- EgoPCA: A New Framework for Egocentric Hand-Object Interaction Understanding With the surge in attention to Egocentric Hand-Object Interaction (Ego-HOI), large-scale datasets such as Ego4D and EPIC-KITCHENS have been proposed. However, most current research is built on resources derived from third-person video action recognition. This inherent domain gap between first- and third-person action videos, which have not been adequately addressed before, makes current Ego-HOI suboptimal. This paper rethinks and proposes a new framework as an infrastructure to advance Ego-HOI recognition by Probing, Curation and Adaption (EgoPCA). We contribute comprehensive pre-train sets, balanced test sets and a new baseline, which are complete with a training-finetuning strategy. With our new framework, we not only achieve state-of-the-art performance on Ego-HOI benchmarks but also build several new and effective mechanisms and settings to advance further research. We believe our data and the findings will pave a new way for Ego-HOI understanding. Code and data are available at https://mvig-rhos.com/ego_pca 7 authors · Sep 5, 2023
- ECHO: Ego-Centric modeling of Human-Object interactions Modeling human-object interactions (HOI) from an egocentric perspective is a largely unexplored yet important problem due to the increasing adoption of wearable devices, such as smart glasses and watches. We investigate how much information about interaction can be recovered from only head and wrists tracking. Our answer is ECHO (Ego-Centric modeling of Human-Object interactions), which, for the first time, proposes a unified framework to recover three modalities: human pose, object motion, and contact from such minimal observation. ECHO employs a Diffusion Transformer architecture and a unique three-variate diffusion process, which jointly models human motion, object trajectory, and contact sequence, allowing for flexible input configurations. Our method operates in a head-centric canonical space, enhancing robustness to global orientation. We propose a conveyor-based inference, which progressively increases the diffusion timestamp with the frame position, allowing us to process sequences of any length. Through extensive evaluation, we demonstrate that ECHO outperforms existing methods that do not offer the same flexibility, setting a state-of-the-art in egocentric HOI reconstruction. 8 authors · Aug 29
1 Do Egocentric Video-Language Models Truly Understand Hand-Object Interactions? Egocentric video-language pretraining is a crucial step in advancing the understanding of hand-object interactions in first-person scenarios. Despite successes on existing testbeds, we find that current EgoVLMs can be easily misled by simple modifications, such as changing the verbs or nouns in interaction descriptions, with models struggling to distinguish between these changes. This raises the question: Do EgoVLMs truly understand hand-object interactions? To address this question, we introduce a benchmark called EgoHOIBench, revealing the performance limitation of current egocentric models when confronted with such challenges. We attribute this performance gap to insufficient fine-grained supervision and the greater difficulty EgoVLMs experience in recognizing verbs compared to nouns. To tackle these issues, we propose a novel asymmetric contrastive objective named EgoNCE++. For the video-to-text objective, we enhance text supervision by generating negative captions using large language models or leveraging pretrained vocabulary for HOI-related word substitutions. For the text-to-video objective, we focus on preserving an object-centric feature space that clusters video representations based on shared nouns. Extensive experiments demonstrate that EgoNCE++ significantly enhances EgoHOI understanding, leading to improved performance across various EgoVLMs in tasks such as multi-instance retrieval, action recognition, and temporal understanding. Our code is available at https://github.com/xuboshen/EgoNCEpp. 6 authors · May 27, 2024