new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 28

GuideFlow3D: Optimization-Guided Rectified Flow For Appearance Transfer

Transferring appearance to 3D assets using different representations of the appearance object - such as images or text - has garnered interest due to its wide range of applications in industries like gaming, augmented reality, and digital content creation. However, state-of-the-art methods still fail when the geometry between the input and appearance objects is significantly different. A straightforward approach is to directly apply a 3D generative model, but we show that this ultimately fails to produce appealing results. Instead, we propose a principled approach inspired by universal guidance. Given a pretrained rectified flow model conditioned on image or text, our training-free method interacts with the sampling process by periodically adding guidance. This guidance can be modeled as a differentiable loss function, and we experiment with two different types of guidance including part-aware losses for appearance and self-similarity. Our experiments show that our approach successfully transfers texture and geometric details to the input 3D asset, outperforming baselines both qualitatively and quantitatively. We also show that traditional metrics are not suitable for evaluating the task due to their inability of focusing on local details and comparing dissimilar inputs, in absence of ground truth data. We thus evaluate appearance transfer quality with a GPT-based system objectively ranking outputs, ensuring robust and human-like assessment, as further confirmed by our user study. Beyond showcased scenarios, our method is general and could be extended to different types of diffusion models and guidance functions.

The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)

Large multimodal models (LMMs) extend large language models (LLMs) with multi-sensory skills, such as visual understanding, to achieve stronger generic intelligence. In this paper, we analyze the latest model, GPT-4V(ision), to deepen the understanding of LMMs. The analysis focuses on the intriguing tasks that GPT-4V can perform, containing test samples to probe the quality and genericity of GPT-4V's capabilities, its supported inputs and working modes, and the effective ways to prompt the model. In our approach to exploring GPT-4V, we curate and organize a collection of carefully designed qualitative samples spanning a variety of domains and tasks. Observations from these samples demonstrate that GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs and the genericity of its capabilities together make GPT-4V a powerful multimodal generalist system. Furthermore, GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods such as visual referring prompting. We conclude the report with in-depth discussions on the emerging application scenarios and the future research directions for GPT-4V-based systems. We hope that this preliminary exploration will inspire future research on the next-generation multimodal task formulation, new ways to exploit and enhance LMMs to solve real-world problems, and gaining better understanding of multimodal foundation models.

  • 7 authors
·
Sep 29, 2023

ROOT: VLM based System for Indoor Scene Understanding and Beyond

Recently, Vision Language Models (VLMs) have experienced significant advancements, yet these models still face challenges in spatial hierarchical reasoning within indoor scenes. In this study, we introduce ROOT, a VLM-based system designed to enhance the analysis of indoor scenes. Specifically, we first develop an iterative object perception algorithm using GPT-4V to detect object entities within indoor scenes. This is followed by employing vision foundation models to acquire additional meta-information about the scene, such as bounding boxes. Building on this foundational data, we propose a specialized VLM, SceneVLM, which is capable of generating spatial hierarchical scene graphs and providing distance information for objects within indoor environments. This information enhances our understanding of the spatial arrangement of indoor scenes. To train our SceneVLM, we collect over 610,000 images from various public indoor datasets and implement a scene data generation pipeline with a semi-automated technique to establish relationships and estimate distances among indoor objects. By utilizing this enriched data, we conduct various training recipes and finish SceneVLM. Our experiments demonstrate that \rootname facilitates indoor scene understanding and proves effective in diverse downstream applications, such as 3D scene generation and embodied AI. The code will be released at https://github.com/harrytea/ROOT.

  • 7 authors
·
Nov 23, 2024

Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey

Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.

  • 6 authors
·
Feb 1

3D-GPT: Procedural 3D Modeling with Large Language Models

In the pursuit of efficient automated content creation, procedural generation, leveraging modifiable parameters and rule-based systems, emerges as a promising approach. Nonetheless, it could be a demanding endeavor, given its intricate nature necessitating a deep understanding of rules, algorithms, and parameters. To reduce workload, we introduce 3D-GPT, a framework utilizing large language models~(LLMs) for instruction-driven 3D modeling. 3D-GPT positions LLMs as proficient problem solvers, dissecting the procedural 3D modeling tasks into accessible segments and appointing the apt agent for each task. 3D-GPT integrates three core agents: the task dispatch agent, the conceptualization agent, and the modeling agent. They collaboratively achieve two objectives. First, it enhances concise initial scene descriptions, evolving them into detailed forms while dynamically adapting the text based on subsequent instructions. Second, it integrates procedural generation, extracting parameter values from enriched text to effortlessly interface with 3D software for asset creation. Our empirical investigations confirm that 3D-GPT not only interprets and executes instructions, delivering reliable results but also collaborates effectively with human designers. Furthermore, it seamlessly integrates with Blender, unlocking expanded manipulation possibilities. Our work highlights the potential of LLMs in 3D modeling, offering a basic framework for future advancements in scene generation and animation.

  • 6 authors
·
Oct 19, 2023 2

Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment

Larger language models (LLMs) have taken the world by storm with their massive multi-tasking capabilities simply by optimizing over a next-word prediction objective. With the emergence of their properties and encoded knowledge, the risk of LLMs producing harmful outputs increases, making them unfit for scalable deployment for the public. In this work, we propose a new safety evaluation benchmark RED-EVAL that carries out red-teaming. We show that even widely deployed models are susceptible to the Chain of Utterances-based (CoU) prompting, jailbreaking closed source LLM-based systems such as GPT-4 and ChatGPT to unethically respond to more than 65% and 73% of harmful queries. We also demonstrate the consistency of the RED-EVAL across 8 open-source LLMs in generating harmful responses in more than 86% of the red-teaming attempts. Next, we propose RED-INSTRUCT--An approach for the safety alignment of LLMs. It constitutes two phases: 1) HARMFULQA data collection: Leveraging CoU prompting, we collect a dataset that consists of 1.9K harmful questions covering a wide range of topics, 9.5K safe and 7.3K harmful conversations from ChatGPT; 2) SAFE-ALIGN: We demonstrate how the conversational dataset can be used for the safety alignment of LLMs by minimizing the negative log-likelihood over helpful responses and penalizing over harmful responses by gradient accent over sample loss. Our model STARLING, a fine-tuned Vicuna-7B, is observed to be more safely aligned when evaluated on RED-EVAL and HHH benchmarks while preserving the utility of the baseline models (TruthfulQA, MMLU, and BBH).

  • 2 authors
·
Aug 18, 2023

Anemoi: A Semi-Centralized Multi-agent System Based on Agent-to-Agent Communication MCP server from Coral Protocol

Recent advances in generalist multi-agent systems (MAS) have largely followed a context-engineering plus centralized paradigm, where a planner agent coordinates multiple worker agents through unidirectional prompt passing. While effective under strong planner models, this design suffers from two critical limitations: (1) strong dependency on the planner's capability, which leads to degraded performance when a smaller LLM powers the planner; and (2) limited inter-agent communication, where collaboration relies on costly prompt concatenation and context injection, introducing redundancy and information loss. To address these challenges, we propose Anemoi, a semi-centralized MAS built on the Agent-to-Agent (A2A) communication MCP server from Coral Protocol. Unlike traditional designs, Anemoi enables structured and direct inter-agent collaboration, allowing all agents to monitor progress, assess results, identify bottlenecks, and propose refinements in real time. This paradigm reduces reliance on a single planner, supports adaptive plan updates, and minimizes redundant context passing, resulting in more scalable and cost-efficient execution. Evaluated on the GAIA benchmark, Anemoi achieved 52.73% accuracy with a small LLM (GPT-4.1-mini) as the planner, surpassing the strongest open-source baseline OWL (43.63%) by +9.09% under identical LLM settings. Our implementation is publicly available at https://github.com/Coral-Protocol/Anemoi.

  • 9 authors
·
Aug 23

OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation

Full-duplex spoken dialogue systems significantly advance over traditional turn-based dialogue systems, as they allow simultaneous bidirectional communication, closely mirroring human-human interactions. However, achieving low latency and natural interactions in full-duplex dialogue systems remains a significant challenge, especially considering human conversation dynamics such as interruptions, backchannels, and overlapping speech. In this paper, we introduce a novel End-to-End GPT-based model OmniFlatten for full-duplex conversation, capable of effectively modeling the complex behaviors inherent to natural conversations with low latency. To achieve full-duplex communication capabilities, we propose a multi-stage post-training scheme that progressively adapts a text-based large language model (LLM) backbone into a speech-text dialogue LLM, capable of generating text and speech in real time, without modifying the architecture of the backbone LLM. The training process comprises three stages: modality alignment, half-duplex dialogue learning, and full-duplex dialogue learning. Throughout all training stages, we standardize the data using a flattening operation, which allows us to unify the training methods and the model architecture across different modalities and tasks. Our approach offers a straightforward modeling technique and a promising research direction for developing efficient and natural end-to-end full-duplex spoken dialogue systems. Audio samples of dialogues generated by OmniFlatten can be found at this web site (https://omniflatten.github.io/).

