new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

MedCalc-Bench: Evaluating Large Language Models for Medical Calculations

As opposed to evaluating computation and logic-based reasoning, current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks.

  • 17 authors
·
Jun 17, 2024

RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models

The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model's generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RULE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy. We publicly release our benchmark and code in https://github.com/richard-peng-xia/RULE.

  • 8 authors
·
Jul 6, 2024 3

MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs

Medical tasks such as diagnosis and treatment planning require precise and complex reasoning, particularly in life-critical domains. Unlike mathematical reasoning, medical reasoning demands meticulous, verifiable thought processes to ensure reliability and accuracy. However, there is a notable lack of datasets that provide transparent, step-by-step reasoning to validate and enhance the medical reasoning ability of AI models. To bridge this gap, we introduce MedReason, a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or ``thinking paths'', which trace connections from question elements to answers via relevant KG entities. Each path is validated for consistency with clinical logic and evidence-based medicine. Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of 32,682 question-answer pairs, each with detailed, step-by-step explanations. Experiments demonstrate that fine-tuning with our dataset consistently boosts medical problem-solving capabilities, achieving significant gains of up to 7.7% for DeepSeek-Ditill-8B. Our top-performing model, MedReason-8B, outperforms the Huatuo-o1-8B, a state-of-the-art medical reasoning model, by up to 4.2% on the clinical benchmark MedBullets. We also engage medical professionals from diverse specialties to assess our dataset's quality, ensuring MedReason offers accurate and coherent medical reasoning. Our data, models, and code will be publicly available.

  • 15 authors
·
Apr 1

Medical Reasoning in LLMs: An In-Depth Analysis of DeepSeek R1

Integrating large language models (LLMs) like DeepSeek R1 into healthcare requires rigorous evaluation of their reasoning alignment with clinical expertise. This study assesses DeepSeek R1's medical reasoning against expert patterns using 100 MedQA clinical cases. The model achieved 93% diagnostic accuracy, demonstrating systematic clinical judgment through differential diagnosis, guideline-based treatment selection, and integration of patient-specific factors. However, error analysis of seven incorrect cases revealed persistent limitations: anchoring bias, challenges reconciling conflicting data, insufficient exploration of alternatives, overthinking, knowledge gaps, and premature prioritization of definitive treatment over intermediate care. Crucially, reasoning length correlated with accuracy - shorter responses (<5,000 characters) were more reliable, suggesting extended explanations may signal uncertainty or rationalization of errors. While DeepSeek R1 exhibits foundational clinical reasoning capabilities, recurring flaws highlight critical areas for refinement, including bias mitigation, knowledge updates, and structured reasoning frameworks. These findings underscore LLMs' potential to augment medical decision-making through artificial reasoning but emphasize the need for domain-specific validation, interpretability safeguards, and confidence metrics (e.g., response length thresholds) to ensure reliability in real-world applications.

  • 3 authors
·
Mar 27

DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing

The meaningful use of electronic health records (EHR) continues to progress in the digital era with clinical decision support systems augmented by artificial intelligence. A priority in improving provider experience is to overcome information overload and reduce the cognitive burden so fewer medical errors and cognitive biases are introduced during patient care. One major type of medical error is diagnostic error due to systematic or predictable errors in judgment that rely on heuristics. The potential for clinical natural language processing (cNLP) to model diagnostic reasoning in humans with forward reasoning from data to diagnosis and potentially reduce the cognitive burden and medical error has not been investigated. Existing tasks to advance the science in cNLP have largely focused on information extraction and named entity recognition through classification tasks. We introduce a novel suite of tasks coined as Diagnostic Reasoning Benchmarks, DR.BENCH, as a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability. The suite includes six tasks from ten publicly available datasets addressing clinical text understanding, medical knowledge reasoning, and diagnosis generation. DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models. Experiments with state-of-the-art pre-trained generative language models using large general domain models and models that were continually trained on a medical corpus demonstrate opportunities for improvement when evaluated in DR. BENCH. We share DR. BENCH as a publicly available GitLab repository with a systematic approach to load and evaluate models for the cNLP community.

  • 7 authors
·
Sep 29, 2022

Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases

Recent advancements in reasoning-enhanced large language models (LLMs), such as DeepSeek-R1 and OpenAI-o3, have demonstrated significant progress. However, their application in professional medical contexts remains underexplored, particularly in evaluating the quality of their reasoning processes alongside final outputs. Here, we introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references derived from clinical case reports. Spanning 13 body systems and 10 specialties, it includes both common and rare diseases. To comprehensively evaluate LLM performance, we propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey. To assess reasoning quality, we present the Reasoning Evaluator, a novel automated system that objectively scores free-text reasoning responses based on efficiency, actuality, and completeness using dynamic cross-referencing and evidence checks. Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc. Our results show that current LLMs achieve over 85% accuracy in relatively simple diagnostic tasks when provided with sufficient examination results. However, performance declines in more complex tasks, such as examination recommendation and treatment planning. While reasoning outputs are generally reliable, with factuality scores exceeding 90%, critical reasoning steps are frequently missed. These findings underscore both the progress and limitations of clinical LLMs. Notably, open-source models like DeepSeek-R1 are narrowing the gap with proprietary systems, highlighting their potential to drive accessible and equitable advancements in healthcare.

  • 10 authors
·
Mar 6

R2MED: A Benchmark for Reasoning-Driven Medical Retrieval

Current medical retrieval benchmarks primarily emphasize lexical or shallow semantic similarity, overlooking the reasoning-intensive demands that are central to clinical decision-making. In practice, physicians often retrieve authoritative medical evidence to support diagnostic hypotheses. Such evidence typically aligns with an inferred diagnosis rather than the surface form of a patient's symptoms, leading to low lexical or semantic overlap between queries and relevant documents. To address this gap, we introduce R2MED, the first benchmark explicitly designed for reasoning-driven medical retrieval. It comprises 876 queries spanning three tasks: Q&A reference retrieval, clinical evidence retrieval, and clinical case retrieval. These tasks are drawn from five representative medical scenarios and twelve body systems, capturing the complexity and diversity of real-world medical information needs. We evaluate 15 widely-used retrieval systems on R2MED and find that even the best model achieves only 31.4 nDCG@10, demonstrating the benchmark's difficulty. Classical re-ranking and generation-augmented retrieval methods offer only modest improvements. Although large reasoning models improve performance via intermediate inference generation, the best results still peak at 41.4 nDCG@10. These findings underscore a substantial gap between current retrieval techniques and the reasoning demands of real clinical tasks. We release R2MED as a challenging benchmark to foster the development of next-generation medical retrieval systems with enhanced reasoning capabilities. Data and code are available at https://github.com/R2MED/R2MED

  • 3 authors
·
May 20

MedCaseReasoning: Evaluating and learning diagnostic reasoning from clinical case reports

Doctors and patients alike increasingly use Large Language Models (LLMs) to diagnose clinical cases. However, unlike domains such as math or coding, where correctness can be objectively defined by the final answer, medical diagnosis requires both the outcome and the reasoning process to be accurate. Currently, widely used medical benchmarks like MedQA and MMLU assess only accuracy in the final answer, overlooking the quality and faithfulness of the clinical reasoning process. To address this limitation, we introduce MedCaseReasoning, the first open-access dataset for evaluating LLMs on their ability to align with clinician-authored diagnostic reasoning. The dataset includes 14,489 diagnostic question-and-answer cases, each paired with detailed reasoning statements derived from open-access medical case reports. We evaluate state-of-the-art reasoning LLMs on MedCaseReasoning and find significant shortcomings in their diagnoses and reasoning: for instance, the top-performing open-source model, DeepSeek-R1, achieves only 48% 10-shot diagnostic accuracy and mentions only 64% of the clinician reasoning statements (recall). However, we demonstrate that fine-tuning LLMs on the reasoning traces derived from MedCaseReasoning significantly improves diagnostic accuracy and clinical reasoning recall by an average relative gain of 29% and 41%, respectively. The open-source dataset, code, and models are available at https://github.com/kevinwu23/Stanford-MedCaseReasoning.

  • 10 authors
·
May 16 2

Sequential Diagnosis with Language Models

Artificial intelligence holds great promise for expanding access to expert medical knowledge and reasoning. However, most evaluations of language models rely on static vignettes and multiple-choice questions that fail to reflect the complexity and nuance of evidence-based medicine in real-world settings. In clinical practice, physicians iteratively formulate and revise diagnostic hypotheses, adapting each subsequent question and test to what they've just learned, and weigh the evolving evidence before committing to a final diagnosis. To emulate this iterative process, we introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging New England Journal of Medicine clinicopathological conference (NEJM-CPC) cases into stepwise diagnostic encounters. A physician or AI begins with a short case abstract and must iteratively request additional details from a gatekeeper model that reveals findings only when explicitly queried. Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed. We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians, proposes likely differential diagnoses and strategically selects high-value, cost-effective tests. When paired with OpenAI's o3 model, MAI-DxO achieves 80% diagnostic accuracy--four times higher than the 20% average of generalist physicians. MAI-DxO also reduces diagnostic costs by 20% compared to physicians, and 70% compared to off-the-shelf o3. When configured for maximum accuracy, MAI-DxO achieves 85.5% accuracy. These performance gains with MAI-DxO generalize across models from the OpenAI, Gemini, Claude, Grok, DeepSeek, and Llama families. We highlight how AI systems, when guided to think iteratively and act judiciously, can advance diagnostic precision and cost-effectiveness in clinical care.

