDiffusion.
Universal Speech Enhancement with Score-based Diffusion
Removing background noise from speech audio has been the subject of considerable effort, especially in recent years due to the rise of virtual communication and amateur recordings. Yet background noise is not the only unpleasant disturbance that can prevent intelligibility: reverb, clipping, codec artifacts, problematic equalization, limited bandwidth, or inconsistent loudness are equally disturbing and ubiquitous. In this work, we propose to consider the task of speech enhancement as a holistic endeavor, and present a universal speech enhancement system that tackles 55 different distortions at the same time. Our approach consists of a generative model that employs score-based diffusion, together with a multi-resolution conditioning network that performs enhancement with mixture density networks. We show that this approach significantly outperforms the state of the art in a subjective test performed by expert listeners. We also show that it achieves competitive objective scores with just 4-8 diffusion steps, despite not considering any particular strategy for fast sampling. We hope that both our methodology and technical contributions encourage researchers and practitioners to adopt a universal approach to speech enhancement, possibly framing it as a generative task.
Dehazing Ultrasound using Diffusion Models
Echocardiography has been a prominent tool for the diagnosis of cardiac disease. However, these diagnoses can be heavily impeded by poor image quality. Acoustic clutter emerges due to multipath reflections imposed by layers of skin, subcutaneous fat, and intercostal muscle between the transducer and heart. As a result, haze and other noise artifacts pose a real challenge to cardiac ultrasound imaging. In many cases, especially with difficult-to-image patients such as patients with obesity, a diagnosis from B-Mode ultrasound imaging is effectively rendered unusable, forcing sonographers to resort to contrast-enhanced ultrasound examinations or refer patients to other imaging modalities. Tissue harmonic imaging has been a popular approach to combat haze, but in severe cases is still heavily impacted by haze. Alternatively, denoising algorithms are typically unable to remove highly structured and correlated noise, such as haze. It remains a challenge to accurately describe the statistical properties of structured haze, and develop an inference method to subsequently remove it. Diffusion models have emerged as powerful generative models and have shown their effectiveness in a variety of inverse problems. In this work, we present a joint posterior sampling framework that combines two separate diffusion models to model the distribution of both clean ultrasound and haze in an unsupervised manner. Furthermore, we demonstrate techniques for effectively training diffusion models on radio-frequency ultrasound data and highlight the advantages over image data. Experiments on both in-vitro and in-vivo cardiac datasets show that the proposed dehazing method effectively removes haze while preserving signals from weakly reflected tissue.
Extending Conformal Prediction to Hidden Markov Models with Exact Validity via de Finetti's Theorem for Markov Chains
Conformal prediction is a widely used method to quantify the uncertainty of a classifier under the assumption of exchangeability (e.g., IID data). We generalize conformal prediction to the Hidden Markov Model (HMM) framework where the assumption of exchangeability is not valid. The key idea of the proposed method is to partition the non-exchangeable Markovian data from the HMM into exchangeable blocks by exploiting the de Finetti's Theorem for Markov Chains discovered by Diaconis and Freedman (1980). The permutations of the exchangeable blocks are viewed as randomizations of the observed Markovian data from the HMM. The proposed method provably retains all desirable theoretical guarantees offered by the classical conformal prediction framework in both exchangeable and Markovian settings. In particular, while the lack of exchangeability introduced by Markovian samples constitutes a violation of a crucial assumption for classical conformal prediction, the proposed method views it as an advantage that can be exploited to improve the performance further. Detailed numerical and empirical results that complement the theoretical conclusions are provided to illustrate the practical feasibility of the proposed method.
Harmonics to the Rescue: Why Voiced Speech is Not a Wss Process
Speech processing algorithms often rely on statistical knowledge of the underlying process. Despite many years of research, however, the debate on the most appropriate statistical model for speech still continues. Speech is commonly modeled as a wide-sense stationary (WSS) process. However, the use of the WSS model for spectrally correlated processes is fundamentally wrong, as WSS implies spectral uncorrelation. In this paper, we demonstrate that voiced speech can be more accurately represented as a cyclostationary (CS) process. By employing the CS rather than the WSS model for processes that are inherently correlated across frequency, it is possible to improve the estimation of cross-power spectral densities (PSDs), source separation, and beamforming. We illustrate how the correlation between harmonic frequencies of CS processes can enhance system identification, and validate our findings using both simulated and real speech data.
Post-training Quantization on Diffusion Models
Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise. Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations, which rely on cumbersome neural networks. It prevents the diffusion models from being widely deployed, especially on edge devices. Previous works accelerate the generation process of diffusion model (DM) via finding shorter yet effective sampling trajectories. However, they overlook the cost of noise estimation with a heavy network in every iteration. In this work, we accelerate generation from the perspective of compressing the noise estimation network. Due to the difficulty of retraining DMs, we exclude mainstream training-aware compression paradigms and introduce post-training quantization (PTQ) into DM acceleration. However, the output distributions of noise estimation networks change with time-step, making previous PTQ methods fail in DMs since they are designed for single-time step scenarios. To devise a DM-specific PTQ method, we explore PTQ on DM in three aspects: quantized operations, calibration dataset, and calibration metric. We summarize and use several observations derived from all-inclusive investigations to formulate our method, which especially targets the unique multi-time-step structure of DMs. Experimentally, our method can directly quantize full-precision DMs into 8-bit models while maintaining or even improving their performance in a training-free manner. Importantly, our method can serve as a plug-and-play module on other fast-sampling methods, e.g., DDIM. The code is available at https://github.com/42Shawn/PTQ4DM .
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces
Typical generative diffusion models rely on a Gaussian diffusion process for training the backward transformations, which can then be used to generate samples from Gaussian noise. However, real world data often takes place in discrete-state spaces, including many scientific applications. Here, we develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process using exact (as opposed to variational) analysis. We relate the theory to the existing continuous-state Gaussian diffusion as well as other approaches to discrete diffusion, and identify the corresponding reverse-time stochastic process and score function in the continuous-time setting, and the reverse-time mapping in the discrete-time setting. As an example of this framework, we introduce ``Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise. Numerical experiments on the CIFAR-10, Binarized MNIST, and CelebA datasets confirm the feasibility of our approach. Generalizing from specific (Gaussian) forward processes to discrete-state processes without a variational approximation sheds light on how to interpret diffusion models, which we discuss.
Statistical guarantees for denoising reflected diffusion models
In recent years, denoising diffusion models have become a crucial area of research due to their abundance in the rapidly expanding field of generative AI. While recent statistical advances have delivered explanations for the generation ability of idealised denoising diffusion models for high-dimensional target data, implementations introduce thresholding procedures for the generating process to overcome issues arising from the unbounded state space of such models. This mismatch between theoretical design and implementation of diffusion models has been addressed empirically by using a reflected diffusion process as the driver of noise instead. In this paper, we study statistical guarantees of these denoising reflected diffusion models. In particular, we establish minimax optimal rates of convergence in total variation, up to a polylogarithmic factor, under Sobolev smoothness assumptions. Our main contributions include the statistical analysis of this novel class of denoising reflected diffusion models and a refined score approximation method in both time and space, leveraging spectral decomposition and rigorous neural network analysis.
Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
Beyond the Visible: Jointly Attending to Spectral and Spatial Dimensions with HSI-Diffusion for the FINCH Spacecraft
Satellite remote sensing missions have gained popularity over the past fifteen years due to their ability to cover large swaths of land at regular intervals, making them ideal for monitoring environmental trends. The FINCH mission, a 3U+ CubeSat equipped with a hyperspectral camera, aims to monitor crop residue cover in agricultural fields. Although hyperspectral imaging captures both spectral and spatial information, it is prone to various types of noise, including random noise, stripe noise, and dead pixels. Effective denoising of these images is crucial for downstream scientific tasks. Traditional methods, including hand-crafted techniques encoding strong priors, learned 2D image denoising methods applied across different hyperspectral bands, or diffusion generative models applied independently on bands, often struggle with varying noise strengths across spectral bands, leading to significant spectral distortion. This paper presents a novel approach to hyperspectral image denoising using latent diffusion models that integrate spatial and spectral information. We particularly do so by building a 3D diffusion model and presenting a 3-stage training approach on real and synthetically crafted datasets. The proposed method preserves image structure while reducing noise. Evaluations on both popular hyperspectral denoising datasets and synthetically crafted datasets for the FINCH mission demonstrate the effectiveness of this approach.
Improved Denoising Diffusion Probabilistic Models
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive log-likelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/openai/improved-diffusion
Intensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance
Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density {cal P}(I) for the single-point intensity I decays as a power law for large intensities: {cal P}(I)sim I^{-(M+2)}, provided there is no internal losses. This behaviour is in marked difference with the Rayleigh law {cal P}(I)sim exp(-I/I) which turns out to be valid only in the limit Mto infty. We also find the joint probability density of intensities I_1, ldots, I_L in L>1 observation points, and then extract the corresponding statistics for the maximal intensity in the observation pattern. For Lto infty the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions.
Sampling Multimodal Distributions with the Vanilla Score: Benefits of Data-Based Initialization
There is a long history, as well as a recent explosion of interest, in statistical and generative modeling approaches based on score functions -- derivatives of the log-likelihood of a distribution. In seminal works, Hyv\"arinen proposed vanilla score matching as a way to learn distributions from data by computing an estimate of the score function of the underlying ground truth, and established connections between this method and established techniques like Contrastive Divergence and Pseudolikelihood estimation. It is by now well-known that vanilla score matching has significant difficulties learning multimodal distributions. Although there are various ways to overcome this difficulty, the following question has remained unanswered -- is there a natural way to sample multimodal distributions using just the vanilla score? Inspired by a long line of related experimental works, we prove that the Langevin diffusion with early stopping, initialized at the empirical distribution, and run on a score function estimated from data successfully generates natural multimodal distributions (mixtures of log-concave distributions).
Benign Oscillation of Stochastic Gradient Descent with Large Learning Rates
In this work, we theoretically investigate the generalization properties of neural networks (NN) trained by stochastic gradient descent (SGD) algorithm with large learning rates. Under such a training regime, our finding is that, the oscillation of the NN weights caused by the large learning rate SGD training turns out to be beneficial to the generalization of the NN, which potentially improves over the same NN trained by SGD with small learning rates that converges more smoothly. In view of this finding, we call such a phenomenon "benign oscillation". Our theory towards demystifying such a phenomenon builds upon the feature learning perspective of deep learning. Specifically, we consider a feature-noise data generation model that consists of (i) weak features which have a small ell_2-norm and appear in each data point; (ii) strong features which have a larger ell_2-norm but only appear in a certain fraction of all data points; and (iii) noise. We prove that NNs trained by oscillating SGD with a large learning rate can effectively learn the weak features in the presence of those strong features. In contrast, NNs trained by SGD with a small learning rate can only learn the strong features but makes little progress in learning the weak features. Consequently, when it comes to the new testing data which consist of only weak features, the NN trained by oscillating SGD with a large learning rate could still make correct predictions consistently, while the NN trained by small learning rate SGD fails. Our theory sheds light on how large learning rate training benefits the generalization of NNs. Experimental results demonstrate our finding on "benign oscillation".