  • 9 authors
·
Oct 23, 2024

Multi-Reward as Condition for Instruction-based Image Editing

High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in 0sim 5 and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. During inference, we set these additional conditions to the highest score with no text description for failure points, to aim at the best generation outcome. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. The code and dataset will be released.

  • 7 authors
·
Nov 6, 2024

OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain

As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.

  • 4 authors
·
Dec 17, 2024 2

FSMoE: A Flexible and Scalable Training System for Sparse Mixture-of-Experts Models

Recent large language models (LLMs) have tended to leverage sparsity to reduce computations, employing the sparsely activated mixture-of-experts (MoE) technique. MoE introduces four modules, including token routing, token communication, expert computation, and expert parallelism, that impact model quality and training efficiency. To enable versatile usage of MoE models, we introduce FSMoE, a flexible training system optimizing task scheduling with three novel techniques: 1) Unified abstraction and online profiling of MoE modules for task scheduling across various MoE implementations. 2) Co-scheduling intra-node and inter-node communications with computations to minimize communication overheads. 3) To support near-optimal task scheduling, we design an adaptive gradient partitioning method for gradient aggregation and a schedule to adaptively pipeline communications and computations. We conduct extensive experiments with configured MoE layers and real-world MoE models on two GPU clusters. Experimental results show that 1) our FSMoE supports four popular types of MoE routing functions and is more efficient than existing implementations (with up to a 1.42times speedup), and 2) FSMoE outperforms the state-of-the-art MoE training systems (DeepSpeed-MoE and Tutel) by 1.18times-1.22times on 1458 MoE layers and 1.19times-3.01times on real-world MoE models based on GPT-2 and Mixtral using a popular routing function.

  • 8 authors
·
Jan 18

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Learning to converse using only a few examples is a great challenge in conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep them up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in nine response generation tasks, which include four knowledge-grounded tasks, a task-oriented generations task, three open-chat tasks, and controlled stylistic generation, and five conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, document retrieval, and internet query generation. The current largest released LM (GPT-J-6B) using prompt-based few-shot learning, and thus requiring no training, achieves competitive performance to fully trained state-of-the-art models. Moreover, we propose a novel prompt-based few-shot classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history. Finally, by combining the power of prompt-based few-shot learning and a Skill Selector, we create an end-to-end chatbot named the Few-Shot Bot (FSB), which automatically selects the most appropriate conversational skill, queries different knowledge bases or the internet, and uses the retrieved knowledge to generate a human-like response, all using only few dialogue examples per skill.

  • 4 authors
·
Oct 15, 2021

Orchestrator-Agent Trust: A Modular Agentic AI Visual Classification System with Trust-Aware Orchestration and RAG-Based Reasoning

Modern Artificial Intelligence (AI) increasingly relies on multi-agent architectures that blend visual and language understanding. Yet, a pressing challenge remains: How can we trust these agents especially in zero-shot settings with no fine-tuning? We introduce a novel modular Agentic AI visual classification framework that integrates generalist multimodal agents with a non-visual reasoning orchestrator and a Retrieval-Augmented Generation (RAG) module. Applied to apple leaf disease diagnosis, we benchmark three configurations: (I) zero-shot with confidence-based orchestration, (II) fine-tuned agents with improved performance, and (III) trust-calibrated orchestration enhanced by CLIP-based image retrieval and re-evaluation loops. Using confidence calibration metrics (ECE, OCR, CCC), the orchestrator modulates trust across agents. Our results demonstrate a 77.94\% accuracy improvement in the zero-shot setting using trust-aware orchestration and RAG, achieving 85.63\% overall. GPT-4o showed better calibration, while Qwen-2.5-VL displayed overconfidence. Furthermore, image-RAG grounded predictions with visually similar cases, enabling correction of agent overconfidence via iterative re-evaluation. The proposed system separates perception (vision agents) from meta-reasoning (orchestrator), enabling scalable and interpretable multi-agent AI. This blueprint is extensible to diagnostics, biology, and other trust-critical domains. All models, prompts, results, and system components including the complete software source code are openly released to support reproducibility, transparency, and community benchmarking at Github: https://github.com/Applied-AI-Research-Lab/Orchestrator-Agent-Trust

  • 4 authors
·
Jul 9 1

FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems

This paper presents the FlowTransformer framework, a novel approach for implementing transformer-based Network Intrusion Detection Systems (NIDSs). FlowTransformer leverages the strengths of transformer models in identifying the long-term behaviour and characteristics of networks, which are often overlooked by most existing NIDSs. By capturing these complex patterns in network traffic, FlowTransformer offers a flexible and efficient tool for researchers and practitioners in the cybersecurity community who are seeking to implement NIDSs using transformer-based models. FlowTransformer allows the direct substitution of various transformer components, including the input encoding, transformer, classification head, and the evaluation of these across any flow-based network dataset. To demonstrate the effectiveness and efficiency of the FlowTransformer framework, we utilise it to provide an extensive evaluation of various common transformer architectures, such as GPT 2.0 and BERT, on three commonly used public NIDS benchmark datasets. We provide results for accuracy, model size and speed. A key finding of our evaluation is that the choice of classification head has the most significant impact on the model performance. Surprisingly, Global Average Pooling, which is commonly used in text classification, performs very poorly in the context of NIDS. In addition, we show that model size can be reduced by over 50\%, and inference and training times improved, with no loss of accuracy, by making specific choices of input encoding and classification head instead of other commonly used alternatives.

  • 6 authors
·
Apr 28, 2023

ShortcutsBench: A Large-Scale Real-world Benchmark for API-based Agents

Recent advancements in integrating large language models (LLMs) with application programming interfaces (APIs) have gained significant interest in both academia and industry. These API-based agents, leveraging the strong autonomy and planning capabilities of LLMs, can efficiently solve problems requiring multi-step actions. However, their ability to handle multi-dimensional difficulty levels, diverse task types, and real-world demands through APIs remains unknown. In this paper, we introduce ShortcutsBench, a large-scale benchmark for the comprehensive evaluation of API-based agents in solving tasks with varying levels of difficulty, diverse task types, and real-world demands. ShortcutsBench includes a wealth of real APIs from Apple Inc.'s operating systems, refined user queries from shortcuts, human-annotated high-quality action sequences from shortcut developers, and accurate parameter filling values about primitive parameter types, enum parameter types, outputs from previous actions, and parameters that need to request necessary information from the system or user. Our extensive evaluation of agents built with 5 leading open-source (size >= 57B) and 4 closed-source LLMs (e.g. Gemini-1.5-Pro and GPT-3.5) reveals significant limitations in handling complex queries related to API selection, parameter filling, and requesting necessary information from systems and users. These findings highlight the challenges that API-based agents face in effectively fulfilling real and complex user queries. All datasets, code, and experimental results will be available at https://github.com/eachsheep/shortcutsbench.

  • 8 authors
·
Jun 28, 2024

DB-GPT: Empowering Database Interactions with Private Large Language Models

The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. Database technologies particularly have an important entanglement with LLMs as efficient and intuitive database interactions are paramount. In this paper, we present DB-GPT, a revolutionary and production-ready project that integrates LLMs with traditional database systems to enhance user experience and accessibility. DB-GPT is designed to understand natural language queries, provide context-aware responses, and generate complex SQL queries with high accuracy, making it an indispensable tool for users ranging from novice to expert. The core innovation in DB-GPT lies in its private LLM technology, which is fine-tuned on domain-specific corpora to maintain user privacy and ensure data security while offering the benefits of state-of-the-art LLMs. We detail the architecture of DB-GPT, which includes a novel retrieval augmented generation (RAG) knowledge system, an adaptive learning mechanism to continuously improve performance based on user feedback and a service-oriented multi-model framework (SMMF) with powerful data-driven agents. Our extensive experiments and user studies confirm that DB-GPT represents a paradigm shift in database interactions, offering a more natural, efficient, and secure way to engage with data repositories. The paper concludes with a discussion of the implications of DB-GPT framework on the future of human-database interaction and outlines potential avenues for further enhancements and applications in the field. The project code is available at https://github.com/eosphoros-ai/DB-GPT. Experience DB-GPT for yourself by installing it with the instructions https://github.com/eosphoros-ai/DB-GPT#install and view a concise 10-minute video at https://www.youtube.com/watch?v=KYs4nTDzEhk.

  • 16 authors
·
Dec 28, 2023

OmniParser for Pure Vision Based GUI Agent

The recent success of large vision language models shows great potential in driving the agent system operating on user interfaces. However, we argue that the power multimodal models like GPT-4V as a general agent on multiple operating systems across different applications is largely underestimated due to the lack of a robust screen parsing technique capable of: 1) reliably identifying interactable icons within the user interface, and 2) understanding the semantics of various elements in a screenshot and accurately associate the intended action with the corresponding region on the screen. To fill these gaps, we introduce OmniParser, a comprehensive method for parsing user interface screenshots into structured elements, which significantly enhances the ability of GPT-4V to generate actions that can be accurately grounded in the corresponding regions of the interface. We first curated an interactable icon detection dataset using popular webpages and an icon description dataset. These datasets were utilized to fine-tune specialized models: a detection model to parse interactable regions on the screen and a caption model to extract the functional semantics of the detected elements. OmniParser significantly improves GPT-4V's performance on ScreenSpot benchmark. And on Mind2Web and AITW benchmark, OmniParser with screenshot only input outperforms the GPT-4V baselines requiring additional information outside of screenshot.