  • 15 authors
·
Jun 27

MedScore: Generalizable Factuality Evaluation of Free-Form Medical Answers by Domain-adapted Claim Decomposition and Verification

While Large Language Models (LLMs) can generate fluent and convincing responses, they are not necessarily correct. This is especially apparent in the popular decompose-then-verify factuality evaluation pipeline, where LLMs evaluate generations by decomposing the generations into individual, valid claims. Factuality evaluation is especially important for medical answers, since incorrect medical information could seriously harm the patient. However, existing factuality systems are a poor match for the medical domain, as they are typically only evaluated on objective, entity-centric, formulaic texts such as biographies and historical topics. This differs from condition-dependent, conversational, hypothetical, sentence-structure diverse, and subjective medical answers, which makes decomposition into valid facts challenging. We propose MedScore, a new pipeline to decompose medical answers into condition-aware valid facts and verify against in-domain corpora. Our method extracts up to three times more valid facts than existing methods, reducing hallucination and vague references, and retaining condition-dependency in facts. The resulting factuality score substantially varies by decomposition method, verification corpus, and used backbone LLM, highlighting the importance of customizing each step for reliable factuality evaluation by using our generalizable and modularized pipeline for domain adaptation.

RAD: Towards Trustworthy Retrieval-Augmented Multi-modal Clinical Diagnosis

Clinical diagnosis is a highly specialized discipline requiring both domain expertise and strict adherence to rigorous guidelines. While current AI-driven medical research predominantly focuses on knowledge graphs or natural text pretraining paradigms to incorporate medical knowledge, these approaches primarily rely on implicitly encoded knowledge within model parameters, neglecting task-specific knowledge required by diverse downstream tasks. To address this limitation, we propose Retrieval-Augmented Diagnosis (RAD), a novel framework that explicitly injects external knowledge into multimodal models directly on downstream tasks. Specifically, RAD operates through three key mechanisms: retrieval and refinement of disease-centered knowledge from multiple medical sources, a guideline-enhanced contrastive loss that constrains the latent distance between multi-modal features and guideline knowledge, and the dual transformer decoder that employs guidelines as queries to steer cross-modal fusion, aligning the models with clinical diagnostic workflows from guideline acquisition to feature extraction and decision-making. Moreover, recognizing the lack of quantitative evaluation of interpretability for multimodal diagnostic models, we introduce a set of criteria to assess the interpretability from both image and text perspectives. Extensive evaluations across four datasets with different anatomies demonstrate RAD's generalizability, achieving state-of-the-art performance. Furthermore, RAD enables the model to concentrate more precisely on abnormal regions and critical indicators, ensuring evidence-based, trustworthy diagnosis. Our code is available at https://github.com/tdlhl/RAD.

Evolving Diagnostic Agents in a Virtual Clinical Environment

In this paper, we present a framework for training large language models (LLMs) as diagnostic agents with reinforcement learning, enabling them to manage multi-turn diagnostic processes, adaptively select examinations, and commit to final diagnoses. Unlike instruction-tuned models trained on static case summaries, our method acquires diagnostic strategies through interactive exploration and outcome-based feedback. Our contributions are fourfold: (i) We present DiagGym, a diagnostics world model trained with electronic health records that emits examination outcomes conditioned on patient history and recommended examination, serving as a virtual clinical environment for realistic diagnosis training and evaluation; (ii) We train DiagAgent via end-to-end, multi-turn reinforcement learning to learn diagnostic policies that optimize both information yield and diagnostic accuracy; (iii) We introduce DiagBench, a diagnostic benchmark comprising 750 cases with physician-validated examination recommendations and 99 cases annotated with 973 physician-written rubrics on diagnosis process; (iv) we demonstrate superior performance across diverse diagnostic settings. DiagAgent significantly outperforms 10 state-of-the-art LLMs, including DeepSeek-v3 and GPT-4o, as well as two prompt-engineered agents. In single-turn settings, DiagAgent achieves 9.34% higher diagnostic accuracy and 44.03% improvement in examination recommendation hit ratio. In end-to-end settings, it delivers 15.12% increase in diagnostic accuracy and 23.09% boost in examination recommendation F1 score. In rubric-based evaluation, it surpasses the next-best model, Claude-sonnet-4, by 7.1% in weighted rubric score. These findings indicate that learning policies in interactive clinical environments confers dynamic and clinically meaningful diagnostic management abilities unattainable through passive training alone.

  • 14 authors
·
Oct 28

DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models

The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3-mini, o1, and DeepSeek-R1, achieve only 45.82%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AIs diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.

  • 8 authors
·
May 20

Beyond Distillation: Pushing the Limits of Medical LLM Reasoning with Minimalist Rule-Based RL

Improving performance on complex tasks and enabling interpretable decision making in large language models (LLMs), especially for clinical applications, requires effective reasoning. Yet this remains challenging without supervised fine-tuning (SFT) on costly chain-of-thought (CoT) data distilled from closed-source models (e.g., GPT-4o). In this work, we present AlphaMed, the first medical LLM to show that reasoning capability can emerge purely through reinforcement learning (RL), using minimalist rule-based rewards on public multiple-choice QA datasets, without relying on SFT or distilled CoT data. AlphaMed achieves state-of-the-art results on six medical QA benchmarks, outperforming models trained with conventional SFT+RL pipelines. On challenging benchmarks (e.g., MedXpert), AlphaMed even surpasses larger or closed-source models such as DeepSeek-V3-671B and Claude-3.5-Sonnet. To understand the factors behind this success, we conduct a comprehensive data-centric analysis guided by three questions: (i) Can minimalist rule-based RL incentivize reasoning without distilled CoT supervision? (ii) How do dataset quantity and diversity impact reasoning? (iii) How does question difficulty shape the emergence and generalization of reasoning? Our findings show that dataset informativeness is a key driver of reasoning performance, and that minimalist RL on informative, multiple-choice QA data is effective at inducing reasoning without CoT supervision. We also observe divergent trends across benchmarks, underscoring limitations in current evaluation and the need for more challenging, reasoning-oriented medical QA benchmarks.

  • 9 authors
·
May 23 2

From Questions to Clinical Recommendations: Large Language Models Driving Evidence-Based Clinical Decision Making

Clinical evidence, derived from rigorous research and data analysis, provides healthcare professionals with reliable scientific foundations for informed decision-making. Integrating clinical evidence into real-time practice is challenging due to the enormous workload, complex professional processes, and time constraints. This highlights the need for tools that automate evidence synthesis to support more efficient and accurate decision making in clinical settings. This study introduces Quicker, an evidence-based clinical decision support system powered by large language models (LLMs), designed to automate evidence synthesis and generate clinical recommendations modeled after standard clinical guideline development processes. Quicker implements a fully automated chain that covers all phases, from questions to clinical recommendations, and further enables customized decision-making through integrated tools and interactive user interfaces. To evaluate Quicker's capabilities, we developed the Q2CRBench-3 benchmark dataset, based on clinical guideline development records for three different diseases. Experimental results highlighted Quicker's strong performance, with fine-grained question decomposition tailored to user preferences, retrieval sensitivities comparable to human experts, and literature screening performance approaching comprehensive inclusion of relevant studies. In addition, Quicker-assisted evidence assessment effectively supported human reviewers, while Quicker's recommendations were more comprehensive and logically coherent than those of clinicians. In system-level testing, collaboration between a single reviewer and Quicker reduced the time required for recommendation development to 20-40 minutes. In general, our findings affirm the potential of Quicker to help physicians make quicker and more reliable evidence-based clinical decisions.

  • 16 authors
·
May 15

Refine Medical Diagnosis Using Generation Augmented Retrieval and Clinical Practice Guidelines

Current medical language models, adapted from large language models (LLMs), typically predict ICD code-based diagnosis from electronic health records (EHRs) because these labels are readily available. However, ICD codes do not capture the nuanced, context-rich reasoning clinicians use for diagnosis. Clinicians synthesize diverse patient data and reference clinical practice guidelines (CPGs) to make evidence-based decisions. This misalignment limits the clinical utility of existing models. We introduce GARMLE-G, a Generation-Augmented Retrieval framework that grounds medical language model outputs in authoritative CPGs. Unlike conventional Retrieval-Augmented Generation based approaches, GARMLE-G enables hallucination-free outputs by directly retrieving authoritative guideline content without relying on model-generated text. It (1) integrates LLM predictions with EHR data to create semantically rich queries, (2) retrieves relevant CPG knowledge snippets via embedding similarity, and (3) fuses guideline content with model output to generate clinically aligned recommendations. A prototype system for hypertension diagnosis was developed and evaluated on multiple metrics, demonstrating superior retrieval precision, semantic relevance, and clinical guideline adherence compared to RAG-based baselines, while maintaining a lightweight architecture suitable for localized healthcare deployment. This work provides a scalable, low-cost, and hallucination-free method for grounding medical language models in evidence-based clinical practice, with strong potential for broader clinical deployment.

  • 8 authors
·
Jun 22

Fleming-R1: Toward Expert-Level Medical Reasoning via Reinforcement Learning

While large language models show promise in medical applications, achieving expert-level clinical reasoning remains challenging due to the need for both accurate answers and transparent reasoning processes. To address this challenge, we introduce Fleming-R1, a model designed for verifiable medical reasoning through three complementary innovations. First, our Reasoning-Oriented Data Strategy (RODS) combines curated medical QA datasets with knowledge-graph-guided synthesis to improve coverage of underrepresented diseases, drugs, and multi-hop reasoning chains. Second, we employ Chain-of-Thought (CoT) cold start to distill high-quality reasoning trajectories from teacher models, establishing robust inference priors. Third, we implement a two-stage Reinforcement Learning from Verifiable Rewards (RLVR) framework using Group Relative Policy Optimization, which consolidates core reasoning skills while targeting persistent failure modes through adaptive hard-sample mining. Across diverse medical benchmarks, Fleming-R1 delivers substantial parameter-efficient improvements: the 7B variant surpasses much larger baselines, while the 32B model achieves near-parity with GPT-4o and consistently outperforms strong open-source alternatives. These results demonstrate that structured data design, reasoning-oriented initialization, and verifiable reinforcement learning can advance clinical reasoning beyond simple accuracy optimization. We release Fleming-R1 publicly to promote transparent, reproducible, and auditable progress in medical AI, enabling safer deployment in high-stakes clinical environments.

