new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 29

WorldView-Bench: A Benchmark for Evaluating Global Cultural Perspectives in Large Language Models

Large Language Models (LLMs) are predominantly trained and aligned in ways that reinforce Western-centric epistemologies and socio-cultural norms, leading to cultural homogenization and limiting their ability to reflect global civilizational plurality. Existing benchmarking frameworks fail to adequately capture this bias, as they rely on rigid, closed-form assessments that overlook the complexity of cultural inclusivity. To address this, we introduce WorldView-Bench, a benchmark designed to evaluate Global Cultural Inclusivity (GCI) in LLMs by analyzing their ability to accommodate diverse worldviews. Our approach is grounded in the Multiplex Worldview proposed by Senturk et al., which distinguishes between Uniplex models, reinforcing cultural homogenization, and Multiplex models, which integrate diverse perspectives. WorldView-Bench measures Cultural Polarization, the exclusion of alternative perspectives, through free-form generative evaluation rather than conventional categorical benchmarks. We implement applied multiplexity through two intervention strategies: (1) Contextually-Implemented Multiplex LLMs, where system prompts embed multiplexity principles, and (2) Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents representing distinct cultural perspectives collaboratively generate responses. Our results demonstrate a significant increase in Perspectives Distribution Score (PDS) entropy from 13% at baseline to 94% with MAS-Implemented Multiplex LLMs, alongside a shift toward positive sentiment (67.7%) and enhanced cultural balance. These findings highlight the potential of multiplex-aware AI evaluation in mitigating cultural bias in LLMs, paving the way for more inclusive and ethically aligned AI systems.

  • 5 authors
·
May 14

Toward Inclusive Educational AI: Auditing Frontier LLMs through a Multiplexity Lens

As large language models (LLMs) like GPT-4 and Llama 3 become integral to educational contexts, concerns are mounting over the cultural biases, power imbalances, and ethical limitations embedded within these technologies. Though generative AI tools aim to enhance learning experiences, they often reflect values rooted in Western, Educated, Industrialized, Rich, and Democratic (WEIRD) cultural paradigms, potentially sidelining diverse global perspectives. This paper proposes a framework to assess and mitigate cultural bias within LLMs through the lens of applied multiplexity. Multiplexity, inspired by Senturk et al. and rooted in Islamic and other wisdom traditions, emphasizes the coexistence of diverse cultural viewpoints, supporting a multi-layered epistemology that integrates both empirical sciences and normative values. Our analysis reveals that LLMs frequently exhibit cultural polarization, with biases appearing in both overt responses and subtle contextual cues. To address inherent biases and incorporate multiplexity in LLMs, we propose two strategies: Contextually-Implemented Multiplex LLMs, which embed multiplex principles directly into the system prompt, influencing LLM outputs at a foundational level and independent of individual prompts, and Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents, each representing distinct cultural viewpoints, collaboratively generate a balanced, synthesized response. Our findings demonstrate that as mitigation strategies evolve from contextual prompting to MAS-implementation, cultural inclusivity markedly improves, evidenced by a significant rise in the Perspectives Distribution Score (PDS) and a PDS Entropy increase from 3.25\% at baseline to 98\% with the MAS-Implemented Multiplex LLMs. Sentiment analysis further shows a shift towards positive sentiment across cultures,...

  • 5 authors
·
Jan 2

Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models

As LLMs are increasingly deployed in global applications, the importance of cultural sensitivity becomes paramount, ensuring that users from diverse backgrounds feel respected and understood. Cultural harm can arise when these models fail to align with specific cultural norms, resulting in misrepresentations or violations of cultural values. This work addresses the challenges of ensuring cultural sensitivity in LLMs, especially in small-parameter models that often lack the extensive training data needed to capture global cultural nuances. We present two key contributions: (1) A cultural harm test dataset, created to assess model outputs across different cultural contexts through scenarios that expose potential cultural insensitivities, and (2) A culturally aligned preference dataset, aimed at restoring cultural sensitivity through fine-tuning based on feedback from diverse annotators. These datasets facilitate the evaluation and enhancement of LLMs, ensuring their ethical and safe deployment across different cultural landscapes. Our results show that integrating culturally aligned feedback leads to a marked improvement in model behavior, significantly reducing the likelihood of generating culturally insensitive or harmful content. Ultimately, this work paves the way for more inclusive and respectful AI systems, fostering a future where LLMs can safely and ethically navigate the complexities of diverse cultural landscapes.