  • 4 authors
·
Jul 31, 2024 7

Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning. This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP). We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) direct prompting baseline, (2) Facts+Rules prompting, and (3) DSPy-based LLM+ASP pipeline with iterative refinement. Our experimental results demonstrate that the LLM+ASP pipeline significantly outperforms baseline methods, achieving an average 82% accuracy on StepGame and 69% on SparQA, marking improvements of 40-50% and 8-15% respectively over direct prompting. The success stems from three key innovations: (1) effective separation of semantic parsing and logical reasoning through a modular pipeline, (2) iterative feedback mechanism between LLMs and ASP solvers that improves program rate, and (3) robust error handling that addresses parsing, grounding, and solving failures. Additionally, we propose Facts+Rules as a lightweight alternative that achieves comparable performance on complex SparQA dataset, while reducing computational overhead.Our analysis across different LLM architectures (Deepseek, Llama3-70B, GPT-4.0 mini) demonstrates the framework's generalizability and provides insights into the trade-offs between implementation complexity and reasoning capability, contributing to the development of more interpretable and reliable AI systems.

  • 3 authors
·
Nov 27, 2024

WebPilot: A Versatile and Autonomous Multi-Agent System for Web Task Execution with Strategic Exploration

LLM-based autonomous agents often fail to execute complex web tasks that require dynamic interaction due to the inherent uncertainty and complexity of these environments. Existing LLM-based web agents typically rely on rigid, expert-designed policies specific to certain states and actions, which lack the flexibility and generalizability needed to adapt to unseen tasks. In contrast, humans excel by exploring unknowns, continuously adapting strategies, and resolving ambiguities through exploration. To emulate human-like adaptability, web agents need strategic exploration and complex decision-making. Monte Carlo Tree Search (MCTS) is well-suited for this, but classical MCTS struggles with vast action spaces, unpredictable state transitions, and incomplete information in web tasks. In light of this, we develop WebPilot, a multi-agent system with a dual optimization strategy that improves MCTS to better handle complex web environments. Specifically, the Global Optimization phase involves generating a high-level plan by breaking down tasks into manageable subtasks and continuously refining this plan, thereby focusing the search process and mitigating the challenges posed by vast action spaces in classical MCTS. Subsequently, the Local Optimization phase executes each subtask using a tailored MCTS designed for complex environments, effectively addressing uncertainties and managing incomplete information. Experimental results on WebArena and MiniWoB++ demonstrate the effectiveness of WebPilot. Notably, on WebArena, WebPilot achieves SOTA performance with GPT-4, achieving a 93% relative increase in success rate over the concurrent tree search-based method. WebPilot marks a significant advancement in general autonomous agent capabilities, paving the way for more advanced and reliable decision-making in practical environments.

  • 6 authors
·
Aug 28, 2024

Large Language Model-Powered Smart Contract Vulnerability Detection: New Perspectives

This paper provides a systematic analysis of the opportunities, challenges, and potential solutions of harnessing Large Language Models (LLMs) such as GPT-4 to dig out vulnerabilities within smart contracts based on our ongoing research. For the task of smart contract vulnerability detection, achieving practical usability hinges on identifying as many true vulnerabilities as possible while minimizing the number of false positives. Nonetheless, our empirical study reveals contradictory yet interesting findings: generating more answers with higher randomness largely boosts the likelihood of producing a correct answer but inevitably leads to a higher number of false positives. To mitigate this tension, we propose an adversarial framework dubbed GPTLens that breaks the conventional one-stage detection into two synergistic stages - generation and discrimination, for progressive detection and refinement, wherein the LLM plays dual roles, i.e., auditor and critic, respectively. The goal of auditor is to yield a broad spectrum of vulnerabilities with the hope of encompassing the correct answer, whereas the goal of critic that evaluates the validity of identified vulnerabilities is to minimize the number of false positives. Experimental results and illustrative examples demonstrate that auditor and critic work together harmoniously to yield pronounced improvements over the conventional one-stage detection. GPTLens is intuitive, strategic, and entirely LLM-driven without relying on specialist expertise in smart contracts, showcasing its methodical generality and potential to detect a broad spectrum of vulnerabilities. Our code is available at: https://github.com/git-disl/GPTLens.

  • 5 authors
·
Oct 2, 2023

DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL

Recent text-to-SQL systems powered by large language models (LLMs) have demonstrated remarkable performance in translating natural language queries into SQL. However, these systems often struggle with complex database structures and domain-specific queries, as they primarily focus on enhancing logical reasoning and SQL syntax while overlooking the critical need for comprehensive database understanding. To address this limitation, we propose DB-Explore, a novel framework that systematically aligns LLMs with database knowledge through automated exploration and instruction synthesis. DB-Explore constructs database graphs to capture complex relational schemas, leverages GPT-4 to systematically mine structural patterns and semantic knowledge, and synthesizes instructions to distill this knowledge for efficient fine-tuning of LLMs. Our framework enables comprehensive database understanding through diverse sampling strategies and automated instruction generation, bridging the gap between database structures and language models. Experiments conducted on the SPIDER and BIRD benchmarks validate the effectiveness of DB-Explore, achieving an execution accuracy of 52.1% on BIRD and 84.0% on SPIDER. Notably, our open-source implementation, based on the Qwen2.5-coder-7B model, outperforms multiple GPT-4-driven text-to-SQL systems in comparative evaluations, and achieves near state-of-the-art performance with minimal computational cost.

  • 8 authors
·
Mar 6

Agent Skill Acquisition for Large Language Models via CycleQD

Training large language models to acquire specific skills remains a challenging endeavor. Conventional training approaches often struggle with data distribution imbalances and inadequacies in objective functions that do not align well with task-specific performance. To address these challenges, we introduce CycleQD, a novel approach that leverages the Quality Diversity framework through a cyclic adaptation of the algorithm, along with a model merging based crossover and an SVD-based mutation. In CycleQD, each task's performance metric is alternated as the quality measure while the others serve as the behavioral characteristics. This cyclic focus on individual tasks allows for concentrated effort on one task at a time, eliminating the need for data ratio tuning and simplifying the design of the objective function. Empirical results from AgentBench indicate that applying CycleQD to LLAMA3-8B-INSTRUCT based models not only enables them to surpass traditional fine-tuning methods in coding, operating systems, and database tasks, but also achieves performance on par with GPT-3.5-TURBO, which potentially contains much more parameters, across these domains. Crucially, this enhanced performance is achieved while retaining robust language capabilities, as evidenced by its performance on widely adopted language benchmark tasks. We highlight the key design choices in CycleQD, detailing how these contribute to its effectiveness. Furthermore, our method is general and can be applied to image segmentation models, highlighting its applicability across different domains.

  • 4 authors
·
Oct 16, 2024

Context Engineering for Multi-Agent LLM Code Assistants Using Elicit, NotebookLM, ChatGPT, and Claude Code

Large Language Models (LLMs) have shown promise in automating code generation and software engineering tasks, yet they often struggle with complex, multi-file projects due to context limitations and knowledge gaps. We propose a novel context engineering workflow that combines multiple AI components: an Intent Translator (GPT-5) for clarifying user requirements, an Elicit-powered semantic literature retrieval for injecting domain knowledge, NotebookLM-based document synthesis for contextual understanding, and a Claude Code multi-agent system for code generation and validation. Our integrated approach leverages intent clarification, retrieval-augmented generation, and specialized sub-agents orchestrated via Claude's agent framework. We demonstrate that this method significantly improves the accuracy and reliability of code assistants in real-world repositories, yielding higher single-shot success rates and better adherence to project context than baseline single-agent approaches. Qualitative results on a large Next.js codebase show the multi-agent system effectively plans, edits, and tests complex features with minimal human intervention. We compare our system with recent frameworks like CodePlan, MASAI, and HyperAgent, highlighting how targeted context injection and agent role decomposition lead to state-of-the-art performance. Finally, we discuss the implications for deploying LLM-based coding assistants in production, along with lessons learned on context management and future research directions.

  • 1 authors
·
Aug 9

Systematic Rectification of Language Models via Dead-end Analysis

With adversarial or otherwise normal prompts, existing large language models (LLM) can be pushed to generate toxic discourses. One way to reduce the risk of LLMs generating undesired discourses is to alter the training of the LLM. This can be very restrictive due to demanding computation requirements. Other methods rely on rule-based or prompt-based token elimination, which are limited as they dismiss future tokens and the overall meaning of the complete discourse. Here, we center detoxification on the probability that the finished discourse is ultimately considered toxic. That is, at each point, we advise against token selections proportional to how likely a finished text from this point will be toxic. To this end, we formally extend the dead-end theory from the recent reinforcement learning (RL) literature to also cover uncertain outcomes. Our approach, called rectification, utilizes a separate but significantly smaller model for detoxification, which can be applied to diverse LLMs as long as they share the same vocabulary. Importantly, our method does not require access to the internal representations of the LLM, but only the token probability distribution at each decoding step. This is crucial as many LLMs today are hosted in servers and only accessible through APIs. When applied to various LLMs, including GPT-3, our approach significantly improves the generated discourse compared to the base LLMs and other techniques in terms of both the overall language and detoxification performance.