  • 7 authors
·
Sep 18

SemEval-2023 Task 7: Multi-Evidence Natural Language Inference for Clinical Trial Data

This paper describes the results of SemEval 2023 task 7 -- Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) -- consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of significant importance to the development of systems capable of large-scale interpretation and retrieval of medical evidence, to provide personalized evidence-based care. Task 1, the entailment task, received 643 submissions from 40 participants, and Task 2, the evidence selection task, received 364 submissions from 23 participants. The tasks are challenging, with the majority of submitted systems failing to significantly outperform the majority class baseline on the entailment task, and we observe significantly better performance on the evidence selection task than on the entailment task. Increasing the number of model parameters leads to a direct increase in performance, far more significant than the effect of biomedical pre-training. Future works could explore the limitations of large models for generalization and numerical inference, and investigate methods to augment clinical datasets to allow for more rigorous testing and to facilitate fine-tuning. We envisage that the dataset, models, and results of this task will be useful to the biomedical NLI and evidence retrieval communities. The dataset, competition leaderboard, and website are publicly available.

  • 6 authors
·
May 4, 2023

Embeddings to Diagnosis: Latent Fragility under Agentic Perturbations in Clinical LLMs

LLMs for clinical decision support often fail under small but clinically meaningful input shifts such as masking a symptom or negating a finding, despite high performance on static benchmarks. These reasoning failures frequently go undetected by standard NLP metrics, which are insensitive to latent representation shifts that drive diagnosis instability. We propose a geometry-aware evaluation framework, LAPD (Latent Agentic Perturbation Diagnostics), which systematically probes the latent robustness of clinical LLMs under structured adversarial edits. Within this framework, we introduce Latent Diagnosis Flip Rate (LDFR), a model-agnostic diagnostic signal that captures representational instability when embeddings cross decision boundaries in PCA-reduced latent space. Clinical notes are generated using a structured prompting pipeline grounded in diagnostic reasoning, then perturbed along four axes: masking, negation, synonym replacement, and numeric variation to simulate common ambiguities and omissions. We compute LDFR across both foundation and clinical LLMs, finding that latent fragility emerges even under minimal surface-level changes. Finally, we validate our findings on 90 real clinical notes from the DiReCT benchmark (MIMIC-IV), confirming the generalizability of LDFR beyond synthetic settings. Our results reveal a persistent gap between surface robustness and semantic stability, underscoring the importance of geometry-aware auditing in safety-critical clinical AI.

  • 1 authors
·
Jul 27

m1: Unleash the Potential of Test-Time Scaling for Medical Reasoning with Large Language Models

Test-time scaling has emerged as a powerful technique for enhancing the reasoning capabilities of large language models. However, its effectiveness in medical reasoning remains uncertain, as the medical domain fundamentally differs from mathematical tasks in terms of knowledge representation and decision-making processes. In this paper, we provide the first comprehensive investigation of test-time scaling for medical reasoning and present m1, a simple yet effective approach that increases a model's medical reasoning capability at inference. Our evaluation across diverse medical tasks demonstrates that test-time scaling consistently enhances medical reasoning, enabling lightweight fine-tuned models under 10B parameters to establish new state-of-the-art performance, while our 32B model rivals previous 70B-scale medical LLMs. However, we identify an optimal reasoning token budget of approximately 4K, beyond which performance may degrade due to overthinking. Budget forcing, which extends test-time computation through iterative prompts, helps models double-check answers but does not necessarily improve the overall medical QA performance and, in some cases, even introduces errors into previously correct responses. Our case-by-case analysis identifies insufficient medical knowledge as a key bottleneck that prevents further performance gains through test-time scaling. We find that increasing data scale, improving data quality, and expanding model capacity consistently enhance medical knowledge grounding, enabling continued performance improvements, particularly on challenging medical benchmarks where smaller models reach saturation. These findings underscore fundamental differences between medical and mathematical reasoning in LLMs, highlighting that enriched medical knowledge, other than increased reasoning depth alone, is essential for realizing the benefits of test-time scaling.

  • 5 authors
·
Apr 1 2

Evidence Inference 2.0: More Data, Better Models

How do we most effectively treat a disease or condition? Ideally, we could consult a database of evidence gleaned from clinical trials to answer such questions. Unfortunately, no such database exists; clinical trial results are instead disseminated primarily via lengthy natural language articles. Perusing all such articles would be prohibitively time-consuming for healthcare practitioners; they instead tend to depend on manually compiled systematic reviews of medical literature to inform care. NLP may speed this process up, and eventually facilitate immediate consult of published evidence. The Evidence Inference dataset was recently released to facilitate research toward this end. This task entails inferring the comparative performance of two treatments, with respect to a given outcome, from a particular article (describing a clinical trial) and identifying supporting evidence. For instance: Does this article report that chemotherapy performed better than surgery for five-year survival rates of operable cancers? In this paper, we collect additional annotations to expand the Evidence Inference dataset by 25\%, provide stronger baseline models, systematically inspect the errors that these make, and probe dataset quality. We also release an abstract only (as opposed to full-texts) version of the task for rapid model prototyping. The updated corpus, documentation, and code for new baselines and evaluations are available at http://evidence-inference.ebm-nlp.com/.

  • 5 authors
·
May 8, 2020

Belief in the Machine: Investigating Epistemological Blind Spots of Language Models

As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.

  • 7 authors
·
Oct 28, 2024

ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification

Recent advances in reasoning-enhanced large language models (LLMs) and multimodal LLMs (MLLMs) have significantly improved performance in complex tasks, yet medical AI models often overlook the structured reasoning processes inherent in clinical practice. In this work, we present ChestX-Reasoner, a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports, reflecting the step-by-step reasoning followed by radiologists. We construct a large dataset by extracting and refining reasoning chains from routine radiology reports. Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards. We introduce RadRBench-CXR, a comprehensive benchmark featuring 59K visual question answering samples with 301K clinically validated reasoning steps, and propose RadRScore, a metric evaluating reasoning factuality, completeness, and effectiveness. ChestX-Reasoner outperforms existing medical and general-domain MLLMs in both diagnostic accuracy and reasoning ability, achieving 16%, 5.9%, and 18% improvements in reasoning ability compared to the best medical MLLM, the best general MLLM, and its base model, respectively, as well as 3.3%, 24%, and 27% improvements in outcome accuracy. All resources are open-sourced to facilitate further research in medical reasoning MLLMs.

  • 6 authors
·
Apr 29

Medical Adaptation of Large Language and Vision-Language Models: Are We Making Progress?

Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare seven public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting regime for medical question-answering (QA) tasks. For instance, across the tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 12.1% of cases, reach a (statistical) tie in 49.8% of cases, and are significantly worse than their base models in the remaining 38.2% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.

  • 4 authors
·
Nov 6, 2024

Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support

Large language models (LLMs), particularly those with reasoning capabilities, have rapidly advanced in recent years, demonstrating significant potential across a wide range of applications. However, their deployment in healthcare, especially in disease reasoning tasks, is hindered by the challenge of acquiring expert-level cognitive data. In this paper, we introduce Citrus, a medical language model that bridges the gap between clinical expertise and AI reasoning by emulating the cognitive processes of medical experts. The model is trained on a large corpus of simulated expert disease reasoning data, synthesized using a novel approach that accurately captures the decision-making pathways of clinicians. This approach enables Citrus to better simulate the complex reasoning processes involved in diagnosing and treating medical conditions.To further address the lack of publicly available datasets for medical reasoning tasks, we release the last-stage training data, including a custom-built medical diagnostic dialogue dataset. This open-source contribution aims to support further research and development in the field. Evaluations using authoritative benchmarks such as MedQA, covering tasks in medical reasoning and language understanding, show that Citrus achieves superior performance compared to other models of similar size. These results highlight Citrus potential to significantly enhance medical decision support systems, providing a more accurate and efficient tool for clinical decision-making.

  • 12 authors
·
Feb 25

The Limited Impact of Medical Adaptation of Large Language and Vision-Language Models

Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare ten public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting and supervised fine-tuning regimes for medical question-answering (QA). For instance, across all tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 22.7% of cases, reach a (statistical) tie in 36.8% of cases, and are significantly worse than their base models in the remaining 40.5% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately in zero-/few-shot prompting; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Meanwhile, we find that after fine-tuning on specific QA tasks, medical LLMs can show performance improvements, but the benefits do not carry over to tasks based on clinical notes. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.

  • 5 authors
·
Nov 13, 2024

SpineBench: A Clinically Salient, Level-Aware Benchmark Powered by the SpineMed-450k Corpus

Spine disorders affect 619 million people globally and are a leading cause of disability, yet AI-assisted diagnosis remains limited by the lack of level-aware, multimodal datasets. Clinical decision-making for spine disorders requires sophisticated reasoning across X-ray, CT, and MRI at specific vertebral levels. However, progress has been constrained by the absence of traceable, clinically-grounded instruction data and standardized, spine-specific benchmarks. To address this, we introduce SpineMed, an ecosystem co-designed with practicing spine surgeons. It features SpineMed-450k, the first large-scale dataset explicitly designed for vertebral-level reasoning across imaging modalities with over 450,000 instruction instances, and SpineBench, a clinically-grounded evaluation framework. SpineMed-450k is curated from diverse sources, including textbooks, guidelines, open datasets, and ~1,000 de-identified hospital cases, using a clinician-in-the-loop pipeline with a two-stage LLM generation method (draft and revision) to ensure high-quality, traceable data for question-answering, multi-turn consultations, and report generation. SpineBench evaluates models on clinically salient axes, including level identification, pathology assessment, and surgical planning. Our comprehensive evaluation of several recently advanced large vision-language models (LVLMs) on SpineBench reveals systematic weaknesses in fine-grained, level-specific reasoning. In contrast, our model fine-tuned on SpineMed-450k demonstrates consistent and significant improvements across all tasks. Clinician assessments confirm the diagnostic clarity and practical utility of our model's outputs.

Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding

Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions to assist in diagnostic and treatment tasks. However, VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information. This challenge is particularly pronounced in the medical domain, where we do not only require VLM outputs to be accurate in single interactions but also to be consistent with clinical reasoning and diagnostic pathways throughout multi-turn conversations. For this purpose, we propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge. These representations are utilized to (i) generate GPT-4-guided visual instruction tuning data at scale, simulating clinician-VLM conversations with demonstrations of clinical reasoning, and (ii) create an automatic reward function that evaluates the clinical validity of VLM generations throughout clinician-VLM interactions. Our algorithm eliminates the need for human involvement in training data generation or reward model construction, reducing costs compared to standard reinforcement learning with human feedback (RLHF). We apply our alignment algorithm to develop Dr-LLaVA, a conversational VLM finetuned for analyzing bone marrow pathology slides, demonstrating strong performance in multi-turn medical conversations.

  • 7 authors
·
May 29, 2024

Bridging the Gap in Ophthalmic AI: MM-Retinal-Reason Dataset and OphthaReason Model toward Dynamic Multimodal Reasoning

Multimodal large language models (MLLMs) have recently demonstrated remarkable reasoning abilities with reinforcement learning paradigm. Although several multimodal reasoning models have been explored in the medical domain, most of them focus exclusively on basic reasoning, which refers to shallow inference based on visual feature matching. However, real-world clinical diagnosis extends beyond basic reasoning, demanding reasoning processes that integrate heterogeneous clinical information (such as chief complaints and medical history) with multimodal medical imaging data. To bridge this gap, we introduce MM-Retinal-Reason, the first ophthalmic multimodal dataset with the full spectrum of perception and reasoning. It encompasses both basic reasoning tasks and complex reasoning tasks, aiming to enhance visual-centric fundamental reasoning capabilities and emulate realistic clinical thinking patterns. Building upon MM-Retinal-Reason, we propose OphthaReason, the first ophthalmology-specific multimodal reasoning model with step-by-step reasoning traces. To enable flexible adaptation to both basic and complex reasoning tasks, we specifically design a novel method called Uncertainty-Aware Dynamic Thinking (UADT), which estimates sample-level uncertainty via entropy and dynamically modulates the model's exploration depth using a shaped advantage mechanism. Comprehensive experiments demonstrate that our model achieves state-of-the-art performance on both basic and complex reasoning tasks, outperforming general-purpose MLLMs, medical MLLMs, RL-based medical MLLMs, and ophthalmic MLLMs by at least 24.92\%, 15.00\%, 21.20\%, and 17.66\%. Project Page: https://github.com/lxirich/OphthaReason{link}.

  • 9 authors
·
Aug 22

CliBench: Multifaceted Evaluation of Large Language Models in Clinical Decisions on Diagnoses, Procedures, Lab Tests Orders and Prescriptions

The integration of Artificial Intelligence (AI), especially Large Language Models (LLMs), into the clinical diagnosis process offers significant potential to improve the efficiency and accessibility of medical care. While LLMs have shown some promise in the medical domain, their application in clinical diagnosis remains underexplored, especially in real-world clinical practice, where highly sophisticated, patient-specific decisions need to be made. Current evaluations of LLMs in this field are often narrow in scope, focusing on specific diseases or specialties and employing simplified diagnostic tasks. To bridge this gap, we introduce CliBench, a novel benchmark developed from the MIMIC IV dataset, offering a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis. This benchmark not only covers diagnoses from a diverse range of medical cases across various specialties but also incorporates tasks of clinical significance: treatment procedure identification, lab test ordering and medication prescriptions. Supported by structured output ontologies, CliBench enables a precise and multi-granular evaluation, offering an in-depth understanding of LLM's capability on diverse clinical tasks of desired granularity. We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making. Our preliminary results shed light on the potential and limitations of current LLMs in clinical settings, providing valuable insights for future advancements in LLM-powered healthcare.

  • 7 authors
·
Jun 14, 2024

Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators

Online medical consultation (OMC) restricts doctors to gathering patient information solely through inquiries, making the already complex sequential decision-making process of diagnosis even more challenging. Recently, the rapid advancement of large language models has demonstrated a significant potential to transform OMC. However, most studies have primarily focused on improving diagnostic accuracy under conditions of relatively sufficient information, while paying limited attention to the "inquiry" phase of the consultation process. This lack of focus has left the relationship between "inquiry" and "diagnosis" insufficiently explored. In this paper, we first extract real patient interaction strategies from authentic doctor-patient conversations and use these strategies to guide the training of a patient simulator that closely mirrors real-world behavior. By inputting medical records into our patient simulator to simulate patient responses, we conduct extensive experiments to explore the relationship between "inquiry" and "diagnosis" in the consultation process. Experimental results demonstrate that inquiry and diagnosis adhere to the Liebig's law: poor inquiry quality limits the effectiveness of diagnosis, regardless of diagnostic capability, and vice versa. Furthermore, the experiments reveal significant differences in the inquiry performance of various models. To investigate this phenomenon, we categorize the inquiry process into four types: (1) chief complaint inquiry; (2) specification of known symptoms; (3) inquiry about accompanying symptoms; and (4) gathering family or medical history. We analyze the distribution of inquiries across the four types for different models to explore the reasons behind their significant performance differences. We plan to open-source the weights and related code of our patient simulator at https://github.com/LIO-H-ZEN/PatientSimulator.

CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures

Explaining Artificial Intelligence (AI) decisions is a major challenge nowadays in AI, in particular when applied to sensitive scenarios like medicine and law. However, the need to explain the rationale behind decisions is a main issue also for human-based deliberation as it is important to justify why a certain decision has been taken. Resident medical doctors for instance are required not only to provide a (possibly correct) diagnosis, but also to explain how they reached a certain conclusion. Developing new tools to aid residents to train their explanation skills is therefore a central objective of AI in education. In this paper, we follow this direction, and we present, to the best of our knowledge, the first multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are enriched with a natural language explanation written by doctors. These explanations have been manually annotated with argument components (i.e., premise, claim) and argument relations (i.e., attack, support), resulting in the Multilingual CasiMedicos-Arg dataset which consists of 558 clinical cases in four languages (English, Spanish, French, Italian) with explanations, where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations. We conclude by showing how competitive baselines perform over this challenging dataset for the argument mining task.

  • 6 authors
·
Oct 7, 2024

Evaluation of Popular XAI Applied to Clinical Prediction Models: Can They be Trusted?

The absence of transparency and explainability hinders the clinical adoption of Machine learning (ML) algorithms. Although various methods of explainable artificial intelligence (XAI) have been suggested, there is a lack of literature that delves into their practicality and assesses them based on criteria that could foster trust in clinical environments. To address this gap this study evaluates two popular XAI methods used for explaining predictive models in the healthcare context in terms of whether they (i) generate domain-appropriate representation, i.e. coherent with respect to the application task, (ii) impact clinical workflow and (iii) are consistent. To that end, explanations generated at the cohort and patient levels were analysed. The paper reports the first benchmarking of the XAI methods applied to risk prediction models obtained by evaluating the concordance between generated explanations and the trigger of a future clinical deterioration episode recorded by the data collection system. We carried out an analysis using two Electronic Medical Records (EMR) datasets sourced from Australian major hospitals. The findings underscore the limitations of state-of-the-art XAI methods in the clinical context and their potential benefits. We discuss these limitations and contribute to the theoretical development of trustworthy XAI solutions where clinical decision support guides the choice of intervention by suggesting the pattern or drivers for clinical deterioration in the future.

  • 5 authors
·
Jun 20, 2023

Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement

The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps between rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.

  • 11 authors
·
Oct 12, 2023

MedAgent-Pro: Towards Multi-modal Evidence-based Medical Diagnosis via Reasoning Agentic Workflow

Developing reliable AI systems to assist human clinicians in multi-modal medical diagnosis has long been a key objective for researchers. Recently, Multi-modal Large Language Models (MLLMs) have gained significant attention and achieved success across various domains. With strong reasoning capabilities and the ability to perform diverse tasks based on user instructions, they hold great potential for enhancing medical diagnosis. However, directly applying MLLMs to the medical domain still presents challenges. They lack detailed perception of visual inputs, limiting their ability to perform quantitative image analysis, which is crucial for medical diagnostics. Additionally, MLLMs often exhibit hallucinations and inconsistencies in reasoning, whereas clinical diagnoses must adhere strictly to established criteria. To address these challenges, we propose MedAgent-Pro, an evidence-based reasoning agentic system designed to achieve reliable, explainable, and precise medical diagnoses. This is accomplished through a hierarchical workflow: at the task level, knowledge-based reasoning generate reliable diagnostic plans for specific diseases following retrieved clinical criteria. While at the case level, multiple tool agents process multi-modal inputs, analyze different indicators according to the plan, and provide a final diagnosis based on both quantitative and qualitative evidence. Comprehensive experiments on both 2D and 3D medical diagnosis tasks demonstrate the superiority and effectiveness of MedAgent-Pro, while case studies further highlight its reliability and interpretability. The code is available at https://github.com/jinlab-imvr/MedAgent-Pro.

  • 4 authors
·
Mar 21 2

WiNGPT-3.0 Technical Report

Current Large Language Models (LLMs) exhibit significant limitations, notably in structured, interpretable, and verifiable medical reasoning, alongside practical deployment challenges related to computational resources and data privacy. This report focused on the development of WiNGPT-3.0, the 32-billion parameter LLMs, engineered with the objective of enhancing its capacity for medical reasoning and exploring its potential for effective integration within healthcare IT infrastructures. The broader aim is to advance towards clinically applicable models. The approach involved a multi-stage training pipeline tailored for general, medical, and clinical reasoning. This pipeline incorporated supervised fine-tuning (SFT) and reinforcement learning (RL), leveraging curated Long Chain-of-Thought (CoT) datasets, auxiliary reward models, and an evidence-based diagnostic chain simulation. WiNGPT-3.0 demonstrated strong performance: specific model variants achieved scores of 66.6 on MedCalc and 87.1 on MedQA-USMLE. Furthermore, targeted training improved performance on a clinical reasoning task from a baseline score of 58.1 to 62.5. These findings suggest that reinforcement learning, even when applied with a limited dataset of only a few thousand examples, can enhance medical reasoning accuracy. Crucially, this demonstration of RL's efficacy with limited data and computation paves the way for more trustworthy and practically deployable LLMs within clinical workflows and health information infrastructures.