Signal-to-noise Ratio Analytic Formulae of the Inspiral Binary Black Holes in TianQin
Binary black holes are one of the important sources for the TianQin gravitational wave project. Our research has revealed that, for TianQin, the signal-to-noise ratio of inspiral binary black holes can be computed analytically. This finding is expected to greatly simplify the estimation of detection capabilities for binary black holes. In this paper, we demonstrated the signal-to-noise ratio relationships from stellar-mass black holes to massive black holes. With the all-sky average condition, the signal-to-noise ratio for most binary black hole signals can be determined with a relative error of lesssim10%, with notable deviations only for chirp masses near 1000~M_odot. In contrast, the signal-to-noise ratio without the average includes an additional term, which we refer to as the response factor. Although this term is not easily calculated analytically, we provide a straightforward estimation method with an error margin of 1sigma within 2\%.
Early Warning Signals and the Prosecutor's Fallacy
Early warning signals have been proposed to forecast the possibility of a critical transition, such as the eutrophication of a lake, the collapse of a coral reef, or the end of a glacial period. Because such transitions often unfold on temporal and spatial scales that can be difficult to approach by experimental manipulation, research has often relied on historical observations as a source of natural experiments. Here we examine a critical difference between selecting systems for study based on the fact that we have observed a critical transition and those systems for which we wish to forecast the approach of a transition. This difference arises by conditionally selecting systems known to experience a transition of some sort and failing to account for the bias this introduces -- a statistical error often known as the Prosecutor's Fallacy. By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated rate of false positives in common warning signal statistics. We further demonstrate a model-based approach that is less subject to this bias than these more commonly used summary statistics. We note that experimental studies with replicates avoid this pitfall entirely.
MINDE: Mutual Information Neural Diffusion Estimation
In this work we present a new method for the estimation of Mutual Information (MI) between random variables. Our approach is based on an original interpretation of the Girsanov theorem, which allows us to use score-based diffusion models to estimate the Kullback Leibler divergence between two densities as a difference between their score functions. As a by-product, our method also enables the estimation of the entropy of random variables. Armed with such building blocks, we present a general recipe to measure MI, which unfolds in two directions: one uses conditional diffusion process, whereas the other uses joint diffusion processes that allow simultaneous modelling of two random variables. Our results, which derive from a thorough experimental protocol over all the variants of our approach, indicate that our method is more accurate than the main alternatives from the literature, especially for challenging distributions. Furthermore, our methods pass MI self-consistency tests, including data processing and additivity under independence, which instead are a pain-point of existing methods.
PECCARY: A novel approach for characterizing orbital complexity, stochasticity, and regularity
Permutation Entropy and statistiCal Complexity Analysis for astRophYsics (PECCARY) is a computationally inexpensive, statistical method by which any time-series can be characterized as predominantly regular, complex, or stochastic. Elements of the PECCARY method have been used in a variety of physical, biological, economic, and mathematical scenarios, but have not yet gained traction in the astrophysical community. This study introduces the PECCARY technique with the specific aims to motivate its use in and optimize it for the analysis of astrophysical orbital systems. PECCARY works by decomposing a time-dependent measure, such as the x-coordinate or orbital angular momentum time-series, into ordinal patterns. Due to its unique approach and statistical nature, PECCARY is well-suited for detecting preferred and forbidden patterns (a signature of chaos), even when the chaotic behavior is short-lived or when working with a relatively short duration time-series or small sets of time-series data. A variety of examples are used to demonstrate the capabilities of PECCARY. These include mathematical examples (sine waves, varieties of noise, sums of sine waves, well-known chaotic functions), a double pendulum system, and astrophysical tracer particle simulations with potentials of varying intricacies. Since the adopted timescale used to diagnose a given time-series can affect the outcome, a method is presented to identify an ideal sampling scheme, constrained by the overall duration and the natural timescale of the system. The accompanying PECCARY Python package and its usage are discussed.
An Efficient Tester-Learner for Halfspaces
We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.
On Calibrating Diffusion Probabilistic Models
Recently, diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks. A typical DPM framework includes a forward process that gradually diffuses the data distribution and a reverse process that recovers the data distribution from time-dependent data scores. In this work, we observe that the stochastic reverse process of data scores is a martingale, from which concentration bounds and the optional stopping theorem for data scores can be derived. Then, we discover a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can consequently be increased. We provide general calibration guidelines under various model parametrizations. Our calibration method is performed only once and the resulting models can be used repeatedly for sampling. We conduct experiments on multiple datasets to empirically validate our proposal. Our code is at https://github.com/thudzj/Calibrated-DPMs.
Revisiting the Effects of Stochasticity for Hamiltonian Samplers
We revisit the theoretical properties of Hamiltonian stochastic differential equations (SDES) for Bayesian posterior sampling, and we study the two types of errors that arise from numerical SDE simulation: the discretization error and the error due to noisy gradient estimates in the context of data subsampling. Our main result is a novel analysis for the effect of mini-batches through the lens of differential operator splitting, revising previous literature results. The stochastic component of a Hamiltonian SDE is decoupled from the gradient noise, for which we make no normality assumptions. This leads to the identification of a convergence bottleneck: when considering mini-batches, the best achievable error rate is O(eta^2), with eta being the integrator step size. Our theoretical results are supported by an empirical study on a variety of regression and classification tasks for Bayesian neural networks.
Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction
Quantum reservoir computing is strongly emerging for sequential and time series data prediction in quantum machine learning. We make advancements to the quantum noise-induced reservoir, in which reservoir noise is used as a resource to generate expressive, nonlinear signals that are efficiently learned with a single linear output layer. We address the need for quantum reservoir tuning with a novel and generally applicable approach to quantum circuit parameterization, in which tunable noise models are programmed to the quantum reservoir circuit to be fully controlled for effective optimization. Our systematic approach also involves reductions in quantum reservoir circuits in the number of qubits and entanglement scheme complexity. We show that with only a single noise model and small memory capacities, excellent simulation results were obtained on nonlinear benchmarks that include the Mackey-Glass system for 100 steps ahead in the challenging chaotic regime.
Interpreting and Improving Diffusion Models Using the Euclidean Distance Function
Denoising is intuitively related to projection. Indeed, under the manifold hypothesis, adding random noise is approximately equivalent to orthogonal perturbation. Hence, learning to denoise is approximately learning to project. In this paper, we use this observation to reinterpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function. We then provide straight-forward convergence analysis of the DDIM sampler under simple assumptions on the projection-error of the denoiser. Finally, we propose a new sampler based on two simple modifications to DDIM using insights from our theoretical results. In as few as 5-10 function evaluations, our sampler achieves state-of-the-art FID scores on pretrained CIFAR-10 and CelebA models and can generate high quality samples on latent diffusion models.
Astrometric Effects of a Stochastic Gravitational Wave Background
A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum \Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of \Delta \theta ~ 10 \mu as would yield a sensitivity level of \Omega_gw ~ (\Delta \theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.
SymmetricDiffusers: Learning Discrete Diffusion on Finite Symmetric Groups
Finite symmetric groups S_n are essential in fields such as combinatorics, physics, and chemistry. However, learning a probability distribution over S_n poses significant challenges due to its intractable size and discrete nature. In this paper, we introduce SymmetricDiffusers, a novel discrete diffusion model that simplifies the task of learning a complicated distribution over S_n by decomposing it into learning simpler transitions of the reverse diffusion using deep neural networks. We identify the riffle shuffle as an effective forward transition and provide empirical guidelines for selecting the diffusion length based on the theory of random walks on finite groups. Additionally, we propose a generalized Plackett-Luce (PL) distribution for the reverse transition, which is provably more expressive than the PL distribution. We further introduce a theoretically grounded "denoising schedule" to improve sampling and learning efficiency. Extensive experiments show that our model achieves state-of-the-art or comparable performances on solving tasks including sorting 4-digit MNIST images, jigsaw puzzles, and traveling salesman problems. Our code is released at https://github.com/DSL-Lab/SymmetricDiffusers.
Effective Probabilistic Time Series Forecasting with Fourier Adaptive Noise-Separated Diffusion
We propose the Fourier Adaptive Lite Diffusion Architecture (FALDA), a novel probabilistic framework for time series forecasting. First, we introduce the Diffusion Model for Residual Regression (DMRR) framework, which unifies diffusion-based probabilistic regression methods. Within this framework, FALDA leverages Fourier-based decomposition to incorporate a component-specific architecture, enabling tailored modeling of individual temporal components. A conditional diffusion model is utilized to estimate the future noise term, while our proposed lightweight denoiser, DEMA (Decomposition MLP with AdaLN), conditions on the historical noise term to enhance denoising performance. Through mathematical analysis and empirical validation, we demonstrate that FALDA effectively reduces epistemic uncertainty, allowing probabilistic learning to primarily focus on aleatoric uncertainty. Experiments on six real-world benchmarks demonstrate that FALDA consistently outperforms existing probabilistic forecasting approaches across most datasets for long-term time series forecasting while achieving enhanced computational efficiency without compromising accuracy. Notably, FALDA also achieves superior overall performance compared to state-of-the-art (SOTA) point forecasting approaches, with improvements of up to 9%.
An overview of diffusion models for generative artificial intelligence
This article provides a mathematically rigorous introduction to denoising diffusion probabilistic models (DDPMs), sometimes also referred to as diffusion probabilistic models or diffusion models, for generative artificial intelligence. We provide a detailed basic mathematical framework for DDPMs and explain the main ideas behind training and generation procedures. In this overview article we also review selected extensions and improvements of the basic framework from the literature such as improved DDPMs, denoising diffusion implicit models, classifier-free diffusion guidance models, and latent diffusion models.
Detecting Errors in a Numerical Response via any Regression Model
Noise plagues many numerical datasets, where the recorded values in the data may fail to match the true underlying values due to reasons including: erroneous sensors, data entry/processing mistakes, or imperfect human estimates. We consider general regression settings with covariates and a potentially corrupted response whose observed values may contain errors. By accounting for various uncertainties, we introduced veracity scores that distinguish between genuine errors and natural data fluctuations, conditioned on the available covariate information in the dataset. We propose a simple yet efficient filtering procedure for eliminating potential errors, and establish theoretical guarantees for our method. We also contribute a new error detection benchmark involving 5 regression datasets with real-world numerical errors (for which the true values are also known). In this benchmark and additional simulation studies, our method identifies incorrect values with better precision/recall than other approaches.