  • 4 authors
·
Feb 27, 2023

BiasAsker: Measuring the Bias in Conversational AI System

Powered by advanced Artificial Intelligence (AI) techniques, conversational AI systems, such as ChatGPT and digital assistants like Siri, have been widely deployed in daily life. However, such systems may still produce content containing biases and stereotypes, causing potential social problems. Due to the data-driven, black-box nature of modern AI techniques, comprehensively identifying and measuring biases in conversational systems remains a challenging task. Particularly, it is hard to generate inputs that can comprehensively trigger potential bias due to the lack of data containing both social groups as well as biased properties. In addition, modern conversational systems can produce diverse responses (e.g., chatting and explanation), which makes existing bias detection methods simply based on the sentiment and the toxicity hardly being adopted. In this paper, we propose BiasAsker, an automated framework to identify and measure social bias in conversational AI systems. To obtain social groups and biased properties, we construct a comprehensive social bias dataset, containing a total of 841 groups and 8,110 biased properties. Given the dataset, BiasAsker automatically generates questions and adopts a novel method based on existence measurement to identify two types of biases (i.e., absolute bias and related bias) in conversational systems. Extensive experiments on 8 commercial systems and 2 famous research models, such as ChatGPT and GPT-3, show that 32.83% of the questions generated by BiasAsker can trigger biased behaviors in these widely deployed conversational systems. All the code, data, and experimental results have been released to facilitate future research.

  • 6 authors
·
May 21, 2023

LifeGPT: Topology-Agnostic Generative Pretrained Transformer Model for Cellular Automata

The Game of Life (Life), a well known algorithm within the broader class of cellular automata (CA), exhibits complex emergent dynamics, with extreme sensitivity to initial conditions. Modeling and predicting such intricate behavior without explicit knowledge of the system's underlying topology presents a significant challenge, motivating the development of algorithms that can generalize across various grid configurations and boundary conditions. We develop a decoder-only generative pretrained transformer model to solve this problem, showing that our model can simulate Life on a toroidal grid with no prior knowledge on the size of the grid, or its periodic boundary conditions (LifeGPT). LifeGPT is topology-agnostic with respect to its training data and our results show that a GPT model is capable of capturing the deterministic rules of a Turing-complete system with near-perfect accuracy, given sufficiently diverse training data. We also introduce the idea of an `autoregressive autoregressor' to recursively implement Life using LifeGPT. Our results pave the path towards true universal computation within a large language model (LLM) framework, synthesizing of mathematical analysis with natural language processing, and probing AI systems for situational awareness about the evolution of such algorithms without ever having to compute them. Similar GPTs could potentially solve inverse problems in multicellular self-assembly by extracting CA-compatible rulesets from real-world biological systems to create new predictive models, which would have significant consequences for the fields of bioinspired materials, tissue engineering, and architected materials design.

  • 2 authors
·
Sep 3, 2024

Examining User-Friendly and Open-Sourced Large GPT Models: A Survey on Language, Multimodal, and Scientific GPT Models

Generative pre-trained transformer (GPT) models have revolutionized the field of natural language processing (NLP) with remarkable performance in various tasks and also extend their power to multimodal domains. Despite their success, large GPT models like GPT-4 face inherent limitations such as considerable size, high computational requirements, complex deployment processes, and closed development loops. These constraints restrict their widespread adoption and raise concerns regarding their responsible development and usage. The need for user-friendly, relatively small, and open-sourced alternative GPT models arises from the desire to overcome these limitations while retaining high performance. In this survey paper, we provide an examination of alternative open-sourced models of large GPTs, focusing on user-friendly and relatively small models that facilitate easier deployment and accessibility. Through this extensive survey, we aim to equip researchers, practitioners, and enthusiasts with a thorough understanding of user-friendly and relatively small open-sourced models of large GPTs, their current state, challenges, and future research directions, inspiring the development of more efficient, accessible, and versatile GPT models that cater to the broader scientific community and advance the field of general artificial intelligence. The source contents are continuously updating in https://github.com/GPT-Alternatives/gpt_alternatives.

  • 7 authors
·
Aug 27, 2023

Generative Pretrained Hierarchical Transformer for Time Series Forecasting

Recent efforts have been dedicated to enhancing time series forecasting accuracy by introducing advanced network architectures and self-supervised pretraining strategies. Nevertheless, existing approaches still exhibit two critical drawbacks. Firstly, these methods often rely on a single dataset for training, limiting the model's generalizability due to the restricted scale of the training data. Secondly, the one-step generation schema is widely followed, which necessitates a customized forecasting head and overlooks the temporal dependencies in the output series, and also leads to increased training costs under different horizon length settings. To address these issues, we propose a novel generative pretrained hierarchical transformer architecture for forecasting, named GPHT. There are two aspects of key designs in GPHT. On the one hand, we advocate for constructing a mixed dataset for pretraining our model, comprising various datasets from diverse data scenarios. This approach significantly expands the scale of training data, allowing our model to uncover commonalities in time series data and facilitating improved transfer to specific datasets. On the other hand, GPHT employs an auto-regressive forecasting approach under the channel-independent assumption, effectively modeling temporal dependencies in the output series. Importantly, no customized forecasting head is required, enabling a single model to forecast at arbitrary horizon settings. We conduct sufficient experiments on eight datasets with mainstream self-supervised pretraining models and supervised models. The results demonstrated that GPHT surpasses the baseline models across various fine-tuning and zero/few-shot learning settings in the traditional long-term forecasting task, providing support for verifying the feasibility of pretrained time series large models.

  • 5 authors
·
Feb 26, 2024

PIM-GPT: A Hybrid Process-in-Memory Accelerator for Autoregressive Transformers

Decoder-only Transformer models such as GPT have demonstrated superior performance in text generation, by autoregressively predicting the next token. However, the performance of GPT is bounded by low compute-to-memory-ratio and high memory access. Throughput-oriented architectures such as GPUs target parallel processing rather than sequential token generation, and are not efficient for GPT acceleration, particularly on-device inference applications. Process-in-memory (PIM) architectures can significantly reduce data movement and provide high computation parallelism, and are promising candidates to accelerate GPT inference. In this work, we propose PIM-GPT that aims to achieve high throughput, high energy efficiency and end-to-end acceleration of GPT inference. PIM-GPT leverages DRAM-based PIM solutions to perform multiply-accumulate (MAC) operations on the DRAM chips, greatly reducing data movement. A compact application-specific integrated chip (ASIC) is designed and synthesized to initiate instructions to PIM chips and support data communication along with necessary arithmetic computations. At the software level, the mapping scheme is designed to maximize data locality and computation parallelism by partitioning a matrix among DRAM channels and banks to utilize all in-bank computation resources concurrently. We develop an event-driven clock-cycle accurate simulator to validate the efficacy of the proposed PIM-GPT architecture. Overall, PIM-GPT achieves 41-137times, 631-1074times speedup and 339-1085times, 890-1632times energy efficiency over GPU and CPU baseline, respectively, on 8 GPT models with up to 1.4 billion parameters.

  • 3 authors
·
Oct 13, 2023

How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary Investigation

In machine learning, generalization against distribution shifts -- where deployment conditions diverge from the training scenarios -- is crucial, particularly in fields like climate modeling, biomedicine, and autonomous driving. The emergence of foundation models, distinguished by their extensive pretraining and task versatility, has led to an increased interest in their adaptability to distribution shifts. GPT-4V(ision) acts as the most advanced publicly accessible multimodal foundation model, with extensive applications across various domains, including anomaly detection, video understanding, image generation, and medical diagnosis. However, its robustness against data distributions remains largely underexplored. Addressing this gap, this study rigorously evaluates GPT-4V's adaptability and generalization capabilities in dynamic environments, benchmarking against prominent models like CLIP and LLaVA. We delve into GPT-4V's zero-shot generalization across 13 diverse datasets spanning natural, medical, and molecular domains. We further investigate its adaptability to controlled data perturbations and examine the efficacy of in-context learning as a tool to enhance its adaptation. Our findings delineate GPT-4V's capability boundaries in distribution shifts, shedding light on its strengths and limitations across various scenarios. Importantly, this investigation contributes to our understanding of how AI foundation models generalize to distribution shifts, offering pivotal insights into their adaptability and robustness. Code is publicly available at https://github.com/jameszhou-gl/gpt-4v-distribution-shift.