  • 13 authors
·
May 22

Domain constraints improve risk prediction when outcome data is missing

Machine learning models are often trained to predict the outcome resulting from a human decision. For example, if a doctor decides to test a patient for disease, will the patient test positive? A challenge is that historical decision-making determines whether the outcome is observed: we only observe test outcomes for patients doctors historically tested. Untested patients, for whom outcomes are unobserved, may differ from tested patients along observed and unobserved dimensions. We propose a Bayesian model class which captures this setting. The purpose of the model is to accurately estimate risk for both tested and untested patients. Estimating this model is challenging due to the wide range of possibilities for untested patients. To address this, we propose two domain constraints which are plausible in health settings: a prevalence constraint, where the overall disease prevalence is known, and an expertise constraint, where the human decision-maker deviates from purely risk-based decision-making only along a constrained feature set. We show theoretically and on synthetic data that domain constraints improve parameter inference. We apply our model to a case study of cancer risk prediction, showing that the model's inferred risk predicts cancer diagnoses, its inferred testing policy captures known public health policies, and it can identify suboptimalities in test allocation. Though our case study is in healthcare, our analysis reveals a general class of domain constraints which can improve model estimation in many settings.

  • 3 authors
·
Dec 6, 2023

AI Debate Aids Assessment of Controversial Claims

As AI grows more powerful, it will increasingly shape how we understand the world. But with this influence comes the risk of amplifying misinformation and deepening social divides-especially on consequential topics like public health where factual accuracy directly impacts well-being. Scalable Oversight aims to ensure AI truthfulness by enabling humans to supervise systems that may exceed human capabilities--yet humans themselves hold different beliefs and biases that impair their judgment. We study whether AI debate can guide biased judges toward the truth by having two AI systems debate opposing sides of controversial COVID-19 factuality claims where people hold strong prior beliefs. We conduct two studies: one with human judges holding either mainstream or skeptical beliefs evaluating factuality claims through AI-assisted debate or consultancy protocols, and a second examining the same problem with personalized AI judges designed to mimic these different human belief systems. In our human study, we find that debate-where two AI advisor systems present opposing evidence-based arguments-consistently improves judgment accuracy and confidence calibration, outperforming consultancy with a single-advisor system by 10% overall. The improvement is most significant for judges with mainstream beliefs (+15.2% accuracy), though debate also helps skeptical judges who initially misjudge claims move toward accurate views (+4.7% accuracy). In our AI judge study, we find that AI judges with human-like personas achieve even higher accuracy (78.5%) than human judges (70.1%) and default AI judges without personas (69.8%), suggesting their potential for supervising frontier AI models. These findings highlight AI debate as a promising path toward scalable, bias-resilient oversight--leveraging both diverse human and AI judgments to move closer to truth in contested domains.

  • 14 authors
·
Jun 2

Accelerating Clinical Evidence Synthesis with Large Language Models

Synthesizing clinical evidence largely relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid expansion of publications presents challenges in efficiently identifying, summarizing, and updating clinical evidence. Here, we introduce TrialMind, a generative artificial intelligence (AI) pipeline for facilitating human-AI collaboration in three crucial tasks for evidence synthesis: study search, screening, and data extraction. To assess its performance, we chose published systematic reviews to build the benchmark dataset, named TrialReviewBench, which contains 100 systematic reviews and the associated 2,220 clinical studies. Our results show that TrialMind excels across all three tasks. In study search, it generates diverse and comprehensive search queries to achieve high recall rates (Ours 0.711-0.834 v.s. Human baseline 0.138-0.232). For study screening, TrialMind surpasses traditional embedding-based methods by 30% to 160%. In data extraction, it outperforms a GPT-4 baseline by 29.6% to 61.5%. We further conducted user studies to confirm its practical utility. Compared to manual efforts, human-AI collaboration using TrialMind yielded a 71.4% recall lift and 44.2% time savings in study screening and a 23.5% accuracy lift and 63.4% time savings in data extraction. Additionally, when comparing synthesized clinical evidence presented in forest plots, medical experts favored TrialMind's outputs over GPT-4's outputs in 62.5% to 100% of cases. These findings show the promise of LLM-based approaches like TrialMind to accelerate clinical evidence synthesis via streamlining study search, screening, and data extraction from medical literature, with exceptional performance improvement when working with human experts.

  • 6 authors
·
Jun 25, 2024

Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision

Deep neural networks have demonstrated promising performance on image recognition tasks. However, they may heavily rely on confounding factors, using irrelevant artifacts or bias within the dataset as the cue to improve performance. When a model performs decision-making based on these spurious correlations, it can become untrustable and lead to catastrophic outcomes when deployed in the real-world scene. In this paper, we explore and try to solve this problem in the context of skin cancer diagnosis. We introduce a human-in-the-loop framework in the model training process such that users can observe and correct the model's decision logic when confounding behaviors happen. Specifically, our method can automatically discover confounding factors by analyzing the co-occurrence behavior of the samples. It is capable of learning confounding concepts using easily obtained concept exemplars. By mapping the black-box model's feature representation onto an explainable concept space, human users can interpret the concept and intervene via first order-logic instruction. We systematically evaluate our method on our newly crafted, well-controlled skin lesion dataset and several public skin lesion datasets. Experiments show that our method can effectively detect and remove confounding factors from datasets without any prior knowledge about the category distribution and does not require fully annotated concept labels. We also show that our method enables the model to focus on clinical-related concepts, improving the model's performance and trustworthiness during model inference.

  • 8 authors
·
Mar 1, 2023

Gazal-R1: Achieving State-of-the-Art Medical Reasoning with Parameter-Efficient Two-Stage Training

We present Gazal-R1, a 32-billion-parameter language model that achieves state-of-the-art performance in medical reasoning while providing transparent, step-by-step explanations for clinical decision-making. Built upon Qwen3 32B, our model demonstrates that strategic training can enable mid-sized models to outperform significantly larger counterparts in specialized domains. We developed a novel two-stage training pipeline: first, supervised fine-tuning on a carefully curated dataset of 107,033 synthetic medical reasoning examples that teaches structured clinical thinking, enhanced by advanced parameter-efficient techniques including Weight-Decomposed Low-Rank Adaptation (DoRA) and Rank-Stabilized LoRA (rsLoRA); second, reinforcement learning using Group Relative Policy Optimization (GRPO) with a sophisticated multi-component reward system that refines accuracy, format adherence, and reasoning quality. Gazal-R1 achieves exceptional performance across medical benchmarks, scoring 87.1% on MedQA, 81.6% on MMLU Pro (Medical), and 79.6% on PubMedQA, surpassing models up to 12x larger. Beyond its strong empirical results, this work provides detailed insights into the challenges of training reasoning-capable models in specialized domains, including issues with reward hacking, training instability, and the fundamental tension between factual recall and detailed reasoning. Our methodology offers a reproducible framework for developing high-capability, domain-specific language models that balance performance, efficiency, and explainability.

  • 3 authors
·
Jun 18 1

Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs

Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at GitHub - manglu097/Chiron-o1: Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs

  • 9 authors
·
Jun 20 3

Baichuan-M2: Scaling Medical Capability with Large Verifier System

As large language models (LLMs) advance in conversational and reasoning capabilities, their practical application in healthcare has become a critical research focus. However, there is a notable gap between the performance of medical LLMs on static benchmarks such as USMLE and their utility in real-world clinical decision-making. This discrepancy arises because traditional exams fail to capture the dynamic, interactive nature of medical consultations. To address this challenge, we introduce a novel dynamic verification framework that moves beyond static answer verifier, establishing a large-scale, high-fidelity interactive reinforcement learning system. Our framework comprises two key components: a Patient Simulator that creates realistic clinical environments using de-identified medical records, and a Clinical Rubrics Generator that dynamically produces multi-dimensional evaluation metrics. Building on this foundation, we develop Baichuan-M2, a 32B-parameter medical augmented reasoning model trained through a multi-stage reinforcement learning strategy with an improved Group Relative Policy Optimization (GRPO) algorithm. Evaluated on HealthBench, Baichuan-M2 outperforms all other open-source models and most advanced closed-source counterparts, achieving a score above 32 on the challenging HealthBench Hard benchmark-previously exceeded only by GPT-5. Our work demonstrates that robust dynamic verifier system is essential for aligning LLM capabilities with practical clinical applications, establishing a new Pareto front in the performance-parameter trade-off for medical AI deployment.

Medical Hallucinations in Foundation Models and Their Impact on Healthcare

Foundation Models that are capable of processing and generating multi-modal data have transformed AI's role in medicine. However, a key limitation of their reliability is hallucination, where inaccurate or fabricated information can impact clinical decisions and patient safety. We define medical hallucination as any instance in which a model generates misleading medical content. This paper examines the unique characteristics, causes, and implications of medical hallucinations, with a particular focus on how these errors manifest themselves in real-world clinical scenarios. Our contributions include (1) a taxonomy for understanding and addressing medical hallucinations, (2) benchmarking models using medical hallucination dataset and physician-annotated LLM responses to real medical cases, providing direct insight into the clinical impact of hallucinations, and (3) a multi-national clinician survey on their experiences with medical hallucinations. Our results reveal that inference techniques such as Chain-of-Thought (CoT) and Search Augmented Generation can effectively reduce hallucination rates. However, despite these improvements, non-trivial levels of hallucination persist. These findings underscore the ethical and practical imperative for robust detection and mitigation strategies, establishing a foundation for regulatory policies that prioritize patient safety and maintain clinical integrity as AI becomes more integrated into healthcare. The feedback from clinicians highlights the urgent need for not only technical advances but also for clearer ethical and regulatory guidelines to ensure patient safety. A repository organizing the paper resources, summaries, and additional information is available at https://github.com/mitmedialab/medical hallucination.