Special Properties of Gradient Descent with Large Learning Rates
When training neural networks, it has been widely observed that a large step size is essential in stochastic gradient descent (SGD) for obtaining superior models. However, the effect of large step sizes on the success of SGD is not well understood theoretically. Several previous works have attributed this success to the stochastic noise present in SGD. However, we show through a novel set of experiments that the stochastic noise is not sufficient to explain good non-convex training, and that instead the effect of a large learning rate itself is essential for obtaining best performance.We demonstrate the same effects also in the noise-less case, i.e. for full-batch GD. We formally prove that GD with large step size -- on certain non-convex function classes -- follows a different trajectory than GD with a small step size, which can lead to convergence to a global minimum instead of a local one. Our settings provide a framework for future analysis which allows comparing algorithms based on behaviors that can not be observed in the traditional settings.
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?
We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.
Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning
The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.
Mitigating the Noise Shift for Denoising Generative Models via Noise Awareness Guidance
Existing denoising generative models rely on solving discretized reverse-time SDEs or ODEs. In this paper, we identify a long-overlooked yet pervasive issue in this family of models: a misalignment between the pre-defined noise level and the actual noise level encoded in intermediate states during sampling. We refer to this misalignment as noise shift. Through empirical analysis, we demonstrate that noise shift is widespread in modern diffusion models and exhibits a systematic bias, leading to sub-optimal generation due to both out-of-distribution generalization and inaccurate denoising updates. To address this problem, we propose Noise Awareness Guidance (NAG), a simple yet effective correction method that explicitly steers sampling trajectories to remain consistent with the pre-defined noise schedule. We further introduce a classifier-free variant of NAG, which jointly trains a noise-conditional and a noise-unconditional model via noise-condition dropout, thereby eliminating the need for external classifiers. Extensive experiments, including ImageNet generation and various supervised fine-tuning tasks, show that NAG consistently mitigates noise shift and substantially improves the generation quality of mainstream diffusion models.
Label-Noise Robust Diffusion Models
Conditional diffusion models have shown remarkable performance in various generative tasks, but training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels. This noise leads to condition mismatch and quality degradation of generated data. This paper proposes Transition-aware weighted Denoising Score Matching (TDSM) for training conditional diffusion models with noisy labels, which is the first study in the line of diffusion models. The TDSM objective contains a weighted sum of score networks, incorporating instance-wise and time-dependent label transition probabilities. We introduce a transition-aware weight estimator, which leverages a time-dependent noisy-label classifier distinctively customized to the diffusion process. Through experiments across various datasets and noisy label settings, TDSM improves the quality of generated samples aligned with given conditions. Furthermore, our method improves generation performance even on prevalent benchmark datasets, which implies the potential noisy labels and their risk of generative model learning. Finally, we show the improved performance of TDSM on top of conventional noisy label corrections, which empirically proving its contribution as a part of label-noise robust generative models. Our code is available at: https://github.com/byeonghu-na/tdsm.
PeriodGrad: Towards Pitch-Controllable Neural Vocoder Based on a Diffusion Probabilistic Model
This paper presents a neural vocoder based on a denoising diffusion probabilistic model (DDPM) incorporating explicit periodic signals as auxiliary conditioning signals. Recently, DDPM-based neural vocoders have gained prominence as non-autoregressive models that can generate high-quality waveforms. The neural vocoders based on DDPM have the advantage of training with a simple time-domain loss. In practical applications, such as singing voice synthesis, there is a demand for neural vocoders to generate high-fidelity speech waveforms with flexible pitch control. However, conventional DDPM-based neural vocoders struggle to generate speech waveforms under such conditions. Our proposed model aims to accurately capture the periodic structure of speech waveforms by incorporating explicit periodic signals. Experimental results show that our model improves sound quality and provides better pitch control than conventional DDPM-based neural vocoders.
Physics-based Noise Modeling for Extreme Low-light Photography
Enhancing the visibility in extreme low-light environments is a challenging task. Under nearly lightless condition, existing image denoising methods could easily break down due to significantly low SNR. In this paper, we systematically study the noise statistics in the imaging pipeline of CMOS photosensors, and formulate a comprehensive noise model that can accurately characterize the real noise structures. Our novel model considers the noise sources caused by digital camera electronics which are largely overlooked by existing methods yet have significant influence on raw measurement in the dark. It provides a way to decouple the intricate noise structure into different statistical distributions with physical interpretations. Moreover, our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms. In this regard, although promising results have been shown recently with deep convolutional neural networks, the success heavily depends on abundant noisy clean image pairs for training, which are tremendously difficult to obtain in practice. Generalizing their trained models to images from new devices is also problematic. Extensive experiments on multiple low-light denoising datasets -- including a newly collected one in this work covering various devices -- show that a deep neural network trained with our proposed noise formation model can reach surprisingly-high accuracy. The results are on par with or sometimes even outperform training with paired real data, opening a new door to real-world extreme low-light photography.
Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise
Recently, research on denoising diffusion models has expanded its application to the field of image restoration. Traditional diffusion-based image restoration methods utilize degraded images as conditional input to effectively guide the reverse generation process, without modifying the original denoising diffusion process. However, since the degraded images already include low-frequency information, starting from Gaussian white noise will result in increased sampling steps. We propose Resfusion, a general framework that incorporates the residual term into the diffusion forward process, starting the reverse process directly from the noisy degraded images. The form of our inference process is consistent with the DDPM. We introduced a weighted residual noise, named resnoise, as the prediction target and explicitly provide the quantitative relationship between the residual term and the noise term in resnoise. By leveraging a smooth equivalence transformation, Resfusion determine the optimal acceleration step and maintains the integrity of existing noise schedules, unifying the training and inference processes. The experimental results demonstrate that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps. Furthermore, Resfusion can be easily applied to image generation and emerges with strong versatility. Our code and model are available at https://github.com/nkicsl/Resfusion.
Closed Estimates of Leray Projected Transport Noise and Strong Solutions of the Stochastic Euler Equations
We consider the incompressible Euler and Navier-Stokes equations on the three dimensional torus, in velocity form, perturbed by a transport or transport-stretching Stratonovich noise. Closed control of the noise contributions in energy estimates are demonstrated, for any positive integer ordered Sobolev Space and the equivalent Stokes Space; difficulty arises due to the presence of the Leray Projector disrupting cancellation of the top order derivative. This is particularly pertinent in the case of a transport noise without stretching, where the vorticity form cannot be used. As a consequence we obtain, for the first time, the existence of a local strong solution to the corresponding stochastic Euler equation. Furthermore, smooth solutions are shown to exist until blow-up in L^1left([0,T];W^{1,infty}right).
MMSE Estimation for Poisson Noise Removal in Images
Poisson noise suppression is an important preprocessing step in several applications, such as medical imaging, microscopy, and astronomical imaging. In this work, we propose a novel patch-wise Poisson noise removal strategy, in which the MMSE estimator is utilized in order to produce the denoising result for each image patch. Fast and accurate computation of the MMSE estimator is carried out using k-d tree search followed by search in the K-nearest neighbor graph. Our experiments show that the proposed method is the preferable choice for low signal-to-noise ratios.
The Convergence of Bird Flocking
We bound the time it takes for a group of birds to reach steady state in a standard flocking model. We prove that (i) within single exponential time fragmentation ceases and each bird settles on a fixed flying direction; (ii) the flocking network converges only after a number of steps that is an iterated exponential of height logarithmic in the number of birds. We also prove the highly surprising result that this bound is optimal. The model directs the birds to adjust their velocities repeatedly by averaging them with their neighbors within a fixed radius. The model is deterministic, but we show that it can tolerate a reasonable amount of stochastic or even adversarial noise. Our methods are highly general and we speculate that the results extend to a wider class of models based on undirected flocking networks, whether defined metrically or topologically. This work introduces new techniques of broader interest, including the "flight net," the "iterated spectral shift," and a certain "residue-clearing" argument in circuit complexity.
Images that Sound: Composing Images and Sounds on a Single Canvas
Spectrograms are 2D representations of sound that look very different from the images found in our visual world. And natural images, when played as spectrograms, make unnatural sounds. In this paper, we show that it is possible to synthesize spectrograms that simultaneously look like natural images and sound like natural audio. We call these spectrograms images that sound. Our approach is simple and zero-shot, and it leverages pre-trained text-to-image and text-to-spectrogram diffusion models that operate in a shared latent space. During the reverse process, we denoise noisy latents with both the audio and image diffusion models in parallel, resulting in a sample that is likely under both models. Through quantitative evaluations and perceptual studies, we find that our method successfully generates spectrograms that align with a desired audio prompt while also taking the visual appearance of a desired image prompt. Please see our project page for video results: https://ificl.github.io/images-that-sound/
Did You Hear That? Introducing AADG: A Framework for Generating Benchmark Data in Audio Anomaly Detection
We introduce a novel, general-purpose audio generation framework specifically designed for anomaly detection and localization. Unlike existing datasets that predominantly focus on industrial and machine-related sounds, our framework focuses a broader range of environments, particularly useful in real-world scenarios where only audio data are available, such as in video-derived or telephonic audio. To generate such data, we propose a new method inspired by the LLM-Modulo framework, which leverages large language models(LLMs) as world models to simulate such real-world scenarios. This tool is modular allowing a plug-and-play approach. It operates by first using LLMs to predict plausible real-world scenarios. An LLM further extracts the constituent sounds, the order and the way in which these should be merged to create coherent wholes. Much like the LLM-Modulo framework, we include rigorous verification of each output stage, ensuring the reliability of the generated data. The data produced using the framework serves as a benchmark for anomaly detection applications, potentially enhancing the performance of models trained on audio data, particularly in handling out-of-distribution cases. Our contributions thus fill a critical void in audio anomaly detection resources and provide a scalable tool for generating diverse, realistic audio data.
Target Score Matching
Denoising Score Matching estimates the score of a noised version of a target distribution by minimizing a regression loss and is widely used to train the popular class of Denoising Diffusion Models. A well known limitation of Denoising Score Matching, however, is that it yields poor estimates of the score at low noise levels. This issue is particularly unfavourable for problems in the physical sciences and for Monte Carlo sampling tasks for which the score of the clean original target is known. Intuitively, estimating the score of a slightly noised version of the target should be a simple task in such cases. In this paper, we address this shortcoming and show that it is indeed possible to leverage knowledge of the target score. We present a Target Score Identity and corresponding Target Score Matching regression loss which allows us to obtain score estimates admitting favourable properties at low noise levels.