  • 11 authors
·
Dec 12, 2023

Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation

Generative AI and large language models hold great promise in enhancing programming education by automatically generating individualized feedback for students. We investigate the role of generative AI models in providing human tutor-style programming hints to help students resolve errors in their buggy programs. Recent works have benchmarked state-of-the-art models for various feedback generation scenarios; however, their overall quality is still inferior to human tutors and not yet ready for real-world deployment. In this paper, we seek to push the limits of generative AI models toward providing high-quality programming hints and develop a novel technique, GPT4Hints-GPT3.5Val. As a first step, our technique leverages GPT-4 as a ``tutor'' model to generate hints -- it boosts the generative quality by using symbolic information of failing test cases and fixes in prompts. As a next step, our technique leverages GPT-3.5, a weaker model, as a ``student'' model to further validate the hint quality -- it performs an automatic quality validation by simulating the potential utility of providing this feedback. We show the efficacy of our technique via extensive evaluation using three real-world datasets of Python programs covering a variety of concepts ranging from basic algorithms to regular expressions and data analysis using pandas library.

  • 8 authors
·
Oct 5, 2023

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development

Code Large Language Models (LLMs) enhance software development efficiency by automatically generating code and documentation in response to user requirements. However, code LLMs cannot synthesize specialized programs when tasked with IoT applications that require domain knowledge. While Retrieval-Augmented Generation (RAG) offers a promising solution by fetching relevant domain knowledge, it necessitates powerful cloud LLMs (e.g., GPT-4) to process user requirements and retrieved contents, which raises significant privacy concerns. This approach also suffers from unstable networks and prohibitive LLM query costs. Moreover, it is challenging to ensure the correctness and relevance of the fetched contents. To address these issues, we propose GPIoT, a code generation system for IoT applications by fine-tuning locally deployable Small Language Models (SLMs) on IoT-specialized datasets. SLMs have smaller model sizes, allowing efficient local deployment and execution to mitigate privacy concerns and network uncertainty. Furthermore, by fine-tuning the SLMs with our IoT-specialized datasets, the SLMs' ability to synthesize IoT-related programs can be substantially improved. To evaluate GPIoT's capability in synthesizing programs for IoT applications, we develop a benchmark, IoTBench. Extensive experiments and user trials demonstrate the effectiveness of GPIoT in generating IoT-specialized code, outperforming state-of-the-art code LLMs with an average task accuracy increment of 64.7% and significant improvements in user satisfaction.

  • 5 authors
·
Mar 1

Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine

Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.

  • 18 authors
·
Nov 27, 2023

TheMCPCompany: Creating General-purpose Agents with Task-specific Tools

Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.

  • 5 authors
·
Oct 22 2

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-based Self-Verification

Recent progress in large language models (LLMs) like GPT-4 and PaLM-2 has brought significant advancements in addressing math reasoning problems. In particular, OpenAI's latest version of GPT-4, known as GPT-4 Code Interpreter, shows remarkable performance on challenging math datasets. In this paper, we explore the effect of code on enhancing LLMs' reasoning capability by introducing different constraints on the Code Usage Frequency of GPT-4 Code Interpreter. We found that its success can be largely attributed to its powerful skills in generating and executing code, evaluating the output of code execution, and rectifying its solution when receiving unreasonable outputs. Based on this insight, we propose a novel and effective prompting method, explicit code-based self-verification~(CSV), to further boost the mathematical reasoning potential of GPT-4 Code Interpreter. This method employs a zero-shot prompt on GPT-4 Code Interpreter to encourage it to use code to self-verify its answers. In instances where the verification state registers as ``False'', the model shall automatically amend its solution, analogous to our approach of rectifying errors during a mathematics examination. Furthermore, we recognize that the states of the verification result indicate the confidence of a solution, which can improve the effectiveness of majority voting. With GPT-4 Code Interpreter and CSV, we achieve an impressive zero-shot accuracy on MATH dataset (53.9\% to 84.3\%).

  • 11 authors
·
Aug 15, 2023 1

Gradient-Based Post-Training Quantization: Challenging the Status Quo

Quantization has become a crucial step for the efficient deployment of deep neural networks, where floating point operations are converted to simpler fixed point operations. In its most naive form, it simply consists in a combination of scaling and rounding transformations, leading to either a limited compression rate or a significant accuracy drop. Recently, Gradient-based post-training quantization (GPTQ) methods appears to be constitute a suitable trade-off between such simple methods and more powerful, yet expensive Quantization-Aware Training (QAT) approaches, particularly when attempting to quantize LLMs, where scalability of the quantization process is of paramount importance. GPTQ essentially consists in learning the rounding operation using a small calibration set. In this work, we challenge common choices in GPTQ methods. In particular, we show that the process is, to a certain extent, robust to a number of variables (weight selection, feature augmentation, choice of calibration set). More importantly, we derive a number of best practices for designing more efficient and scalable GPTQ methods, regarding the problem formulation (loss, degrees of freedom, use of non-uniform quantization schemes) or optimization process (choice of variable and optimizer). Lastly, we propose a novel importance-based mixed-precision technique. Those guidelines lead to significant performance improvements on all the tested state-of-the-art GPTQ methods and networks (e.g. +6.819 points on ViT for 4-bit quantization), paving the way for the design of scalable, yet effective quantization methods.

  • 3 authors
·
Aug 15, 2023

The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4

In recent years, groundbreaking advancements in natural language processing have culminated in the emergence of powerful large language models (LLMs), which have showcased remarkable capabilities across a vast array of domains, including the understanding, generation, and translation of natural language, and even tasks that extend beyond language processing. In this report, we delve into the performance of LLMs within the context of scientific discovery, focusing on GPT-4, the state-of-the-art language model. Our investigation spans a diverse range of scientific areas encompassing drug discovery, biology, computational chemistry (density functional theory (DFT) and molecular dynamics (MD)), materials design, and partial differential equations (PDE). Evaluating GPT-4 on scientific tasks is crucial for uncovering its potential across various research domains, validating its domain-specific expertise, accelerating scientific progress, optimizing resource allocation, guiding future model development, and fostering interdisciplinary research. Our exploration methodology primarily consists of expert-driven case assessments, which offer qualitative insights into the model's comprehension of intricate scientific concepts and relationships, and occasionally benchmark testing, which quantitatively evaluates the model's capacity to solve well-defined domain-specific problems. Our preliminary exploration indicates that GPT-4 exhibits promising potential for a variety of scientific applications, demonstrating its aptitude for handling complex problem-solving and knowledge integration tasks. Broadly speaking, we evaluate GPT-4's knowledge base, scientific understanding, scientific numerical calculation abilities, and various scientific prediction capabilities.

  • 2 authors
·
Nov 13, 2023

Enhancing Large Language Models for Text-to-Testcase Generation

Context: Test-driven development (TDD) is a widely employed software development practice that involves developing test cases based on requirements prior to writing the code. Although various methods for automated test case generation have been proposed, they are not specifically tailored for TDD, where requirements instead of code serve as input. Objective: In this paper, we introduce a text-to-testcase generation approach based on a large language model (GPT-3.5) that is fine-tuned on our curated dataset with an effective prompt design. Method: Our approach involves enhancing the capabilities of basic GPT-3.5 for text-to-testcase generation task that is fine-tuned on our curated dataset with an effective prompting design. We evaluated the effectiveness of our approach using a span of five large-scale open-source software projects. Results: Our approach generated 7k test cases for open source projects, achieving 78.5% syntactic correctness, 67.09% requirement alignment, and 61.7% code coverage, which substantially outperforms all other LLMs (basic GPT-3.5, Bloom, and CodeT5). In addition, our ablation study demonstrates the substantial performance improvement of the fine-tuning and prompting components of the GPT-3.5 model. Conclusions: These findings lead us to conclude that fine-tuning and prompting should be considered in the future when building a language model for the text-to-testcase generation task

  • 4 authors
·
Feb 19, 2024

Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4

Harnessing logical reasoning ability is a comprehensive natural language understanding endeavor. With the release of Generative Pretrained Transformer 4 (GPT-4), highlighted as "advanced" at reasoning tasks, we are eager to learn the GPT-4 performance on various logical reasoning tasks. This report analyses multiple logical reasoning datasets, with popular benchmarks like LogiQA and ReClor, and newly-released datasets like AR-LSAT. We test the multi-choice reading comprehension and natural language inference tasks with benchmarks requiring logical reasoning. We further construct a logical reasoning out-of-distribution dataset to investigate the robustness of ChatGPT and GPT-4. We also make a performance comparison between ChatGPT and GPT-4. Experiment results show that ChatGPT performs significantly better than the RoBERTa fine-tuning method on most logical reasoning benchmarks. With early access to the GPT-4 API we are able to conduct intense experiments on the GPT-4 model. The results show GPT-4 yields even higher performance on most logical reasoning datasets. Among benchmarks, ChatGPT and GPT-4 do relatively well on well-known datasets like LogiQA and ReClor. However, the performance drops significantly when handling newly released and out-of-distribution datasets. Logical reasoning remains challenging for ChatGPT and GPT-4, especially on out-of-distribution and natural language inference datasets. We release the prompt-style logical reasoning datasets as a benchmark suite and name it LogiEval.