  • 25 authors
·
Feb 25

ArgMed-Agents: Explainable Clinical Decision Reasoning with LLM Disscusion via Argumentation Schemes

There are two main barriers to using large language models (LLMs) in clinical reasoning. Firstly, while LLMs exhibit significant promise in Natural Language Processing (NLP) tasks, their performance in complex reasoning and planning falls short of expectations. Secondly, LLMs use uninterpretable methods to make clinical decisions that are fundamentally different from the clinician's cognitive processes. This leads to user distrust. In this paper, we present a multi-agent framework called ArgMed-Agents, which aims to enable LLM-based agents to make explainable clinical decision reasoning through interaction. ArgMed-Agents performs self-argumentation iterations via Argumentation Scheme for Clinical Discussion (a reasoning mechanism for modeling cognitive processes in clinical reasoning), and then constructs the argumentation process as a directed graph representing conflicting relationships. Ultimately, use symbolic solver to identify a series of rational and coherent arguments to support decision. We construct a formal model of ArgMed-Agents and present conjectures for theoretical guarantees. ArgMed-Agents enables LLMs to mimic the process of clinical argumentative reasoning by generating explanations of reasoning in a self-directed manner. The setup experiments show that ArgMed-Agents not only improves accuracy in complex clinical decision reasoning problems compared to other prompt methods, but more importantly, it provides users with decision explanations that increase their confidence.

  • 4 authors
·
Mar 10, 2024

The Minimum Information about CLinical Artificial Intelligence Checklist for Generative Modeling Research (MI-CLAIM-GEN)

Recent advances in generative models, including large language models (LLMs), vision language models (VLMs), and diffusion models, have accelerated the field of natural language and image processing in medicine and marked a significant paradigm shift in how biomedical models can be developed and deployed. While these models are highly adaptable to new tasks, scaling and evaluating their usage presents new challenges not addressed in previous frameworks. In particular, the ability of these models to produce useful outputs with little to no specialized training data ("zero-" or "few-shot" approaches), as well as the open-ended nature of their outputs, necessitate the development of new guidelines for robust reporting of clinical generative model research. In response to gaps in standards and best practices for the development of clinical AI tools identified by US Executive Order 141103 and several emerging national networks for clinical AI evaluation, we begin to formalize some of these guidelines by building on the original MI-CLAIM checklist. The new checklist, MI-CLAIM-GEN (Table 1), aims to address differences in training, evaluation, interpretability, and reproducibility of new generative models compared to non-generative ("predictive") AI models. This MI-CLAIM-GEN checklist also seeks to clarify cohort selection reporting with unstructured clinical data and adds additional items on alignment with ethical standards for clinical AI research.

  • 18 authors
·
Mar 4, 2024

Causal Inference by String Diagram Surgery

Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.

  • 3 authors
·
Nov 20, 2018

MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot

Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG

  • 4 authors
·
Feb 6

Explanatory Argument Extraction of Correct Answers in Resident Medical Exams

Developing the required technology to assist medical experts in their everyday activities is currently a hot topic in the Artificial Intelligence research field. Thus, a number of large language models (LLMs) and automated benchmarks have recently been proposed with the aim of facilitating information extraction in Evidence-Based Medicine (EBM) using natural language as a tool for mediating in human-AI interaction. The most representative benchmarks are limited to either multiple-choice or long-form answers and are available only in English. In order to address these shortcomings, in this paper we present a new dataset which, unlike previous work: (i) includes not only explanatory arguments for the correct answer, but also arguments to reason why the incorrect answers are not correct; (ii) the explanations are written originally by medical doctors to answer questions from the Spanish Residency Medical Exams. Furthermore, this new benchmark allows us to setup a novel extractive task which consists of identifying the explanation of the correct answer written by medical doctors. An additional benefit of our setting is that we can leverage the extractive QA paradigm to automatically evaluate performance of LLMs without resorting to costly manual evaluation by medical experts. Comprehensive experimentation with language models for Spanish shows that sometimes multilingual models fare better than monolingual ones, even outperforming models which have been adapted to the medical domain. Furthermore, results across the monolingual models are mixed, with supposedly smaller and inferior models performing competitively. In any case, the obtained results show that our novel dataset and approach can be an effective technique to help medical practitioners in identifying relevant evidence-based explanations for medical questions.

  • 5 authors
·
Dec 1, 2023

SemiHVision: Enhancing Medical Multimodal Models with a Semi-Human Annotated Dataset and Fine-Tuned Instruction Generation

Multimodal large language models (MLLMs) have made significant strides, yet they face challenges in the medical domain due to limited specialized knowledge. While recent medical MLLMs demonstrate strong performance in lab settings, they often struggle in real-world applications, highlighting a substantial gap between research and practice. In this paper, we seek to address this gap at various stages of the end-to-end learning pipeline, including data collection, model fine-tuning, and evaluation. At the data collection stage, we introduce SemiHVision, a dataset that combines human annotations with automated augmentation techniques to improve both medical knowledge representation and diagnostic reasoning. For model fine-tuning, we trained PMC-Cambrian-8B-AN over 2400 H100 GPU hours, resulting in performance that surpasses public medical models like HuatuoGPT-Vision-34B (79.0% vs. 66.7%) and private general models like Claude3-Opus (55.7%) on traditional benchmarks such as SLAKE and VQA-RAD. In the evaluation phase, we observed that traditional benchmarks cannot accurately reflect realistic clinical task capabilities. To overcome this limitation and provide more targeted guidance for model evaluation, we introduce the JAMA Clinical Challenge, a novel benchmark specifically designed to evaluate diagnostic reasoning. On this benchmark, PMC-Cambrian-AN achieves state-of-the-art performance with a GPT-4 score of 1.29, significantly outperforming HuatuoGPT-Vision-34B (1.13) and Claude3-Opus (1.17), demonstrating its superior diagnostic reasoning abilities.

  • 7 authors
·
Oct 18, 2024

Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance

Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.

  • 12 authors
·
Aug 19

Language Models And A Second Opinion Use Case: The Pocket Professional

This research tests the role of Large Language Models (LLMs) as formal second opinion tools in professional decision-making, particularly focusing on complex medical cases where even experienced physicians seek peer consultation. The work analyzed 183 challenging medical cases from Medscape over a 20-month period, testing multiple LLMs' performance against crowd-sourced physician responses. A key finding was the high overall score possible in the latest foundational models (>80% accuracy compared to consensus opinion), which exceeds most human metrics reported on the same clinical cases (450 pages of patient profiles, test results). The study rates the LLMs' performance disparity between straightforward cases (>81% accuracy) and complex scenarios (43% accuracy), particularly in these cases generating substantial debate among human physicians. The research demonstrates that LLMs may be valuable as generators of comprehensive differential diagnoses rather than as primary diagnostic tools, potentially helping to counter cognitive biases in clinical decision-making, reduce cognitive loads, and thus remove some sources of medical error. The inclusion of a second comparative legal dataset (Supreme Court cases, N=21) provides added empirical context to the AI use to foster second opinions, though these legal challenges proved considerably easier for LLMs to analyze. In addition to the original contributions of empirical evidence for LLM accuracy, the research aggregated a novel benchmark for others to score highly contested question and answer reliability between both LLMs and disagreeing human practitioners. These results suggest that the optimal deployment of LLMs in professional settings may differ substantially from current approaches that emphasize automation of routine tasks.

  • 1 authors
·
Oct 27, 2024 2

Improving Medical Reasoning with Curriculum-Aware Reinforcement Learning

Recent advances in reinforcement learning with verifiable, rule-based rewards have greatly enhanced the reasoning capabilities and out-of-distribution generalization of VLMs/LLMs, obviating the need for manually crafted reasoning chains. Despite these promising developments in the general domain, their translation to medical imaging remains limited. Current medical reinforcement fine-tuning (RFT) methods predominantly focus on close-ended VQA, thereby restricting the model's ability to engage in world knowledge retrieval and flexible task adaptation. More critically, these methods fall short of addressing the critical clinical demand for open-ended, reasoning-intensive decision-making. To bridge this gap, we introduce MedCCO, the first multimodal reinforcement learning framework tailored for medical VQA that unifies close-ended and open-ended data within a curriculum-driven RFT paradigm. Specifically, MedCCO is initially fine-tuned on a diverse set of close-ended medical VQA tasks to establish domain-grounded reasoning capabilities, and is then progressively adapted to open-ended tasks to foster deeper knowledge enhancement and clinical interpretability. We validate MedCCO across eight challenging medical VQA benchmarks, spanning both close-ended and open-ended settings. Experimental results show that MedCCO consistently enhances performance and generalization, achieving a 11.4\% accuracy gain across three in-domain tasks, and a 5.7\% improvement on five out-of-domain benchmarks. These findings highlight the promise of curriculum-guided RL in advancing robust, clinically-relevant reasoning in medical multimodal language models.

  • 4 authors
·
May 25

DDXPlus: A New Dataset For Automatic Medical Diagnosis

There has been a rapidly growing interest in Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the machine learning research literature, aiming to assist doctors in telemedicine services. These systems are designed to interact with patients, collect evidence about their symptoms and relevant antecedents, and possibly make predictions about the underlying diseases. Doctors would review the interactions, including the evidence and the predictions, collect if necessary additional information from patients, before deciding on next steps. Despite recent progress in this area, an important piece of doctors' interactions with patients is missing in the design of these systems, namely the differential diagnosis. Its absence is largely due to the lack of datasets that include such information for models to train on. In this work, we present a large-scale synthetic dataset of roughly 1.3 million patients that includes a differential diagnosis, along with the ground truth pathology, symptoms and antecedents for each patient. Unlike existing datasets which only contain binary symptoms and antecedents, this dataset also contains categorical and multi-choice symptoms and antecedents useful for efficient data collection. Moreover, some symptoms are organized in a hierarchy, making it possible to design systems able to interact with patients in a logical way. As a proof-of-concept, we extend two existing AD and ASD systems to incorporate the differential diagnosis, and provide empirical evidence that using differentials as training signals is essential for the efficiency of such systems or for helping doctors better understand the reasoning of those systems.