User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems
Diffusion models are a class of probabilistic generative models that have been widely used as a prior for image processing tasks like text conditional generation and inpainting. We demonstrate that these models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems. In these applications, diffusion models can implicitly represent knowledge about outliers and extreme events; however, querying that knowledge through conditional sampling or measuring probabilities is surprisingly difficult. Existing methods for conditional sampling at inference time seek mainly to enforce the constraints, which is insufficient to match the statistics of the distribution or compute the probability of the chosen events. To achieve these ends, optimally one would use the conditional score function, but its computation is typically intractable. In this work, we develop a probabilistic approximation scheme for the conditional score function which provably converges to the true distribution as the noise level decreases. With this scheme we are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
SVNR: Spatially-variant Noise Removal with Denoising Diffusion
Denoising diffusion models have recently shown impressive results in generative tasks. By learning powerful priors from huge collections of training images, such models are able to gradually modify complete noise to a clean natural image via a sequence of small denoising steps, seemingly making them well-suited for single image denoising. However, effectively applying denoising diffusion models to removal of realistic noise is more challenging than it may seem, since their formulation is based on additive white Gaussian noise, unlike noise in real-world images. In this work, we present SVNR, a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model. SVNR enables using the noisy input image as the starting point for the denoising diffusion process, in addition to conditioning the process on it. To this end, we adapt the diffusion process to allow each pixel to have its own time embedding, and propose training and inference schemes that support spatially-varying time maps. Our formulation also accounts for the correlation that exists between the condition image and the samples along the modified diffusion process. In our experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
Look Once to Hear: Target Speech Hearing with Noisy Examples
In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear.
Structured Denoising Diffusion Models in Discrete State-Spaces
Denoising diffusion probabilistic models (DDPMs) (Ho et al. 2020) have shown impressive results on image and waveform generation in continuous state spaces. Here, we introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs), diffusion-like generative models for discrete data that generalize the multinomial diffusion model of Hoogeboom et al. 2021, by going beyond corruption processes with uniform transition probabilities. This includes corruption with transition matrices that mimic Gaussian kernels in continuous space, matrices based on nearest neighbors in embedding space, and matrices that introduce absorbing states. The third allows us to draw a connection between diffusion models and autoregressive and mask-based generative models. We show that the choice of transition matrix is an important design decision that leads to improved results in image and text domains. We also introduce a new loss function that combines the variational lower bound with an auxiliary cross entropy loss. For text, this model class achieves strong results on character-level text generation while scaling to large vocabularies on LM1B. On the image dataset CIFAR-10, our models approach the sample quality and exceed the log-likelihood of the continuous-space DDPM model.
OCD: Learning to Overfit with Conditional Diffusion Models
We present a dynamic model in which the weights are conditioned on an input sample x and are learned to match those that would be obtained by finetuning a base model on x and its label y. This mapping between an input sample and network weights is approximated by a denoising diffusion model. The diffusion model we employ focuses on modifying a single layer of the base model and is conditioned on the input, activations, and output of this layer. Since the diffusion model is stochastic in nature, multiple initializations generate different networks, forming an ensemble, which leads to further improvements. Our experiments demonstrate the wide applicability of the method for image classification, 3D reconstruction, tabular data, speech separation, and natural language processing. Our code is available at https://github.com/ShaharLutatiPersonal/OCD
There and Back Again: On the relation between noises, images, and their inversions in diffusion models
Denoising Diffusion Probabilistic Models (DDPMs) achieve state-of-the-art performance in synthesizing new images from random noise, but they lack meaningful latent space that encodes data into features. Recent DDPM-based editing techniques try to mitigate this issue by inverting images back to their approximated staring noise. In this work, we study the relation between the initial Gaussian noise, the samples generated from it, and their corresponding latent encodings obtained through the inversion procedure. First, we interpret their spatial distance relations to show the inaccuracy of the DDIM inversion technique by localizing latent representations manifold between the initial noise and generated samples. Then, we demonstrate the peculiar relation between initial Gaussian noise and its corresponding generations during diffusion training, showing that the high-level features of generated images stabilize rapidly, keeping the spatial distance relationship between noises and generations consistent throughout the training.
Robust Associative Memories Naturally Occuring From Recurrent Hebbian Networks Under Noise
The brain is a noisy system subject to energy constraints. These facts are rarely taken into account when modelling artificial neural networks. In this paper, we are interested in demonstrating that those factors can actually lead to the appearance of robust associative memories. We first propose a simplified model of noise in the brain, taking into account synaptic noise and interference from neurons external to the network. When coarsely quantized, we show that this noise can be reduced to insertions and erasures. We take a neural network with recurrent modifiable connections, and subject it to noisy external inputs. We introduce an energy usage limitation principle in the network as well as consolidated Hebbian learning, resulting in an incremental processing of inputs. We show that the connections naturally formed correspond to state-of-the-art binary sparse associative memories.
Time Series Diffusion Method: A Denoising Diffusion Probabilistic Model for Vibration Signal Generation
Diffusion models have demonstrated robust data generation capabilities in various research fields. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively
The Rayleigh-Boltzmann equation with shear deformations in the hyperbolic-dominated regime
In this paper we consider a particular class of solutions of the Rayleigh-Boltzmann equation, known in the nonlinear setting as homoenergetic solutions, which have the form gleft( x,v,t right) =fleft( v-Lleft( tright)x,tright) where the matrix L(t) describes a shear flow deformation. We began this analysis in [22] where we rigorously proved the existence of a stationary non-equilibrium solution and established the different behaviour of the solutions for small and large values of the shear parameter, for cut-off collision kernels with homogeneity parameter 0leq gamma <1, including Maxwell molecules and hard potentials. In this paper, we concentrate in the case where the deformation term dominates the collision term for large times (hyperbolic-dominated regime). This occurs for collision kernels with gamma < 0 and in particular we focus on gamma in (-1,0). In such a hyperbolic-dominated regime, it appears challenging to provide a clear description of the long-term asymptotics of the solutions. Here we present a formal analysis of the long-time asymptotics for the distribution of velocities and provide the explicit form for the asymptotic profile. Additionally, we discuss the different asymptotic behaviour expected in the case of homogeneity gamma < -1. Furthermore, we provide a probabilistic interpretation describing a stochastic process consisting in a combination of collisions and shear flows. The tagged particle velocity {v(t)}_{tgeq 0} is a Markov process that arises from the combination of free flights in a shear flow along with random jumps caused by collisions.
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Diffusion models are powerful generative models that simulate the reverse of diffusion processes using score functions to synthesize data from noise. The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce samples in the product space of data and variance (or diffusion time). Then, a reverse-S/ODE integrator is used to denoise the MCMC samples. Since MCMC traverses close to the data manifold, the computation cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. To verify the proposed concept, we show that Denoising Langevin Gibbs (DLG), an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work on the tasks of CIFAR10 and CelebA-HQ-256 image generation. Notably, combined with integrators of Karras et al. (2022) and pre-trained score models of Song et al. (2021b), DLG achieves SOTA results. In the limited number of score function evaluation (NFE) settings on CIFAR10, we have 3.86 FID with approx 10 NFE and 2.63 FID with approx 20 NFE. On CelebA-HQ-256, we have 6.99 FID with approx 160 NFE, which beats the current best record of Kim et al. (2022) among score-based models, 7.16 FID with 4000 NFE. Code: https://github.com/1202kbs/DMCMC
Learning Unnormalized Statistical Models via Compositional Optimization
Learning unnormalized statistical models (e.g., energy-based models) is computationally challenging due to the complexity of handling the partition function. To eschew this complexity, noise-contrastive estimation~(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise. However, as found in previous works, NCE may perform poorly in many tasks due to its flat loss landscape and slow convergence. In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models from the perspective of compositional optimization. To tackle the partition function, a noise distribution is introduced such that the log partition function can be written as a compositional function whose inner function can be estimated with stochastic samples. Hence, the objective can be optimized by stochastic compositional optimization algorithms. Despite being a simple method, we demonstrate that it is more favorable than NCE by (1) establishing a fast convergence rate and quantifying its dependence on the noise distribution through the variance of stochastic estimators; (2) developing better results for one-dimensional Gaussian mean estimation by showing our objective has a much favorable loss landscape and hence our method enjoys faster convergence; (3) demonstrating better performance on multiple applications, including density estimation, out-of-distribution detection, and real image generation.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
Denoising Diffusion Implicit Models
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10 times to 50 times faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
Generalized Recorrupted-to-Recorrupted: Self-Supervised Learning Beyond Gaussian Noise
Recorrupted-to-Recorrupted (R2R) has emerged as a methodology for training deep networks for image restoration in a self-supervised manner from noisy measurement data alone, demonstrating equivalence in expectation to the supervised squared loss in the case of Gaussian noise. However, its effectiveness with non-Gaussian noise remains unexplored. In this paper, we propose Generalized R2R (GR2R), extending the R2R framework to handle a broader class of noise distribution as additive noise like log-Rayleigh and address the natural exponential family including Poisson and Gamma noise distributions, which play a key role in many applications including low-photon imaging and synthetic aperture radar. We show that the GR2R loss is an unbiased estimator of the supervised loss and that the popular Stein's unbiased risk estimator can be seen as a special case. A series of experiments with Gaussian, Poisson, and Gamma noise validate GR2R's performance, showing its effectiveness compared to other self-supervised methods.
Identifiability of Label Noise Transition Matrix
The noise transition matrix plays a central role in the problem of learning with noisy labels. Among many other reasons, a large number of existing solutions rely on access to it. Identifying and estimating the transition matrix without ground truth labels is a critical and challenging task. When label noise transition depends on each instance, the problem of identifying the instance-dependent noise transition matrix becomes substantially more challenging. Despite recent works proposing solutions for learning from instance-dependent noisy labels, the field lacks a unified understanding of when such a problem remains identifiable. The goal of this paper is to characterize the identifiability of the label noise transition matrix. Building on Kruskal's identifiability results, we are able to show the necessity of multiple noisy labels in identifying the noise transition matrix for the generic case at the instance level. We further instantiate the results to explain the successes of the state-of-the-art solutions and how additional assumptions alleviated the requirement of multiple noisy labels. Our result also reveals that disentangled features are helpful in the above identification task and we provide empirical evidence.
kh2d-solver: A Python Library for Idealized Two-Dimensional Incompressible Kelvin-Helmholtz Instability
We present an open-source Python library for simulating two-dimensional incompressible Kelvin-Helmholtz instabilities in stratified shear flows. The solver employs a fractional-step projection method with spectral Poisson solution via Fast Sine Transform, achieving second-order spatial accuracy. Implementation leverages NumPy, SciPy, and Numba JIT compilation for efficient computation. Four canonical test cases explore Reynolds numbers 1000--5000 and Richardson numbers 0.1--0.3: classical shear layer, double shear configuration, rotating flow, and forced turbulence. Statistical analysis using Shannon entropy and complexity indices reveals that double shear layers achieve 2.8times higher mixing rates than forced turbulence despite lower Reynolds numbers. The solver runs efficiently on standard desktop hardware, with 384times192 grid simulations completing in approximately 31 minutes. Results demonstrate that mixing efficiency depends on instability generation pathways rather than intensity measures alone, challenging Richardson number-based parameterizations and suggesting refinements for subgrid-scale representation in climate models.