  • 10 authors
·
Oct 15, 2024

Understanding Political Polarization via Jointly Modeling Users, Connections and Multimodal Contents on Heterogeneous Graphs

Understanding political polarization on social platforms is important as public opinions may become increasingly extreme when they are circulated in homogeneous communities, thus potentially causing damage in the real world. Automatically detecting the political ideology of social media users can help better understand political polarization. However, it is challenging due to the scarcity of ideology labels, complexity of multimodal contents, and cost of time-consuming data collection process. In this study, we adopt a heterogeneous graph neural network to jointly model user characteristics, multimodal post contents as well as user-item relations in a bipartite graph to learn a comprehensive and effective user embedding without requiring ideology labels. We apply our framework to online discussions about economy and public health topics. The learned embeddings are then used to detect political ideology and understand political polarization. Our framework outperforms the unimodal, early/late fusion baselines, and homogeneous GNN frameworks by a margin of at least 9% absolute gain in the area under the receiver operating characteristic on two social media datasets. More importantly, our work does not require a time-consuming data collection process, which allows faster detection and in turn allows the policy makers to conduct analysis and design policies in time to respond to crises. We also show that our framework learns meaningful user embeddings and can help better understand political polarization. Notable differences in user descriptions, topics, images, and levels of retweet/quote activities are observed. Our framework for decoding user-content interaction shows wide applicability in understanding political polarization. Furthermore, it can be extended to user-item bipartite information networks for other applications such as content and product recommendation.

  • 2 authors
·
Jan 15, 2022

Randomness, Not Representation: The Unreliability of Evaluating Cultural Alignment in LLMs

Research on the 'cultural alignment' of Large Language Models (LLMs) has emerged in response to growing interest in understanding representation across diverse stakeholders. Current approaches to evaluating cultural alignment borrow social science methodologies but often overlook systematic robustness checks. Here, we identify and test three assumptions behind current evaluation methods: (1) Stability: that cultural alignment is a property of LLMs rather than an artifact of evaluation design, (2) Extrapolability: that alignment with one culture on a narrow set of issues predicts alignment with that culture on others, and (3) Steerability: that LLMs can be reliably prompted to represent specific cultural perspectives. Through experiments examining both explicit and implicit preferences of leading LLMs, we find a high level of instability across presentation formats, incoherence between evaluated versus held-out cultural dimensions, and erratic behavior under prompt steering. We show that these inconsistencies can cause the results of an evaluation to be very sensitive to minor variations in methodology. Finally, we demonstrate in a case study on evaluation design that narrow experiments and a selective assessment of evidence can be used to paint an incomplete picture of LLMs' cultural alignment properties. Overall, these results highlight significant limitations of current approaches for evaluating the cultural alignment of LLMs.

  • 3 authors
·
Mar 11

Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation

Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.

  • 23 authors
·
Dec 4, 2024 2

DIWALI - Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context

Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating and produce biased generations naous-etal-2024-beer due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises sim8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: https://huggingface.co/datasets/nlip/DIWALI{https://huggingface.co/datasets/nlip/DIWALI}, project webpage\href{https://nlip-lab.github.io/nlip/publications/diwali/{https://nlip-lab.github.io/nlip/publications/diwali/}}, and our codebase with model outputs can be found here: https://github.com/pramitsahoo/culture-evaluation{https://github.com/pramitsahoo/culture-evaluation}.

  • 3 authors
·
Sep 22 2