  • 5 authors
·
May 18, 2022

An Agentic System for Rare Disease Diagnosis with Traceable Reasoning

Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.

  • 12 authors
·
Jun 25 1

Language Models as Inductive Reasoners

Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.

  • 8 authors
·
Dec 21, 2022

Towards Accurate Differential Diagnosis with Large Language Models

An accurate differential diagnosis (DDx) is a cornerstone of medical care, often reached through an iterative process of interpretation that combines clinical history, physical examination, investigations and procedures. Interactive interfaces powered by Large Language Models (LLMs) present new opportunities to both assist and automate aspects of this process. In this study, we introduce an LLM optimized for diagnostic reasoning, and evaluate its ability to generate a DDx alone or as an aid to clinicians. 20 clinicians evaluated 302 challenging, real-world medical cases sourced from the New England Journal of Medicine (NEJM) case reports. Each case report was read by two clinicians, who were randomized to one of two assistive conditions: either assistance from search engines and standard medical resources, or LLM assistance in addition to these tools. All clinicians provided a baseline, unassisted DDx prior to using the respective assistive tools. Our LLM for DDx exhibited standalone performance that exceeded that of unassisted clinicians (top-10 accuracy 59.1% vs 33.6%, [p = 0.04]). Comparing the two assisted study arms, the DDx quality score was higher for clinicians assisted by our LLM (top-10 accuracy 51.7%) compared to clinicians without its assistance (36.1%) (McNemar's Test: 45.7, p < 0.01) and clinicians with search (44.4%) (4.75, p = 0.03). Further, clinicians assisted by our LLM arrived at more comprehensive differential lists than those without its assistance. Our study suggests that our LLM for DDx has potential to improve clinicians' diagnostic reasoning and accuracy in challenging cases, meriting further real-world evaluation for its ability to empower physicians and widen patients' access to specialist-level expertise.

  • 28 authors
·
Nov 30, 2023 1

Right Prediction, Wrong Reasoning: Uncovering LLM Misalignment in RA Disease Diagnosis

Large language models (LLMs) offer a promising pre-screening tool, improving early disease detection and providing enhanced healthcare access for underprivileged communities. The early diagnosis of various diseases continues to be a significant challenge in healthcare, primarily due to the nonspecific nature of early symptoms, the shortage of expert medical practitioners, and the need for prolonged clinical evaluations, all of which can delay treatment and adversely affect patient outcomes. With impressive accuracy in prediction across a range of diseases, LLMs have the potential to revolutionize clinical pre-screening and decision-making for various medical conditions. In this work, we study the diagnostic capability of LLMs for Rheumatoid Arthritis (RA) with real world patients data. Patient data was collected alongside diagnoses from medical experts, and the performance of LLMs was evaluated in comparison to expert diagnoses for RA disease prediction. We notice an interesting pattern in disease diagnosis and find an unexpected misalignment between prediction and explanation. We conduct a series of multi-round analyses using different LLM agents. The best-performing model accurately predicts rheumatoid arthritis (RA) diseases approximately 95\% of the time. However, when medical experts evaluated the reasoning generated by the model, they found that nearly 68\% of the reasoning was incorrect. This study highlights a clear misalignment between LLMs high prediction accuracy and its flawed reasoning, raising important questions about relying on LLM explanations in clinical settings. LLMs provide incorrect reasoning to arrive at the correct answer for RA disease diagnosis.

  • 7 authors
·
Apr 9

Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models

Vision-language models (VLMs) have advanced reasoning in natural scenes, but their role in medical imaging remains underexplored. Medical reasoning tasks demand robust image analysis and well-justified answers, posing challenges due to the complexity of medical images. Transparency and trustworthiness are essential for clinical adoption and regulatory compliance. We introduce Med-R1, a framework exploring reinforcement learning (RL) to enhance VLMs' generalizability and trustworthiness in medical reasoning. Leveraging the DeepSeek strategy, we employ Group Relative Policy Optimization (GRPO) to guide reasoning paths via reward signals. Unlike supervised fine-tuning (SFT), which often overfits and lacks generalization, RL fosters robust and diverse reasoning. Med-R1 is evaluated across eight medical imaging modalities: CT, MRI, Ultrasound, Dermoscopy, Fundus Photography, Optical Coherence Tomography (OCT), Microscopy, and X-ray Imaging. Compared to its base model, Qwen2-VL-2B, Med-R1 achieves a 29.94% accuracy improvement and outperforms Qwen2-VL-72B, which has 36 times more parameters. Testing across five question types-modality recognition, anatomy identification, disease diagnosis, lesion grading, and biological attribute analysis Med-R1 demonstrates superior generalization, exceeding Qwen2-VL-2B by 32.06% and surpassing Qwen2-VL-72B in question-type generalization. These findings show that RL improves medical reasoning and enables parameter-efficient models to outperform significantly larger ones. With interpretable reasoning outputs, Med-R1 represents a promising step toward generalizable, trustworthy, and clinically viable medical VLMs.

  • 5 authors
·
Mar 18

SilVar-Med: A Speech-Driven Visual Language Model for Explainable Abnormality Detection in Medical Imaging

Medical Visual Language Models have shown great potential in various healthcare applications, including medical image captioning and diagnostic assistance. However, most existing models rely on text-based instructions, limiting their usability in real-world clinical environments especially in scenarios such as surgery, text-based interaction is often impractical for physicians. In addition, current medical image analysis models typically lack comprehensive reasoning behind their predictions, which reduces their reliability for clinical decision-making. Given that medical diagnosis errors can have life-changing consequences, there is a critical need for interpretable and rational medical assistance. To address these challenges, we introduce an end-to-end speech-driven medical VLM, SilVar-Med, a multimodal medical image assistant that integrates speech interaction with VLMs, pioneering the task of voice-based communication for medical image analysis. In addition, we focus on the interpretation of the reasoning behind each prediction of medical abnormalities with a proposed reasoning dataset. Through extensive experiments, we demonstrate a proof-of-concept study for reasoning-driven medical image interpretation with end-to-end speech interaction. We believe this work will advance the field of medical AI by fostering more transparent, interactive, and clinically viable diagnostic support systems. Our code and dataset are publicly available at SiVar-Med.

  • 6 authors
·
Apr 14 2

CXReasonBench: A Benchmark for Evaluating Structured Diagnostic Reasoning in Chest X-rays

Recent progress in Large Vision-Language Models (LVLMs) has enabled promising applications in medical tasks, such as report generation and visual question answering. However, existing benchmarks focus mainly on the final diagnostic answer, offering limited insight into whether models engage in clinically meaningful reasoning. To address this, we present CheXStruct and CXReasonBench, a structured pipeline and benchmark built on the publicly available MIMIC-CXR-JPG dataset. CheXStruct automatically derives a sequence of intermediate reasoning steps directly from chest X-rays, such as segmenting anatomical regions, deriving anatomical landmarks and diagnostic measurements, computing diagnostic indices, and applying clinical thresholds. CXReasonBench leverages this pipeline to evaluate whether models can perform clinically valid reasoning steps and to what extent they can learn from structured guidance, enabling fine-grained and transparent assessment of diagnostic reasoning. The benchmark comprises 18,988 QA pairs across 12 diagnostic tasks and 1,200 cases, each paired with up to 4 visual inputs, and supports multi-path, multi-stage evaluation including visual grounding via anatomical region selection and diagnostic measurements. Even the strongest of 10 evaluated LVLMs struggle with structured reasoning and generalization, often failing to link abstract knowledge with anatomically grounded visual interpretation. The code is available at https://github.com/ttumyche/CXReasonBench

  • 6 authors
·
May 23 2

MedVLThinker: Simple Baselines for Multimodal Medical Reasoning

Large Reasoning Models (LRMs) have introduced a new paradigm in AI by enabling models to ``think before responding" via chain-of-thought reasoning. However, the absence of open and reproducible recipes for building reasoning-centric medical LMMs hinders community-wide research, analysis, and comparison. In this paper, we present MedVLThinker, a suite of simple yet strong baselines. Our fully open recipe consists of: (1) systematic data curation for both text-only and image-text medical data, filtered according to varying levels of reasoning difficulty, and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reasoning traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on final answer correctness. Across extensive experiments on the Qwen2.5-VL model family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently and significantly outperforms SFT. Additionally, under the RLVR framework, a key, counter-intuitive finding is that training on our curated text-only reasoning data provides a more substantial performance boost than training on multimodal image-text data. Our best open 7B model, trained using the RLVR recipe on text-only data, establishes a new state-of-the-art on existing public VQA benchmarks, surpassing all previous open-source medical LMMs. Furthermore, scaling our model to 32B achieves performance on par with the proprietary GPT-4o. We release all curated data, models, and code to provide the community with a strong, open foundation for future research in multimodal medical reasoning.

  • 5 authors
·
Aug 4

Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction

Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance.

  • 4 authors
·
Feb 11, 2016

Single Answer is Not Enough: On Generating Ranked Lists with Medical Reasoning Models

This paper presents a systematic study on enabling medical reasoning models (MRMs) to generate ranked lists of answers for open-ended questions. Clinical decision-making rarely relies on a single answer but instead considers multiple options, reducing the risks of narrow perspectives. Yet current MRMs are typically trained to produce only one answer, even in open-ended settings. We propose an alternative format: ranked lists and investigate two approaches: prompting and fine-tuning. While prompting is a cost-effective way to steer an MRM's response, not all MRMs generalize well across different answer formats: choice, short text, and list answers. Based on our prompting findings, we train and evaluate MRMs using supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). SFT teaches a model to imitate annotated responses, and RFT incentivizes exploration through the responses that maximize a reward. We propose new reward functions targeted at ranked-list answer formats, and conduct ablation studies for RFT. Our results show that while some SFT models generalize to certain answer formats, models trained with RFT are more robust across multiple formats. We also present a case study on a modified MedQA with multiple valid answers, finding that although MRMs might fail to select the benchmark's preferred ground truth, they can recognize valid answers. To the best of our knowledge, this is the first systematic investigation of approaches for enabling MRMs to generate answers as ranked lists. We hope this work provides a first step toward developing alternative answer formats that are beneficial beyond single answers in medical domains.