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior
Denoising diffusion probabilistic models have been recently proposed to generate high-quality samples by estimating the gradient of the data density. The framework defines the prior noise as a standard Gaussian distribution, whereas the corresponding data distribution may be more complicated than the standard Gaussian distribution, which potentially introduces inefficiency in denoising the prior noise into the data sample because of the discrepancy between the data and the prior. In this paper, we propose PriorGrad to improve the efficiency of the conditional diffusion model for speech synthesis (for example, a vocoder using a mel-spectrogram as the condition) by applying an adaptive prior derived from the data statistics based on the conditional information. We formulate the training and sampling procedures of PriorGrad and demonstrate the advantages of an adaptive prior through a theoretical analysis. Focusing on the speech synthesis domain, we consider the recently proposed diffusion-based speech generative models based on both the spectral and time domains and show that PriorGrad achieves faster convergence and inference with superior performance, leading to an improved perceptual quality and robustness to a smaller network capacity, and thereby demonstrating the efficiency of a data-dependent adaptive prior.
Early warning signals: The charted and uncharted territories
The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.
DDM^2: Self-Supervised Diffusion MRI Denoising with Generative Diffusion Models
Magnetic resonance imaging (MRI) is a common and life-saving medical imaging technique. However, acquiring high signal-to-noise ratio MRI scans requires long scan times, resulting in increased costs and patient discomfort, and decreased throughput. Thus, there is great interest in denoising MRI scans, especially for the subtype of diffusion MRI scans that are severely SNR-limited. While most prior MRI denoising methods are supervised in nature, acquiring supervised training datasets for the multitude of anatomies, MRI scanners, and scan parameters proves impractical. Here, we propose Denoising Diffusion Models for Denoising Diffusion MRI (DDM^2), a self-supervised denoising method for MRI denoising using diffusion denoising generative models. Our three-stage framework integrates statistic-based denoising theory into diffusion models and performs denoising through conditional generation. During inference, we represent input noisy measurements as a sample from an intermediate posterior distribution within the diffusion Markov chain. We conduct experiments on 4 real-world in-vivo diffusion MRI datasets and show that our DDM^2 demonstrates superior denoising performances ascertained with clinically-relevant visual qualitative and quantitative metrics.
CREPE: A Convolutional Representation for Pitch Estimation
The task of estimating the fundamental frequency of a monophonic sound recording, also known as pitch tracking, is fundamental to audio processing with multiple applications in speech processing and music information retrieval. To date, the best performing techniques, such as the pYIN algorithm, are based on a combination of DSP pipelines and heuristics. While such techniques perform very well on average, there remain many cases in which they fail to correctly estimate the pitch. In this paper, we propose a data-driven pitch tracking algorithm, CREPE, which is based on a deep convolutional neural network that operates directly on the time-domain waveform. We show that the proposed model produces state-of-the-art results, performing equally or better than pYIN. Furthermore, we evaluate the model's generalizability in terms of noise robustness. A pre-trained version of CREPE is made freely available as an open-source Python module for easy application.
Compressed Image Generation with Denoising Diffusion Codebook Models
We present a novel generative approach based on Denoising Diffusion Models (DDMs), which produces high-quality image samples along with their losslessly compressed bit-stream representations. This is obtained by replacing the standard Gaussian noise sampling in the reverse diffusion with a selection of noise samples from pre-defined codebooks of fixed iid Gaussian vectors. Surprisingly, we find that our method, termed Denoising Diffusion Codebook Model (DDCM), retains sample quality and diversity of standard DDMs, even for extremely small codebooks. We leverage DDCM and pick the noises from the codebooks that best match a given image, converting our generative model into a highly effective lossy image codec achieving state-of-the-art perceptual image compression results. More generally, by setting other noise selections rules, we extend our compression method to any conditional image generation task (e.g., image restoration), where the generated images are produced jointly with their condensed bit-stream representations. Our work is accompanied by a mathematical interpretation of the proposed compressed conditional generation schemes, establishing a connection with score-based approximations of posterior samplers for the tasks considered.
Unbalanced Stückelberg Holographic Superconductors with Backreaction
We numerically investigate some properties of unbalanced St\"{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St\"{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St\"{u}ckelberg's model parameters C_{alpha} and alpha not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of alpha on the amplitude of conductivity fluctuations depends on the magnitude of the both C_{alpha} and deltamu/mu in the electric and thermal conductivity cases. This results in that increasing alpha can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones.
Conformal Prediction of Classifiers with Many Classes based on Noisy Labels
Conformal Prediction (CP) controls the prediction uncertainty of classification systems by producing a small prediction set, ensuring a predetermined probability that the true class lies within this set. This is commonly done by defining a score, based on the model predictions, and setting a threshold on this score using a validation set. In this study, we address the problem of CP calibration when we only have access to a calibration set with noisy labels. We show how we can estimate the noise-free conformal threshold based on the noisy labeled data. We derive a finite sample coverage guarantee for uniform noise that remains effective even in tasks with a large number of classes. We dub our approach Noise-Aware Conformal Prediction (NACP). We illustrate the performance of the proposed results on several standard image classification datasets with a large number of classes.
Residual Denoising Diffusion Models
Current diffusion-based image restoration methods feed degraded input images as conditions into the noise estimation network. However, interpreting this diffusion process is challenging since it essentially generates the target image from the noise. To establish a unified and more interpretable model for image generation and restoration, we propose residual denoising diffusion models (RDDM). In contrast to existing diffusion models (e.g., DDPM or DDIM) that focus solely on noise estimation, our RDDM predicts residuals to represent directional diffusion from the target domain to the input domain, while concurrently estimating noise to account for random perturbations in the diffusion process. The introduction of residuals allows us to redefine the forward diffusion process, wherein the target image progressively diffuses into a purely noisy image or a noise-carrying input image, thus unifying image generation and restoration. We demonstrate that our sampling process is consistent with that of DDPM and DDIM through coefficient transformation, and propose a partially path-independent generation process to better understand the reverse process. Notably, with native support for conditional inputs, our RDDM enables a generic UNet, trained with only an ell _1 loss and a batch size of 1, to compete with state-of-the-art image restoration methods. We provide code and pre-trained models to encourage further exploration, application, and development of our innovative framework (https://github.com/nachifur/RDDM).
Optimal Online Generalized Linear Regression with Stochastic Noise and Its Application to Heteroscedastic Bandits
We study the problem of online generalized linear regression in the stochastic setting, where the label is generated from a generalized linear model with possibly unbounded additive noise. We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise. More specifically, for sigma-sub-Gaussian label noise, our analysis provides a regret upper bound of O(sigma^2 d log T) + o(log T), where d is the dimension of the input vector, T is the total number of rounds. We also prove a Omega(sigma^2dlog(T/d)) lower bound for stochastic online linear regression, which indicates that our upper bound is nearly optimal. In addition, we extend our analysis to a more refined Bernstein noise condition. As an application, we study generalized linear bandits with heteroscedastic noise and propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
Are we certain it's anomalous?
The progress in modelling time series and, more generally, sequences of structured data has recently revamped research in anomaly detection. The task stands for identifying abnormal behaviors in financial series, IT systems, aerospace measurements, and the medical domain, where anomaly detection may aid in isolating cases of depression and attend the elderly. Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations and since the definition of anomalous is sometimes subjective. Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD). HypAD learns self-supervisedly to reconstruct the input signal. We adopt best practices from the state-of-the-art to encode the sequence by an LSTM, jointly learned with a decoder to reconstruct the signal, with the aid of GAN critics. Uncertainty is estimated end-to-end by means of a hyperbolic neural network. By using uncertainty, HypAD may assess whether it is certain about the input signal but it fails to reconstruct it because this is anomalous; or whether the reconstruction error does not necessarily imply anomaly, as the model is uncertain, e.g. a complex but regular input signal. The novel key idea is that a detectable anomaly is one where the model is certain but it predicts wrongly. HypAD outperforms the current state-of-the-art for univariate anomaly detection on established benchmarks based on data from NASA, Yahoo, Numenta, Amazon, and Twitter. It also yields state-of-the-art performance on a multivariate dataset of anomaly activities in elderly home residences, and it outperforms the baseline on SWaT. Overall, HypAD yields the lowest false alarms at the best performance rate, thanks to successfully identifying detectable anomalies.
Computable Stochastic Processes
The aim of this paper is to present an elementary computable theory of probability, random variables and stochastic processes. The probability theory is baed on existing approaches using valuations and lower integrals. Various approaches to random variables are discussed, including the approach based on completions in a Polish space. We apply the theory to the study of stochastic dynamical systems in discrete-time, and give a brief exposition of the Wiener process as a foundation for stochastic differential equations. The theory is based within the framework of type-two effectivity, so has an explicit direct link with Turing computation, and is expressed in a system of computable types and operations, so has a clean mathematical description.
ConvNets for Counting: Object Detection of Transient Phenomena in Steelpan Drums
We train an object detector built from convolutional neural networks to count interference fringes in elliptical antinode regions in frames of high-speed video recordings of transient oscillations in Caribbean steelpan drums illuminated by electronic speckle pattern interferometry (ESPI). The annotations provided by our model aim to contribute to the understanding of time-dependent behavior in such drums by tracking the development of sympathetic vibration modes. The system is trained on a dataset of crowdsourced human-annotated images obtained from the Zooniverse Steelpan Vibrations Project. Due to the small number of human-annotated images and the ambiguity of the annotation task, we also evaluate the model on a large corpus of synthetic images whose properties have been matched to the real images by style transfer using a Generative Adversarial Network. Applying the model to thousands of unlabeled video frames, we measure oscillations consistent with audio recordings of these drum strikes. One unanticipated result is that sympathetic oscillations of higher-octave notes significantly precede the rise in sound intensity of the corresponding second harmonic tones; the mechanism responsible for this remains unidentified. This paper primarily concerns the development of the predictive model; further exploration of the steelpan images and deeper physical insights await its further application.
Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning
In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].