  • 6 authors
·
Apr 6, 2023

PentestGPT: An LLM-empowered Automatic Penetration Testing Tool

Penetration testing, a crucial industrial practice for ensuring system security, has traditionally resisted automation due to the extensive expertise required by human professionals. Large Language Models (LLMs) have shown significant advancements in various domains, and their emergent abilities suggest their potential to revolutionize industries. In this research, we evaluate the performance of LLMs on real-world penetration testing tasks using a robust benchmark created from test machines with platforms. Our findings reveal that while LLMs demonstrate proficiency in specific sub-tasks within the penetration testing process, such as using testing tools, interpreting outputs, and proposing subsequent actions, they also encounter difficulties maintaining an integrated understanding of the overall testing scenario. In response to these insights, we introduce PentestGPT, an LLM-empowered automatic penetration testing tool that leverages the abundant domain knowledge inherent in LLMs. PentestGPT is meticulously designed with three self-interacting modules, each addressing individual sub-tasks of penetration testing, to mitigate the challenges related to context loss. Our evaluation shows that PentestGPT not only outperforms LLMs with a task-completion increase of 228.6\% compared to the \gptthree model among the benchmark targets but also proves effective in tackling real-world penetration testing challenges. Having been open-sourced on GitHub, PentestGPT has garnered over 4,700 stars and fostered active community engagement, attesting to its value and impact in both the academic and industrial spheres.

  • 10 authors
·
Aug 13, 2023

AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models

Evaluating the general abilities of foundation models to tackle human-level tasks is a vital aspect of their development and application in the pursuit of Artificial General Intelligence (AGI). Traditional benchmarks, which rely on artificial datasets, may not accurately represent human-level capabilities. In this paper, we introduce AGIEval, a novel benchmark specifically designed to assess foundation model in the context of human-centric standardized exams, such as college entrance exams, law school admission tests, math competitions, and lawyer qualification tests. We evaluate several state-of-the-art foundation models, including GPT-4, ChatGPT, and Text-Davinci-003, using this benchmark. Impressively, GPT-4 surpasses average human performance on SAT, LSAT, and math competitions, attaining a 95% accuracy rate on the SAT Math test and a 92.5% accuracy on the English test of the Chinese national college entrance exam. This demonstrates the extraordinary performance of contemporary foundation models. In contrast, we also find that GPT-4 is less proficient in tasks that require complex reasoning or specific domain knowledge. Our comprehensive analyses of model capabilities (understanding, knowledge, reasoning, and calculation) reveal these models' strengths and limitations, providing valuable insights into future directions for enhancing their general capabilities. By concentrating on tasks pertinent to human cognition and decision-making, our benchmark delivers a more meaningful and robust evaluation of foundation models' performance in real-world scenarios. The data, code, and all model outputs are released in https://github.com/microsoft/AGIEval.

  • 9 authors
·
Apr 13, 2023

MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL

Recent LLM-based Text-to-SQL methods usually suffer from significant performance degradation on "huge" databases and complex user questions that require multi-step reasoning. Moreover, most existing methods neglect the crucial significance of LLMs utilizing external tools and model collaboration. To address these challenges, we introduce MAC-SQL, a novel LLM-based multi-agent collaborative framework. Our framework comprises a core decomposer agent for Text-to-SQL generation with few-shot chain-of-thought reasoning, accompanied by two auxiliary agents that utilize external tools or models to acquire smaller sub-databases and refine erroneous SQL queries. The decomposer agent collaborates with auxiliary agents, which are activated as needed and can be expanded to accommodate new features or tools for effective Text-to-SQL parsing. In our framework, We initially leverage GPT-4 as the strong backbone LLM for all agent tasks to determine the upper bound of our framework. We then fine-tune an open-sourced instruction-followed model, SQL-Llama, by leveraging Code Llama 7B, to accomplish all tasks as GPT-4 does. Experiments show that SQL-Llama achieves a comparable execution accuracy of 43.94, compared to the baseline accuracy of 46.35 for vanilla GPT-4. At the time of writing, MAC-SQL+GPT-4 achieves an execution accuracy of 59.59 when evaluated on the BIRD benchmark, establishing a new state-of-the-art (SOTA) on its holdout test set (https://github.com/wbbeyourself/MAC-SQL).

  • 11 authors
·
Dec 18, 2023

Accuracy Prediction with Non-neural Model for Neural Architecture Search

Neural architecture search (NAS) with an accuracy predictor that predicts the accuracy of candidate architectures has drawn increasing attention due to its simplicity and effectiveness. Previous works usually employ neural network-based predictors which require more delicate design and are easy to overfit. Considering that most architectures are represented as sequences of discrete symbols which are more like tabular data and preferred by non-neural predictors, in this paper, we study an alternative approach which uses non-neural model for accuracy prediction. Specifically, as decision tree based models can better handle tabular data, we leverage gradient boosting decision tree (GBDT) as the predictor for NAS. We demonstrate that the GBDT predictor can achieve comparable (if not better) prediction accuracy than neural network based predictors. Moreover, considering that a compact search space can ease the search process, we propose to prune the search space gradually according to important features derived from GBDT. In this way, NAS can be performed by first pruning the search space and then searching a neural architecture, which is more efficient and effective. Experiments on NASBench-101 and ImageNet demonstrate the effectiveness of using GBDT as predictor for NAS: (1) On NASBench-101, it is 22x, 8x, and 6x more sample efficient than random search, regularized evolution, and Monte Carlo Tree Search (MCTS) in finding the global optimum; (2) It achieves 24.2% top-1 error rate on ImageNet, and further achieves 23.4% top-1 error rate on ImageNet when enhanced with search space pruning. Code is provided at https://github.com/renqianluo/GBDT-NAS.

  • 6 authors
·
Jul 9, 2020

Improving Autonomous AI Agents with Reflective Tree Search and Self-Learning

Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon planning tasks. To address these limitations, we introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test-time algorithm designed to enhance the ability of AI agents, e.g., powered by GPT-4o, to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate to provide reliable state evaluation. Moreover, we improve the agent's performance by fine-tuning GPT-4o through self-learning, using R-MCTS generated tree traversals without any human-provided labels. On the challenging VisualWebArena benchmark, our GPT-4o-based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. The fine-tuned GPT-4o matches 97% of R-MCTS's performance while reducing compute usage by a factor of four at test time. Furthermore, qualitative results reveal that the fine-tuned GPT-4o model demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success. Moreover, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' reasoning and planning capabilities for agentic applications via test-time search and self-learning.

  • 7 authors
·
Oct 2, 2024 2

From Words to Routes: Applying Large Language Models to Vehicle Routing

LLMs have shown impressive progress in robotics (e.g., manipulation and navigation) with natural language task descriptions. The success of LLMs in these tasks leads us to wonder: What is the ability of LLMs to solve vehicle routing problems (VRPs) with natural language task descriptions? In this work, we study this question in three steps. First, we construct a dataset with 21 types of single- or multi-vehicle routing problems. Second, we evaluate the performance of LLMs across four basic prompt paradigms of text-to-code generation, each involving different types of text input. We find that the basic prompt paradigm, which generates code directly from natural language task descriptions, performs the best for GPT-4, achieving 56% feasibility, 40% optimality, and 53% efficiency. Third, based on the observation that LLMs may not be able to provide correct solutions at the initial attempt, we propose a framework that enables LLMs to refine solutions through self-reflection, including self-debugging and self-verification. With GPT-4, our proposed framework achieves a 16% increase in feasibility, a 7% increase in optimality, and a 15% increase in efficiency. Moreover, we examine the sensitivity of GPT-4 to task descriptions, specifically focusing on how its performance changes when certain details are omitted from the task descriptions, yet the core meaning is preserved. Our findings reveal that such omissions lead to a notable decrease in performance: 4% in feasibility, 4% in optimality, and 5% in efficiency. Website: https://sites.google.com/view/words-to-routes/

  • 3 authors
·
Mar 15, 2024

RecurrentGPT: Interactive Generation of (Arbitrarily) Long Text

The fixed-size context of Transformer makes GPT models incapable of generating arbitrarily long text. In this paper, we introduce RecurrentGPT, a language-based simulacrum of the recurrence mechanism in RNNs. RecurrentGPT is built upon a large language model (LLM) such as ChatGPT and uses natural language to simulate the Long Short-Term Memory mechanism in an LSTM. At each timestep, RecurrentGPT generates a paragraph of text and updates its language-based long-short term memory stored on the hard drive and the prompt, respectively. This recurrence mechanism enables RecurrentGPT to generate texts of arbitrary length without forgetting. Since human users can easily observe and edit the natural language memories, RecurrentGPT is interpretable and enables interactive generation of long text. RecurrentGPT is an initial step towards next-generation computer-assisted writing systems beyond local editing suggestions. In addition to producing AI-generated content (AIGC), we also demonstrate the possibility of using RecurrentGPT as an interactive fiction that directly interacts with consumers. We call this usage of generative models by ``AI As Contents'' (AIAC), which we believe is the next form of conventional AIGC. We further demonstrate the possibility of using RecurrentGPT to create personalized interactive fiction that directly interacts with readers instead of interacting with writers. More broadly, RecurrentGPT demonstrates the utility of borrowing ideas from popular model designs in cognitive science and deep learning for prompting LLMs. Our code is available at https://github.com/aiwaves-cn/RecurrentGPT and an online demo is available at https://www.aiwaves.org/recurrentgpt.