  • 6 authors
·
Sep 25

Panacea: A foundation model for clinical trial search, summarization, design, and recruitment

Clinical trials are fundamental in developing new drugs, medical devices, and treatments. However, they are often time-consuming and have low success rates. Although there have been initial attempts to create large language models (LLMs) for clinical trial design and patient-trial matching, these models remain task-specific and not adaptable to diverse clinical trial tasks. To address this challenge, we propose a clinical trial foundation model named Panacea, designed to handle multiple tasks, including trial search, trial summarization, trial design, and patient-trial matching. We also assemble a large-scale dataset, named TrialAlign, of 793,279 trial documents and 1,113,207 trial-related scientific papers, to infuse clinical knowledge into the model by pre-training. We further curate TrialInstruct, which has 200,866 of instruction data for fine-tuning. These resources enable Panacea to be widely applicable for a range of clinical trial tasks based on user requirements. We evaluated Panacea on a new benchmark, named TrialPanorama, which covers eight clinical trial tasks. Our method performed the best on seven of the eight tasks compared to six cutting-edge generic or medicine-specific LLMs. Specifically, Panacea showed great potential to collaborate with human experts in crafting the design of eligibility criteria, study arms, and outcome measures, in multi-round conversations. In addition, Panacea achieved 14.42% improvement in patient-trial matching, 41.78% to 52.02% improvement in trial search, and consistently ranked at the top for five aspects of trial summarization. Our approach demonstrates the effectiveness of Panacea in clinical trials and establishes a comprehensive resource, including training data, model, and benchmark, for developing clinical trial foundation models, paving the path for AI-based clinical trial development.

  • 5 authors
·
Jun 25, 2024

RJUA-QA: A Comprehensive QA Dataset for Urology

We introduce RJUA-QA, a novel medical dataset for question answering (QA) and reasoning with clinical evidence, contributing to bridge the gap between general large language models (LLMs) and medical-specific LLM applications. RJUA-QA is derived from realistic clinical scenarios and aims to facilitate LLMs in generating reliable diagnostic and advice. The dataset contains 2,132 curated Question-Context-Answer pairs, corresponding about 25,000 diagnostic records and clinical cases. The dataset covers 67 common urological disease categories, where the disease coverage exceeds 97.6\% of the population seeking medical services in urology. Each data instance in RJUA-QA comprises: (1) a question mirroring real patient to inquiry about clinical symptoms and medical conditions, (2) a context including comprehensive expert knowledge, serving as a reference for medical examination and diagnosis, (3) a doctor response offering the diagnostic conclusion and suggested examination guidance, (4) a diagnosed clinical disease as the recommended diagnostic outcome, and (5) clinical advice providing recommendations for medical examination. RJUA-QA is the first medical QA dataset for clinical reasoning over the patient inquiries, where expert-level knowledge and experience are required for yielding diagnostic conclusions and medical examination advice. A comprehensive evaluation is conducted to evaluate the performance of both medical-specific and general LLMs on the RJUA-QA dataset.

  • 17 authors
·
Dec 15, 2023

Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement

Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL's versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL}) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10\% annotated training data, averaged across all six datasets. Code and models are available at https://github.com/cheliu-computation/MERL

  • 6 authors
·
Mar 11, 2024

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.

  • 4 authors
·
Mar 29, 2022

Text2MDT: Extracting Medical Decision Trees from Medical Texts

Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to build clinical decision support systems. However, the current MDT construction methods rely heavily on time-consuming and laborious manual annotation. In this work, we propose a novel task, Text2MDT, to explore the automatic extraction of MDTs from medical texts such as medical guidelines and textbooks. We normalize the form of the MDT and create an annotated Text-to-MDT dataset in Chinese with the participation of medical experts. We investigate two different methods for the Text2MDT tasks: (a) an end-to-end framework which only relies on a GPT style large language models (LLM) instruction tuning to generate all the node information and tree structures. (b) The pipeline framework which decomposes the Text2MDT task to three subtasks. Experiments on our Text2MDT dataset demonstrate that: (a) the end-to-end method basd on LLMs (7B parameters or larger) show promising results, and successfully outperform the pipeline methods. (b) The chain-of-thought (COT) prompting method Wei2022ChainOT can improve the performance of the fine-tuned LLMs on the Text2MDT test set. (c) the lightweight pipelined method based on encoder-based pretrained models can perform comparably with LLMs with model complexity two magnititudes smaller. Our Text2MDT dataset is open-sourced at https://tianchi.aliyun.com/dataset/95414, and the source codes are open-sourced at https://github.com/michael-wzhu/text2dt.

  • 9 authors
·
Jan 3, 2024

OLAPH: Improving Factuality in Biomedical Long-form Question Answering

In the medical domain, numerous scenarios necessitate the long-form generation ability of large language models (LLMs). Specifically, when addressing patients' questions, it is essential that the model's response conveys factual claims, highlighting the need for an automated method to evaluate those claims. Thus, we introduce MedLFQA, a benchmark dataset reconstructed using long-form question-answering datasets related to the biomedical domain. We use MedLFQA to facilitate the automatic evaluations of factuality. We also propose OLAPH, a simple and novel framework that enables the improvement of factuality through automatic evaluations. The OLAPH framework iteratively trains LLMs to mitigate hallucinations using sampling predictions and preference optimization. In other words, we iteratively set the highest-scoring response as a preferred response derived from sampling predictions and train LLMs to align with the preferred response that improves factuality. We highlight that, even on evaluation metrics not used during training, LLMs trained with our OLAPH framework demonstrate significant performance improvement in factuality. Our findings reveal that a 7B LLM trained with our OLAPH framework can provide long answers comparable to the medical experts' answers in terms of factuality. We believe that our work could shed light on gauging the long-text generation ability of LLMs in the medical domain. Our code and datasets are available at https://github.com/dmis-lab/OLAPH}{https://github.com/dmis-lab/OLAPH.

  • 5 authors
·
May 21, 2024

Towards Conversational Diagnostic AI

At the heart of medicine lies the physician-patient dialogue, where skillful history-taking paves the way for accurate diagnosis, effective management, and enduring trust. Artificial Intelligence (AI) systems capable of diagnostic dialogue could increase accessibility, consistency, and quality of care. However, approximating clinicians' expertise is an outstanding grand challenge. Here, we introduce AMIE (Articulate Medical Intelligence Explorer), a Large Language Model (LLM) based AI system optimized for diagnostic dialogue. AMIE uses a novel self-play based simulated environment with automated feedback mechanisms for scaling learning across diverse disease conditions, specialties, and contexts. We designed a framework for evaluating clinically-meaningful axes of performance including history-taking, diagnostic accuracy, management reasoning, communication skills, and empathy. We compared AMIE's performance to that of primary care physicians (PCPs) in a randomized, double-blind crossover study of text-based consultations with validated patient actors in the style of an Objective Structured Clinical Examination (OSCE). The study included 149 case scenarios from clinical providers in Canada, the UK, and India, 20 PCPs for comparison with AMIE, and evaluations by specialist physicians and patient actors. AMIE demonstrated greater diagnostic accuracy and superior performance on 28 of 32 axes according to specialist physicians and 24 of 26 axes according to patient actors. Our research has several limitations and should be interpreted with appropriate caution. Clinicians were limited to unfamiliar synchronous text-chat which permits large-scale LLM-patient interactions but is not representative of usual clinical practice. While further research is required before AMIE could be translated to real-world settings, the results represent a milestone towards conversational diagnostic AI.

  • 25 authors
·
Jan 10, 2024

Foresight -- Generative Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs

Background: Electronic Health Records hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Existing approaches focus mostly on structured data and a subset of single-domain outcomes. We explore how temporal modelling of patients from free text and structured data, using deep generative transformers can be used to forecast a wide range of future disorders, substances, procedures or findings. Methods: We present Foresight, a novel transformer-based pipeline that uses named entity recognition and linking tools to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, substances, procedures and findings. We processed the entire free-text portion from three different hospital datasets totalling 811336 patients covering both physical and mental health. Findings: On tests in two UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 0.68, 0.76 and 0.88 was achieved for forecasting the next disorder in a patient timeline, while precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by five clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. As a generative model, it can forecast follow-on biomedical concepts for as many steps as required. Interpretation: Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials and clinical research to study the progression of disorders, simulate interventions and counterfactuals, and educational purposes.

  • 12 authors
·
Dec 13, 2022

BiomedSQL: Text-to-SQL for Scientific Reasoning on Biomedical Knowledge Bases

Biomedical researchers increasingly rely on large-scale structured databases for complex analytical tasks. However, current text-to-SQL systems often struggle to map qualitative scientific questions into executable SQL, particularly when implicit domain reasoning is required. We introduce BiomedSQL, the first benchmark explicitly designed to evaluate scientific reasoning in text-to-SQL generation over a real-world biomedical knowledge base. BiomedSQL comprises 68,000 question/SQL query/answer triples grounded in a harmonized BigQuery knowledge base that integrates gene-disease associations, causal inference from omics data, and drug approval records. Each question requires models to infer domain-specific criteria, such as genome-wide significance thresholds, effect directionality, or trial phase filtering, rather than rely on syntactic translation alone. We evaluate a range of open- and closed-source LLMs across prompting strategies and interaction paradigms. Our results reveal a substantial performance gap: GPT-o3-mini achieves 59.0% execution accuracy, while our custom multi-step agent, BMSQL, reaches 62.6%, both well below the expert baseline of 90.0%. BiomedSQL provides a new foundation for advancing text-to-SQL systems capable of supporting scientific discovery through robust reasoning over structured biomedical knowledge bases. Our dataset is publicly available at https://huggingface.co/datasets/NIH-CARD/BiomedSQL, and our code is open-source at https://github.com/NIH-CARD/biomedsql.

  • 11 authors
·
May 23 2