Efficient Massive Black Hole Binary parameter estimation for LISA using Sequential Neural Likelihood
The inspiral, merger, and ringdown of Massive Black Hole Binaries (MBHBs) is one the main sources of Gravitational Waves (GWs) for the future Laser Interferometer Space Antenna (LISA), an ESA-led mission in the implementation phase. It is expected that LISA will detect these systems throughout the entire observable universe. Robust and efficient data analysis algorithms are necessary to detect and estimate physical parameters for these systems. In this work, we explore the application of Sequential Neural Likelihood, a simulation-based inference algorithm, to detect and characterize MBHB GW signals in synthetic LISA data. We describe in detail the different elements of the method, their performance and possible alternatives that can be used to enhance the performance. Instead of sampling from the conventional likelihood function, which requires a forward simulation for each evaluation, this method constructs a surrogate likelihood that is ultimately described by a neural network trained from a dataset of simulations of the MBHB signals and noise. One important advantage of this method is that, given that the likelihood is independent of the priors, we can iteratively train models that target specific observations in a fraction of the time and computational cost that other traditional and machine learning-based strategies would require. Because of the iterative nature of the method, we are able to train models to obtain qualitatively similar posteriors with less than 2\% of the simulator calls that Markov Chain Monte Carlo methods would require. We compare these posteriors with those obtained from Markov Chain Monte Carlo techniques and discuss the differences that appear, in particular in relation with the important role that data compression has in the modular implementation of the method that we present. We also discuss different strategies to improve the performance of the algorithms.
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
This work studies training instabilities of behavior cloning with deep neural networks. We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards, despite negligibly affecting the behavior cloning loss. We empirically disentangle the statistical and computational causes of these oscillations, and find them to stem from the chaotic propagation of minibatch SGD noise through unstable closed-loop dynamics. While SGD noise is benign in the single-step action prediction objective, it results in catastrophic error accumulation over long horizons, an effect we term gradient variance amplification (GVA). We show that many standard mitigation techniques do not alleviate GVA, but find an exponential moving average (EMA) of iterates to be surprisingly effective at doing so. We illustrate the generality of this phenomenon by showing the existence of GVA and its amelioration by EMA in both continuous control and autoregressive language generation. Finally, we provide theoretical vignettes that highlight the benefits of EMA in alleviating GVA and shed light on the extent to which classical convex models can help in understanding the benefits of iterate averaging in deep learning.
On the Posterior Distribution in Denoising: Application to Uncertainty Quantification
Denoisers play a central role in many applications, from noise suppression in low-grade imaging sensors, to empowering score-based generative models. The latter category of methods makes use of Tweedie's formula, which links the posterior mean in Gaussian denoising (\ie the minimum MSE denoiser) with the score of the data distribution. Here, we derive a fundamental relation between the higher-order central moments of the posterior distribution, and the higher-order derivatives of the posterior mean. We harness this result for uncertainty quantification of pre-trained denoisers. Particularly, we show how to efficiently compute the principal components of the posterior distribution for any desired region of an image, as well as to approximate the full marginal distribution along those (or any other) one-dimensional directions. Our method is fast and memory-efficient, as it does not explicitly compute or store the high-order moment tensors and it requires no training or fine tuning of the denoiser. Code and examples are available on the project webpage in https://hilamanor.github.io/GaussianDenoisingPosterior/ .
rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method
We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics.
European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A<3.0times 10^{-15} at a reference frequency of 1yr^{-1} and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Omega_gw(f)h^2 < 1.1times10^{-9} at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of sim 5times10^{-9}~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gmu/c^2, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gmu/c^2<1.3times10^{-7}, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-ell Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Omega^relic_gw(f)h^2<1.2 times10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
Pseudo Numerical Methods for Diffusion Models on Manifolds
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce final samples. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at a high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a fresh perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that the pseudo linear multi-step method is the best in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 steps (by around 0.4 in FID) and have good generalization on different variance schedules. Our implementation is available at https://github.com/luping-liu/PNDM.
Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution
Diffusion models, as a kind of powerful generative model, have given impressive results on image super-resolution (SR) tasks. However, due to the randomness introduced in the reverse process of diffusion models, the performances of diffusion-based SR models are fluctuating at every time of sampling, especially for samplers with few resampled steps. This inherent randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results. However, our work takes this randomness as an opportunity: fully analyzing and leveraging it leads to the construction of an effective plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods. More in detail, we propose to steadily sample high-quality SR images from pre-trained diffusion-based SR models by solving diffusion ordinary differential equations (diffusion ODEs) with optimal boundary conditions (BCs) and analyze the characteristics between the choices of BCs and their corresponding SR results. Our analysis shows the route to obtain an approximately optimal BC via an efficient exploration in the whole space. The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model, which means that our sampling method "boosts" current diffusion-based SR models without any additional training.
Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model
Diffusion-based image super-resolution methods have demonstrated significant advantages over GAN-based approaches, particularly in terms of perceptual quality. Building upon a lengthy Markov chain, diffusion-based methods possess remarkable modeling capacity, enabling them to achieve outstanding performance in real-world scenarios. Unlike previous methods that focus on modifying the noise schedule or sampling process to enhance performance, our approach emphasizes the improved utilization of LR information. We find that different regions of the LR image can be viewed as corresponding to different timesteps in a diffusion process, where flat areas are closer to the target HR distribution but edge and texture regions are farther away. In these flat areas, applying a slight noise is more advantageous for the reconstruction. We associate this characteristic with uncertainty and propose to apply uncertainty estimate to guide region-specific noise level control, a technique we refer to as Uncertainty-guided Noise Weighting. Pixels with lower uncertainty (i.e., flat regions) receive reduced noise to preserve more LR information, therefore improving performance. Furthermore, we modify the network architecture of previous methods to develop our Uncertainty-guided Perturbation Super-Resolution (UPSR) model. Extensive experimental results demonstrate that, despite reduced model size and training overhead, the proposed UWSR method outperforms current state-of-the-art methods across various datasets, both quantitatively and qualitatively.
Enhancing Score-Based Sampling Methods with Ensembles
We introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"ollmer sampler. We demonstrate the efficacy of ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like NUTS. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable. Finally, we showcase its application in the context of Bayesian inversion problems within the geophysical sciences.
Model-agnostic search for the quasinormal modes of gravitational wave echoes
Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology".
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
We study the problem of approximate sampling from non-log-concave distributions, e.g., Gaussian mixtures, which is often challenging even in low dimensions due to their multimodality. We focus on performing this task via Markov chain Monte Carlo (MCMC) methods derived from discretizations of the overdamped Langevin diffusions, which are commonly known as Langevin Monte Carlo algorithms. Furthermore, we are also interested in two nonsmooth cases for which a large class of proximal MCMC methods have been developed: (i) a nonsmooth prior is considered with a Gaussian mixture likelihood; (ii) a Laplacian mixture distribution. Such nonsmooth and non-log-concave sampling tasks arise from a wide range of applications to Bayesian inference and imaging inverse problems such as image deconvolution. We perform numerical simulations to compare the performance of most commonly used Langevin Monte Carlo algorithms.
Matrix approach to generalized ensemble theory
We provide a concise framework for generalized ensemble theory through a matrix-based approach. By introducing an observation matrix, any discrete probability distribution, including those for non-equilibrium steady states, can be expressed as a generalized Boltzmann distribution, with observables and conjugate variables as the basis and coordinates in a linear space. In this framework, we identify the minimal sufficient statistics required for inferring the Boltzmann distribution. Furthermore, we show that the Hadamard and Vandermonde matrices are suitable observation matrices for spin systems and random walks. In master equation systems, the probability flux observation matrix facilitates the identification of detailed balance violations. Our findings provide a new approach to developing generalized ensemble theory for non-equilibrium steady-state systems.
How much is a noisy image worth? Data Scaling Laws for Ambient Diffusion
The quality of generative models depends on the quality of the data they are trained on. Creating large-scale, high-quality datasets is often expensive and sometimes impossible, e.g. in certain scientific applications where there is no access to clean data due to physical or instrumentation constraints. Ambient Diffusion and related frameworks train diffusion models with solely corrupted data (which are usually cheaper to acquire) but ambient models significantly underperform models trained on clean data. We study this phenomenon at scale by training more than 80 models on data with different corruption levels across three datasets ranging from 30,000 to approx 1.3M samples. We show that it is impossible, at these sample sizes, to match the performance of models trained on clean data when only training on noisy data. Yet, a combination of a small set of clean data (e.g.~10% of the total dataset) and a large set of highly noisy data suffices to reach the performance of models trained solely on similar-size datasets of clean data, and in particular to achieve near state-of-the-art performance. We provide theoretical evidence for our findings by developing novel sample complexity bounds for learning from Gaussian Mixtures with heterogeneous variances. Our theoretical model suggests that, for large enough datasets, the effective marginal utility of a noisy sample is exponentially worse than that of a clean sample. Providing a small set of clean samples can significantly reduce the sample size requirements for noisy data, as we also observe in our experiments.
Dynamical properties of a small heterogeneous chain network of neurons in discrete time
We propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and fold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy.
Predictable Compression Failures: Why Language Models Actually Hallucinate
Large language models perform near-Bayesian inference yet violate permutation invariance on exchangeable data. We resolve this by showing transformers minimize expected conditional description length (cross-entropy) over orderings, E_pi[ell(Y mid Gamma_pi(X))], which admits a Kolmogorov-complexity interpretation up to additive constants, rather than the permutation-invariant description length ell(Y mid X). This makes them Bayesian in expectation, not in realization. We derive (i) a Quantified Martingale Violation bound showing order-induced deviations scale as O(log n) with constants; (ii) the Expectation-level Decompression Law linking information budgets to reliability for Bernoulli predicates; and (iii) deployable planners (B2T/RoH/ISR) for answer/abstain decisions. Empirically, permutation dispersion follows a+bln n (Qwen2-7B b approx 0.377, Llama-3.1-8B b approx 0.147); permutation mixtures improve ground-truth likelihood/accuracy; and randomized dose-response shows hallucinations drop by sim 0.13 per additional nat. A pre-specified audit with a fixed ISR=1.0 achieves near-0\% hallucinations via calibrated refusal at 24\% abstention. The framework turns hallucinations into predictable compression failures and enables principled information budgeting.