  • 8 authors
·
May 22, 2023 2

BurstGPT: A Real-world Workload Dataset to Optimize LLM Serving Systems

Serving systems for Large Language Models (LLMs) are often optimized to improve quality of service (QoS) and throughput. However, due to the lack of open-source LLM serving workloads, these systems are frequently evaluated under unrealistic workload assumptions. Consequently, performance may degrade when systems are deployed in real-world scenarios. This work presents BurstGPT, an LLM serving workload with 10.31 million traces from regional Azure OpenAI GPT services over 213 days. BurstGPT captures LLM serving characteristics from user, model and system perspectives: (1) User request concurrency: burstiness variations of requests in Azure OpenAI GPT services, revealing diversified concurrency patterns in different services and model types. (2) User conversation patterns: counts and intervals within conversations for service optimizations. (3) Model response lengths: auto-regressive serving processes of GPT models, showing statistical relations between requests and their responses. (4) System response failures: failures of conversation and API services, showing intensive resource needs and limited availability of LLM services in Azure. The details of the characteristics can serve multiple purposes in LLM serving optimizations, such as system evaluation and trace provisioning. In our demo evaluation with BurstGPT, frequent variations in BurstGPT reveal declines in efficiency, stability, or reliability in realistic LLM serving. We identify that the generalization of KV cache management, scheduling and disaggregation optimizations can be improved under realistic workload evaluations. BurstGPT is publicly available now at https://github.com/HPMLL/BurstGPT and is widely used to develop prototypes of LLM serving frameworks in the industry.

  • 14 authors
·
Jan 31, 2024

Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding

We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.

  • 2 authors
·
Jan 23, 2024 5

TableGPT: Towards Unifying Tables, Nature Language and Commands into One GPT

Tables are prevalent in real-world databases, requiring significant time and effort for humans to analyze and manipulate. The advancements in large language models (LLMs) have made it possible to interact with tables using natural language input, bringing this capability closer to reality. In this paper, we present TableGPT, a unified fine-tuned framework that enables LLMs to understand and operate on tables using external functional commands. It introduces the capability to seamlessly interact with tables, enabling a wide range of functionalities such as question answering, data manipulation (e.g., insert, delete, query, and modify operations), data visualization, analysis report generation, and automated prediction. TableGPT aims to provide convenience and accessibility to users by empowering them to effortlessly leverage tabular data. At the core of TableGPT lies the novel concept of global tabular representations, which empowers LLMs to gain a comprehensive understanding of the entire table beyond meta-information. By jointly training LLMs on both table and text modalities, TableGPT achieves a deep understanding of tabular data and the ability to perform complex operations on tables through chain-of-command instructions. Importantly, TableGPT offers the advantage of being a self-contained system rather than relying on external API interfaces. Moreover, it supports efficient data process flow, query rejection (when appropriate) and private deployment, enabling faster domain data fine-tuning and ensuring data privacy, which enhances the framework's adaptability to specific use cases.

  • 25 authors
·
Jul 17, 2023 5

Scaling Large Language Model Training on Frontier with Low-Bandwidth Partitioning

Scaling up Large Language Model(LLM) training involves fitting a tremendous amount of training parameters across a limited number of workers. However, methods like ZeRO-3 that drastically reduce GPU memory pressure often incur heavy communication to ensure global synchronization and consistency. Established efforts such as ZeRO++ use secondary partitions to avoid inter-node communications, given that intra-node GPU-GPU transfer generally has more bandwidth and lower latency than inter-node connections. However, as more capable infrastructure like Frontier, equipped with AMD GPUs, emerged with impressive computing capability, there is a need for investigations on the hardware topology and to develop targeted strategies to improve training efficiency. In this work, we propose a collection of communication and optimization strategies for ZeRO++ to reduce communication costs and improve memory utilization. In this paper, we propose a 3-level hierarchical partitioning specifically for the current Top-1 supercomputing cluster, Frontier, which aims at leveraging various bandwidths across layers of communications (GCD-GCD, GPU-GPU, and inter-node) to reduce communication overhead. For a 20B GPT model, we observe a 1.71x increase in TFLOPS per GPU when compared with ZeRO++ up to 384 GCDs and a scaling efficiency of 0.94 for up to 384 GCDs. To the best of our knowledge, our work is also the first effort to efficiently optimize LLM workloads on Frontier AMD GPUs.

  • 7 authors
·
Jan 7

MPIrigen: MPI Code Generation through Domain-Specific Language Models

The imperative need to scale computation across numerous nodes highlights the significance of efficient parallel computing, particularly in the realm of Message Passing Interface (MPI) integration. The challenging parallel programming task of generating MPI-based parallel programs has remained unexplored. This study first investigates the performance of state-of-the-art language models in generating MPI-based parallel programs. Findings reveal that widely used models such as GPT-3.5 and PolyCoder (specialized multi-lingual code models) exhibit notable performance degradation, when generating MPI-based programs compared to general-purpose programs. In contrast, domain-specific models such as MonoCoder, which are pretrained on MPI-related programming languages of C and C++, outperform larger models. Subsequently, we introduce a dedicated downstream task of MPI-based program generation by fine-tuning MonoCoder on HPCorpusMPI. We call the resulting model as MPIrigen. We propose an innovative preprocessing for completion only after observing the whole code, thus enabling better completion with a wider context. Comparative analysis against GPT-3.5 zero-shot performance, using a novel HPC-oriented evaluation method, demonstrates that MPIrigen excels in generating accurate MPI functions up to 0.8 accuracy in location and function predictions, and with more than 0.9 accuracy for argument predictions. The success of this tailored solution underscores the importance of domain-specific fine-tuning in optimizing language models for parallel computing code generation, paving the way for a new generation of automatic parallelization tools. The sources of this work are available at our GitHub MPIrigen repository: https://github.com/Scientific-Computing-Lab-NRCN/MPI-rigen

  • 13 authors
·
Feb 14, 2024 1

Towards Building the Federated GPT: Federated Instruction Tuning

While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.

  • 7 authors
·
May 9, 2023

RethinkMCTS: Refining Erroneous Thoughts in Monte Carlo Tree Search for Code Generation

LLM agents enhanced by tree search algorithms have yielded notable performances in code generation. However, current search algorithms in this domain suffer from low search quality due to several reasons: 1) Ineffective design of the search space for the high-reasoning demands of code generation tasks, 2) Inadequate integration of code feedback with the search algorithm, and 3) Poor handling of negative feedback during the search, leading to reduced search efficiency and quality. To address these challenges, we propose to search for the reasoning process of the code and use the detailed feedback of code execution to refine erroneous thoughts during the search. In this paper, we introduce RethinkMCTS, which employs the Monte Carlo Tree Search (MCTS) algorithm to conduct thought-level searches before generating code, thereby exploring a wider range of strategies. More importantly, we construct verbal feedback from fine-grained code execution feedback to refine erroneous thoughts during the search. This ensures that the search progresses along the correct reasoning paths, thus improving the overall search quality of the tree by leveraging execution feedback. Through extensive experiments, we demonstrate that RethinkMCTS outperforms previous search-based and feedback-based code generation baselines. On the HumanEval dataset, it improves the pass@1 of GPT-3.5-turbo from 70.12 to 89.02 and GPT-4o-mini from 87.20 to 94.51. It effectively conducts more thorough exploration through thought-level searches and enhances the search quality of the entire tree by incorporating rethink operation.

  • 8 authors
·
Sep 14, 2024

GP-GPT: Large Language Model for Gene-Phenotype Mapping

Pre-trained large language models(LLMs) have attracted increasing attention in biomedical domains due to their success in natural language processing. However, the complex traits and heterogeneity of multi-sources genomics data pose significant challenges when adapting these models to the bioinformatics and biomedical field. To address these challenges, we present GP-GPT, the first specialized large language model for genetic-phenotype knowledge representation and genomics relation analysis. Our model is fine-tuned in two stages on a comprehensive corpus composed of over 3,000,000 terms in genomics, proteomics, and medical genetics, derived from multiple large-scale validated datasets and scientific publications. GP-GPT demonstrates proficiency in accurately retrieving medical genetics information and performing common genomics analysis tasks, such as genomics information retrieval and relationship determination. Comparative experiments across domain-specific tasks reveal that GP-GPT outperforms state-of-the-art LLMs, including Llama2, Llama3 and GPT-4. These results highlight GP-GPT's potential to enhance genetic disease relation research and facilitate accurate and efficient analysis in the fields of genomics and medical genetics. Our investigation demonstrated the subtle changes of bio-factor entities' representations in the GP-GPT, which suggested the opportunities for the application of LLMs to advancing gene-phenotype research.