Denoising Task Difficulty-based Curriculum for Training Diffusion Models
Diffusion-based generative models have emerged as powerful tools in the realm of generative modeling. Despite extensive research on denoising across various timesteps and noise levels, a conflict persists regarding the relative difficulties of the denoising tasks. While various studies argue that lower timesteps present more challenging tasks, others contend that higher timesteps are more difficult. To address this conflict, our study undertakes a comprehensive examination of task difficulties, focusing on convergence behavior and changes in relative entropy between consecutive probability distributions across timesteps. Our observational study reveals that denoising at earlier timesteps poses challenges characterized by slower convergence and higher relative entropy, indicating increased task difficulty at these lower timesteps. Building on these observations, we introduce an easy-to-hard learning scheme, drawing from curriculum learning, to enhance the training process of diffusion models. By organizing timesteps or noise levels into clusters and training models with ascending orders of difficulty, we facilitate an order-aware training regime, progressing from easier to harder denoising tasks, thereby deviating from the conventional approach of training diffusion models simultaneously across all timesteps. Our approach leads to improved performance and faster convergence by leveraging benefits of curriculum learning, while maintaining orthogonality with existing improvements in diffusion training techniques. We validate these advantages through comprehensive experiments in image generation tasks, including unconditional, class-conditional, and text-to-image generation.
State and parameter learning with PaRIS particle Gibbs
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
Variabilities of Gamma-ray Bursts from the Dynamics of Fallback Material after Tidal Disruption
The gamma-ray burst (GRB) GRB 211211A and GRB 060614, believed to originate from the merger of compact objects, exhibit similarities to the jetted tidal disruption event (TDE) Sw J1644+57, by showing violent variabilities in the light-curve during the decay phase. Previous studies suggest that such fluctuations in TDE may arise from the fallback of tidal disrupted debris. In this paper, we introduce the fluctuations of the mass distribution {rm d}M/{rm d}E for the debris ejected during the tidal disruption (with energy E) and study their impact on jet power. Turbulence induced by tidal force and the self-gravity of the debris may imprint variabilities in {rm d}M/{rm d}E during fallback. We model these fluctuations with a power density spectrum propto f_{rm E}^{beta}, where f_{rm E} = 1/E and beta is the power-law index. We find that the resulting light curve can preserve the fluctuation characteristics from {rm d}M/{rm d}E. In addition, the observed fluctuations in the light-curves can be reproduced for a given suitable beta. Based on the observations, we find that the value of beta should be around -1.
Noise-Robust and Resource-Efficient ADMM-based Federated Learning
Federated learning (FL) leverages client-server communications to train global models on decentralized data. However, communication noise or errors can impair model accuracy. To address this problem, we propose a novel FL algorithm that enhances robustness against communication noise while also reducing communication load. We derive the proposed algorithm through solving the weighted least-squares (WLS) regression problem as an illustrative example. We first frame WLS regression as a distributed convex optimization problem over a federated network employing random scheduling for improved communication efficiency. We then apply the alternating direction method of multipliers (ADMM) to iteratively solve this problem. To counteract the detrimental effects of cumulative communication noise, we introduce a key modification by eliminating the dual variable and implementing a new local model update at each participating client. This subtle yet effective change results in using a single noisy global model update at each client instead of two, improving robustness against additive communication noise. Furthermore, we incorporate another modification enabling clients to continue local updates even when not selected by the server, leading to substantial performance improvements. Our theoretical analysis confirms the convergence of our algorithm in both mean and the mean-square senses, even when the server communicates with a random subset of clients over noisy links at each iteration. Numerical results validate the effectiveness of our proposed algorithm and corroborate our theoretical findings.
Cross-Validation Is All You Need: A Statistical Approach To Label Noise Estimation
Label noise is prevalent in machine learning datasets. It is crucial to identify and remove label noise because models trained on noisy data can have substantially reduced accuracy and generalizability. Most existing label noise detection approaches are designed for classification tasks, and data cleaning for outcome prediction analysis is relatively unexplored. Inspired by the fluctuations in performance across different folds in cross-validation, we propose Repeated Cross-Validations for label noise estimation (ReCoV) to address this gap. ReCoV constructs a noise histogram that ranks the noise level of samples based on a large number of cross-validations by recording sample IDs in each worst-performing fold. We further propose three approaches for identifying noisy samples based on noise histograms to address increasingly complex noise distributions. We show that ReCoV outperforms state-of-the-art algorithms for label cleaning in a classification task benchmark. More importantly, we show that removing ReCoV-identified noisy samples in two medical imaging outcome prediction datasets significantly improves model performance on test sets. As a statistical approach that does not rely on hyperparameters, noise distributions, or model structures, ReCoV is compatible with any machine learning analysis.
Feature Programming for Multivariate Time Series Prediction
We introduce the concept of programmable feature engineering for time series modeling and propose a feature programming framework. This framework generates large amounts of predictive features for noisy multivariate time series while allowing users to incorporate their inductive bias with minimal effort. The key motivation of our framework is to view any multivariate time series as a cumulative sum of fine-grained trajectory increments, with each increment governed by a novel spin-gas dynamical Ising model. This fine-grained perspective motivates the development of a parsimonious set of operators that summarize multivariate time series in an abstract fashion, serving as the foundation for large-scale automated feature engineering. Numerically, we validate the efficacy of our method on several synthetic and real-world noisy time series datasets.
NBM: an Open Dataset for the Acoustic Monitoring of Nocturnal Migratory Birds in Europe
The persisting threats on migratory bird populations highlight the urgent need for effective monitoring techniques that could assist in their conservation. Among these, passive acoustic monitoring is an essential tool, particularly for nocturnal migratory species that are difficult to track otherwise. This work presents the Nocturnal Bird Migration (NBM) dataset, a collection of 13,359 annotated vocalizations from 117 species of the Western Palearctic. The dataset includes precise time and frequency annotations, gathered by dozens of bird enthusiasts across France, enabling novel downstream acoustic analysis. In particular, we prove the utility of this database by training an original two-stage deep object detection model tailored for the processing of audio data. While allowing the precise localization of bird calls in spectrograms, this model shows competitive accuracy on the 45 main species of the dataset with state-of-the-art systems trained on much larger audio collections. These results highlight the interest of fostering similar open-science initiatives to acquire costly but valuable fine-grained annotations of audio files. All data and code are made openly available.
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
Standard diffusion models involve an image transform -- adding Gaussian noise -- and an image restoration operator that inverts this degradation. We observe that the generative behavior of diffusion models is not strongly dependent on the choice of image degradation, and in fact an entire family of generative models can be constructed by varying this choice. Even when using completely deterministic degradations (e.g., blur, masking, and more), the training and test-time update rules that underlie diffusion models can be easily generalized to create generative models. The success of these fully deterministic models calls into question the community's understanding of diffusion models, which relies on noise in either gradient Langevin dynamics or variational inference, and paves the way for generalized diffusion models that invert arbitrary processes. Our code is available at https://github.com/arpitbansal297/Cold-Diffusion-Models
Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation
Most automatic speech processing systems are sensitive to the acoustic environment, with degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a pipeline to simulate audio segments recorded in noisy and reverberant conditions. We then use the simulated audio to jointly train the Brouhaha model for voice activity detection, signal-to-noise ratio estimation, and C50 room acoustics prediction. We show how the predicted SNR and C50 values can be used to investigate and help diagnose errors made by automatic speech processing tools (such as pyannote.audio for speaker diarization or OpenAI's Whisper for automatic speech recognition). Both our pipeline and a pretrained model are open source and shared with the speech community.
Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation via Neural Networks
In the emergent realm of quantum computing, the Variational Quantum Eigensolver (VQE) stands out as a promising algorithm for solving complex quantum problems, especially in the noisy intermediate-scale quantum (NISQ) era. However, the ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes. This research introduces a novel approach to ameliorate this challenge by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations. By employing the Qiskit framework, we crafted parameterized quantum circuits using the RY-RZ ansatz and examined their behavior under varying levels of depolarizing noise. Our investigations spanned from determining the expectation values of a Hamiltonian, defined as a tensor product of Z operators, under different noise intensities to extracting the ground state energy. To bridge the observed outcomes under noise with the ideal noise-free scenario, we trained a Feed Forward Neural Network on the error probabilities and their associated expectation values. Remarkably, our model proficiently predicted the VQE outcome under hypothetical noise-free conditions. By juxtaposing the simulation results with real quantum device executions, we unveiled the discrepancies induced by noise and showcased the efficacy of our neural network-based ZNE technique in rectifying them. This integrative approach not only paves the way for enhanced accuracy in VQE computations on NISQ devices but also underlines the immense potential of hybrid quantum-classical paradigms in circumventing the challenges posed by quantum noise. Through this research, we envision a future where quantum algorithms can be reliably executed on noisy devices, bringing us one step closer to realizing the full potential of quantum computing.
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.
Weak localization in radiative transfer of acoustic waves in a randomly-fluctuating slab
This paper concerns the derivation of radiative transfer equations for acoustic waves propagating in a randomly fluctuating slab (between two parallel planes) in the weak-scattering regime, and the study of boundary effects through an asymptotic analysis of the Wigner transform of the wave solution. These radiative transfer equations allow to model the transport of wave energy density, taking into account the scattering by random heterogeneities. The approach builds on the method of images, where the slab is extended to a full-space, with a periodic map of mechanical properties and a series of sources located along a periodic pattern. Two types of boundary effects, both on the (small) scale of the wavelength, are observed: one at the boundaries of the slab, and one inside the domain. The former impact the entire energy density (coherent as well as incoherent) and is also observed in half-spaces. The latter, more specific to slabs, corresponds to the constructive interference of waves that have reflected at least twice on the boundaries of the slab and only impacts the coherent part of the energy density.
Diffusion Models for Medical Image Analysis: A Comprehensive Survey
Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples despite their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. To help the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis. Specifically, we introduce the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modelling frameworks: diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging.
Diffusion Posterior Sampling for General Noisy Inverse Problems
Diffusion models have been recently studied as powerful generative inverse problem solvers, owing to their high quality reconstructions and the ease of combining existing iterative solvers. However, most works focus on solving simple linear inverse problems in noiseless settings, which significantly under-represents the complexity of real-world problems. In this work, we extend diffusion solvers to efficiently handle general noisy (non)linear inverse problems via approximation of the posterior sampling. Interestingly, the resulting posterior sampling scheme is a blended version of diffusion sampling with the manifold constrained gradient without a strict measurement consistency projection step, yielding a more desirable generative path in noisy settings compared to the previous studies. Our method demonstrates that diffusion models can incorporate various measurement noise statistics such as Gaussian and Poisson, and also efficiently handle noisy nonlinear inverse problems such as Fourier phase retrieval and non-uniform deblurring. Code available at https://github.com/DPS2022/diffusion-posterior-sampling
Reverse Diffusion Monte Carlo
We propose a Monte Carlo sampler from the reverse diffusion process. Unlike the practice of diffusion models, where the intermediary updates -- the score functions -- are learned with a neural network, we transform the score matching problem into a mean estimation one. By estimating the means of the regularized posterior distributions, we derive a novel Monte Carlo sampling algorithm called reverse diffusion Monte Carlo (rdMC), which is distinct from the Markov chain Monte Carlo (MCMC) methods. We determine the sample size from the error tolerance and the properties of the posterior distribution to yield an algorithm that can approximately sample the target distribution with any desired accuracy. Additionally, we demonstrate and prove under suitable conditions that sampling with rdMC can be significantly faster than that with MCMC. For multi-modal target distributions such as those in Gaussian mixture models, rdMC greatly improves over the Langevin-style MCMC sampling methods both theoretically and in practice. The proposed rdMC method offers a new perspective and solution beyond classical MCMC algorithms for the challenging complex distributions.
Training-Free Adaptive Diffusion with Bounded Difference Approximation Strategy
Diffusion models have recently achieved great success in the synthesis of high-quality images and videos. However, the existing denoising techniques in diffusion models are commonly based on step-by-step noise predictions, which suffers from high computation cost, resulting in a prohibitive latency for interactive applications. In this paper, we propose AdaptiveDiffusion to relieve this bottleneck by adaptively reducing the noise prediction steps during the denoising process. Our method considers the potential of skipping as many noise prediction steps as possible while keeping the final denoised results identical to the original full-step ones. Specifically, the skipping strategy is guided by the third-order latent difference that indicates the stability between timesteps during the denoising process, which benefits the reusing of previous noise prediction results. Extensive experiments on image and video diffusion models demonstrate that our method can significantly speed up the denoising process while generating identical results to the original process, achieving up to an average 2~5x speedup without quality degradation.
Arbitrary-steps Image Super-resolution via Diffusion Inversion
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance. We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point. Central to our approach is a deep noise predictor to estimate the optimal noise maps for the forward diffusion process. Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result. Compared to existing approaches, our method offers a flexible and efficient sampling mechanism that supports an arbitrary number of sampling steps, ranging from one to five. Even with a single sampling step, our method demonstrates superior or comparable performance to recent state-of-the-art approaches. The code and model are publicly available at https://github.com/zsyOAOA/InvSR.
Adversarial Counterfactual Visual Explanations
Counterfactual explanations and adversarial attacks have a related goal: flipping output labels with minimal perturbations regardless of their characteristics. Yet, adversarial attacks cannot be used directly in a counterfactual explanation perspective, as such perturbations are perceived as noise and not as actionable and understandable image modifications. Building on the robust learning literature, this paper proposes an elegant method to turn adversarial attacks into semantically meaningful perturbations, without modifying the classifiers to explain. The proposed approach hypothesizes that Denoising Diffusion Probabilistic Models are excellent regularizers for avoiding high-frequency and out-of-distribution perturbations when generating adversarial attacks. The paper's key idea is to build attacks through a diffusion model to polish them. This allows studying the target model regardless of its robustification level. Extensive experimentation shows the advantages of our counterfactual explanation approach over current State-of-the-Art in multiple testbeds.
Diffusion Noise Feature: Accurate and Fast Generated Image Detection
Generative models have reached an advanced stage where they can produce remarkably realistic images. However, this remarkable generative capability also introduces the risk of disseminating false or misleading information. Notably, existing image detectors for generated images encounter challenges such as low accuracy and limited generalization. This paper seeks to address this issue by seeking a representation with strong generalization capabilities to enhance the detection of generated images. Our investigation has revealed that real and generated images display distinct latent Gaussian representations when subjected to an inverse diffusion process within a pre-trained diffusion model. Exploiting this disparity, we can amplify subtle artifacts in generated images. Building upon this insight, we introduce a novel image representation known as Diffusion Noise Feature (DNF). DNF is extracted from the estimated noise generated during the inverse diffusion process. A simple classifier, e.g., ResNet50, trained on DNF achieves high accuracy, robustness, and generalization capabilities for detecting generated images (even the corresponding generator is built with datasets/structures that are not seen during the classifier's training). We conducted experiments using four training datasets and five testsets, achieving state-of-the-art detection performance.
Seismic Signal Denoising and Decomposition Using Deep Neural Networks
Denoising and filtering are widely used in routine seismic-data-processing to improve the signal-to-noise ratio (SNR) of recorded signals and by doing so to improve subsequent analyses. In this paper we develop a new denoising/decomposition method, DeepDenoiser, based on a deep neural network. This network is able to learn simultaneously a sparse representation of data in the time-frequency domain and a non-linear function that maps this representation into masks that decompose input data into a signal of interest and noise (defined as any non-seismic signal). We show that DeepDenoiser achieves impressive denoising of seismic signals even when the signal and noise share a common frequency band. Our method properly handles a variety of colored noise and non-earthquake signals. DeepDenoiser can significantly improve the SNR with minimal changes in the waveform shape of interest, even in presence of high noise levels. We demonstrate the effect of our method on improving earthquake detection. There are clear applications of DeepDenoiser to seismic imaging, micro-seismic monitoring, and preprocessing of ambient noise data. We also note that potential applications of our approach are not limited to these applications or even to earthquake data, and that our approach can be adapted to diverse signals and applications in other settings.
WHAM!: Extending Speech Separation to Noisy Environments
Recent progress in separating the speech signals from multiple overlapping speakers using a single audio channel has brought us closer to solving the cocktail party problem. However, most studies in this area use a constrained problem setup, comparing performance when speakers overlap almost completely, at artificially low sampling rates, and with no external background noise. In this paper, we strive to move the field towards more realistic and challenging scenarios. To that end, we created the WSJ0 Hipster Ambient Mixtures (WHAM!) dataset, consisting of two speaker mixtures from the wsj0-2mix dataset combined with real ambient noise samples. The samples were collected in coffee shops, restaurants, and bars in the San Francisco Bay Area, and are made publicly available. We benchmark various speech separation architectures and objective functions to evaluate their robustness to noise. While separation performance decreases as a result of noise, we still observe substantial gains relative to the noisy signals for most approaches.
Quantifying Limits to Detection of Early Warning for Critical Transitions
Catastrophic regime shifts in complex natural systems may be averted through advanced detection. Recent work has provided a proof-of-principle that many systems approaching a catastrophic transition may be identified through the lens of early warning indicators such as rising variance or increased return times. Despite widespread appreciation of the difficulties and uncertainty involved in such forecasts, proposed methods hardly ever characterize their expected error rates. Without the benefits of replicates, controls, or hindsight, applications of these approaches must quantify how reliable different indicators are in avoiding false alarms, and how sensitive they are to missing subtle warning signs. We propose a model based approach in order to quantify this trade-off between reliability and sensitivity and allow comparisons between different indicators. We show these error rates can be quite severe for common indicators even under favorable assumptions, and also illustrate how a model-based indicator can improve this performance. We demonstrate how the performance of an early warning indicator varies in different data sets, and suggest that uncertainty quantification become a more central part of early warning predictions.
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a refinement of mean-square analysis in Li et al. (2019), and this refined framework automates the analysis of a large class of sampling algorithms based on discretizations of contractive SDEs. Using this framework, we establish an O(d/epsilon) mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known O(d/epsilon) result and is optimal (in terms of order) in both dimension d and accuracy tolerance epsilon for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.
Analyzing black-hole ringdowns II: data conditioning
Time series data from observations of black hole ringdown gravitational waves are often analyzed in the time domain by using damped sinusoid models with acyclic boundary conditions. Data conditioning operations, including downsampling, filtering, and the choice of data segment duration, reduce the computational cost of such analyses and can improve numerical stability. Here we analyze simulated damped sinsuoid signals to illustrate how data conditioning operations, if not carefully applied, can undesirably alter the analysis' posterior distributions. We discuss how currently implemented downsampling and filtering methods, if applied too aggressively, can introduce systematic errors and skew tests of general relativity. These issues arise because current downsampling and filtering methods do not operate identically on the data and model. Alternative downsampling and filtering methods which identically operate on the data and model may be achievable, but we argue that the current operations can still be implemented safely. We also show that our preferred anti-alias filtering technique, which has an instantaneous frequency-domain response at its roll-off frequency, preserves the structure of posterior distributions better than other commonly used filters with transient frequency-domain responses. Lastly, we highlight that exceptionally long data segments may need to be analyzed in cases where thin lines in the noise power spectral density overlap with central signal frequencies. Our findings may be broadly applicable to any analysis of truncated time domain data with acyclic boundary conditions.
Label Noise: Ignorance Is Bliss
We establish a new theoretical framework for learning under multi-class, instance-dependent label noise. This framework casts learning with label noise as a form of domain adaptation, in particular, domain adaptation under posterior drift. We introduce the concept of relative signal strength (RSS), a pointwise measure that quantifies the transferability from noisy to clean posterior. Using RSS, we establish nearly matching upper and lower bounds on the excess risk. Our theoretical findings support the simple Noise Ignorant Empirical Risk Minimization (NI-ERM) principle, which minimizes empirical risk while ignoring label noise. Finally, we translate this theoretical insight into practice: by using NI-ERM to fit a linear classifier on top of a self-supervised feature extractor, we achieve state-of-the-art performance on the CIFAR-N data challenge.
Unsupervised Real-World Denoising: Sparsity is All You Need
Supervised training for real-world denoising presents challenges due to the difficulty of collecting large datasets of paired noisy and clean images. Recent methods have attempted to address this by utilizing unpaired datasets of clean and noisy images. Some approaches leverage such unpaired data to train denoisers in a supervised manner by generating synthetic clean-noisy pairs. However, these methods often fall short due to the distribution gap between synthetic and real noisy images. To mitigate this issue, we propose a solution based on input sparsification, specifically using random input masking. Our method, which we refer to as Mask, Inpaint and Denoise (MID), trains a denoiser to simultaneously denoise and inpaint synthetic clean-noisy pairs. On one hand, input sparsification reduces the gap between synthetic and real noisy images. On the other hand, an inpainter trained in a supervised manner can still accurately reconstruct sparse inputs by predicting missing clean pixels using the remaining unmasked pixels. Our approach begins with a synthetic Gaussian noise sampler and iteratively refines it using a noise dataset derived from the denoiser's predictions. The noise dataset is created by subtracting predicted pseudo-clean images from real noisy images at each iteration. The core intuition is that improving the denoiser results in a more accurate noise dataset and, consequently, a better noise sampler. We validate our method through extensive experiments on real-world noisy image datasets, demonstrating competitive performance compared to existing unsupervised denoising methods.
On Convergence of Federated Averaging Langevin Dynamics
We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize communication costs. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe there is a trade-off between the pairs among communication, accuracy, and data privacy. As local devices may become inactive in federated networks, we also show convergence results based on different averaging schemes where only partial device updates are available. In such a case, we discover an additional bias that does not decay to zero.