  • 18 authors
·
Sep 15, 2024

From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design

Engineering Design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision language models, such as GPT-4V, enabling AI to impact many more types of tasks. In light of these advancements, this paper presents a comprehensive evaluation of GPT-4V, a vision language model, across a wide spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Our study assesses GPT-4V's capabilities in design tasks such as sketch similarity analysis, concept selection using Pugh Charts, material selection, engineering drawing analysis, CAD generation, topology optimization, design for additive and subtractive manufacturing, spatial reasoning challenges, and textbook problems. Through this structured evaluation, we not only explore GPT-4V's proficiency in handling complex design and manufacturing challenges but also identify its limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models, emphasizing their immense potential for innovating and enhancing the engineering design and manufacturing landscape. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.

  • 7 authors
·
Nov 21, 2023

Improving LLMs' Generalized Reasoning Abilities by Graph Problems

Large Language Models (LLMs) have made remarkable strides in reasoning tasks, yet their performance often falters on novel and complex problems. Domain-specific continued pretraining (CPT) methods, such as those tailored for mathematical reasoning, have shown promise but lack transferability to broader reasoning tasks. In this work, we pioneer the use of Graph Problem Reasoning (GPR) to enhance the general reasoning capabilities of LLMs. GPR tasks, spanning pathfinding, network analysis, numerical computation, and topological reasoning, require sophisticated logical and relational reasoning, making them ideal for teaching diverse reasoning patterns. To achieve this, we introduce GraphPile, the first large-scale corpus specifically designed for CPT using GPR data. Spanning 10.9 billion tokens across 23 graph tasks, the dataset includes chain-of-thought, program-of-thought, trace of execution, and real-world graph data. Using GraphPile, we train GraphMind on popular base models Llama 3 and 3.1, as well as Gemma 2, achieving up to 4.9 percent higher accuracy in mathematical reasoning and up to 21.2 percent improvement in non-mathematical reasoning tasks such as logical and commonsense reasoning. By being the first to harness GPR for enhancing reasoning patterns and introducing the first dataset of its kind, our work bridges the gap between domain-specific pretraining and universal reasoning capabilities, advancing the adaptability and robustness of LLMs.

  • 6 authors
·
Jul 22

Comparing Human and LLM Generated Code: The Jury is Still Out!

Much is promised in relation to AI-supported software development. However, there has been limited evaluation effort in the research domain aimed at validating the true utility of such techniques, especially when compared to human coding outputs. We bridge this gap, where a benchmark dataset comprising 72 distinct software engineering tasks is used to compare the effectiveness of large language models (LLMs) and human programmers in producing Python software code. GPT-4 is used as a representative LLM, where for the code generated by humans and this LLM, we evaluate code quality and adherence to Python coding standards, code security and vulnerabilities, code complexity and functional correctness. We use various static analysis benchmarks, including Pylint, Radon, Bandit and test cases. Among the notable outcomes, results show that human-generated code recorded higher ratings for adhering to coding standards than GPT-4. We observe security flaws in code generated by both humans and GPT-4, however, code generated by humans shows a greater variety of problems, but GPT-4 code included more severe outliers. Our results show that although GPT-4 is capable of producing coding solutions, it frequently produces more complex code that may need more reworking to ensure maintainability. On the contrary however, our outcomes show that a higher number of test cases passed for code generated by GPT-4 across a range of tasks than code that was generated by humans. That said, GPT-4 frequently struggles with complex problem-solving that involve in-depth domain knowledge. This study highlights the potential utility of LLMs for supporting software development, however, tasks requiring comprehensive, innovative or unconventional solutions, and careful debugging and error correction seem to be better developed by human programmers. We plot an agenda for the software engineering community.

  • 5 authors
·
Jan 28

Exploiting Inter-Layer Expert Affinity for Accelerating Mixture-of-Experts Model Inference

In large language models like the Generative Pre-trained Transformer, the Mixture of Experts paradigm has emerged as a powerful technique for enhancing model expressiveness and accuracy. However, deploying GPT MoE models for parallel inference on distributed systems presents significant challenges, primarily due to the extensive Alltoall communication required for expert routing and aggregation. This communication bottleneck exacerbates the already complex computational landscape, hindering the efficient utilization of high-performance computing resources. In this paper, we propose a lightweight optimization technique called ExFlow, to largely accelerate the inference of these MoE models. We take a new perspective on alleviating the communication overhead by exploiting the inter-layer expert affinity. Unlike previous methods, our solution can be directly applied to pre-trained MoE models without any fine-tuning or accuracy degradation. By proposing a context-coherent expert parallelism on distributed systems, our design only uses one Alltoall communication to deliver the same functionality while previous methods all require two Alltoalls. By carefully examining the conditional probability in tokens' routing across multiple layers, we proved that pre-trained GPT MoE models implicitly exhibit a strong inter-layer expert affinity. We then design an efficient integer programming model to capture such features and show that by properly placing the experts on corresponding GPUs, we can reduce up to 67% cross-GPU routing latency. Our solution beats the cutting-edge MoE implementations with experts from 8 to 64, with up to 2.2x improvement in inference throughput. We further provide a detailed study of how the model implicitly acquires this expert affinity at the very early training stage and how this affinity evolves and stabilizes during training.

  • 6 authors
·
Jan 16, 2024

Training and Evaluating Language Models with Template-based Data Generation

The rapid advancement of large language models (LLMs) such as GPT-3, PaLM, and Llama has significantly transformed natural language processing, showcasing remarkable capabilities in understanding and generating language. However, these models often struggle with tasks requiring complex reasoning, particularly in mathematical problem-solving, due in part to the scarcity of large-scale, high-quality, domain-specific datasets necessary for training sophisticated reasoning abilities. To address this limitation, we introduce Template-based Data Generation (TDG), a novel approach that leverages LLMs (GPT-4) to automatically generate parameterized meta-templates, which are then used to synthesize a vast array of high-quality problems and solutions. Leveraging TDG, we create TemplateMath Part I: TemplateGSM, a dataset comprising over 7 million synthetically generated grade school math problems--each accompanied by code-based and natural language solutions--with the potential to generate an effectively unlimited number more. This dataset alleviates the scarcity of large-scale mathematical datasets and serves as a valuable resource for pre-training, fine-tuning, and evaluating LLMs in mathematical reasoning. Our method not only enables the generation of virtually infinite data but also elevates data augmentation to a new level by using GPT-4 for meta-template generation, ensuring diverse and high-quality problem structures. The TemplateMath Part I: TemplateGSM dataset is publicly available at https://huggingface.co/datasets/math-ai/TemplateGSM. The code is available at https://github.com/iiis-ai/TemplateMath.

  • 1 authors
·
Nov 27, 2024 3

G-Rank: Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P Network

Ranking algorithms in traditional search engines are powered by enormous training data sets that are meticulously engineered and curated by a centralized entity. Decentralized peer-to-peer (p2p) networks such as torrenting applications and Web3 protocols deliberately eschew centralized databases and computational architectures when designing services and features. As such, robust search-and-rank algorithms designed for such domains must be engineered specifically for decentralized networks, and must be lightweight enough to operate on consumer-grade personal devices such as a smartphone or laptop computer. We introduce G-Rank, an unsupervised ranking algorithm designed exclusively for decentralized networks. We demonstrate that accurate, relevant ranking results can be achieved in fully decentralized networks without any centralized data aggregation, feature engineering, or model training. Furthermore, we show that such results are obtainable with minimal data preprocessing and computational overhead, and can still return highly relevant results even when a user's device is disconnected from the network. G-Rank is highly modular in design, is not limited to categorical data, and can be implemented in a variety of domains with minimal modification. The results herein show that unsupervised ranking models designed for decentralized p2p networks are not only viable, but worthy of further research.

  • 2 authors
·
Jan 29, 2023

IISE PG&E Energy Analytics Challenge 2025: Hourly-Binned Regression Models Beat Transformers in Load Forecasting

Accurate electricity load forecasting is essential for grid stability, resource optimization, and renewable energy integration. While transformer-based deep learning models like TimeGPT have gained traction in time-series forecasting, their effectiveness in long-term electricity load prediction remains uncertain. This study evaluates forecasting models ranging from classical regression techniques to advanced deep learning architectures using data from the ESD 2025 competition. The dataset includes two years of historical electricity load data, alongside temperature and global horizontal irradiance (GHI) across five sites, with a one-day-ahead forecasting horizon. Since actual test set load values remain undisclosed, leveraging predicted values would accumulate errors, making this a long-term forecasting challenge. We employ (i) Principal Component Analysis (PCA) for dimensionality reduction and (ii) frame the task as a regression problem, using temperature and GHI as covariates to predict load for each hour, (iii) ultimately stacking 24 models to generate yearly forecasts. Our results reveal that deep learning models, including TimeGPT, fail to consistently outperform simpler statistical and machine learning approaches due to the limited availability of training data and exogenous variables. In contrast, XGBoost, with minimal feature engineering, delivers the lowest error rates across all test cases while maintaining computational efficiency. This highlights the limitations of deep learning in long-term electricity forecasting and reinforces the importance of model selection based on dataset characteristics rather than complexity. Our study provides insights into practical forecasting applications and contributes to the ongoing discussion on the trade-offs between traditional and modern forecasting methods.

  • 3 authors
·
May 16

COLE: A Hierarchical Generation Framework for Multi-Layered and Editable Graphic Design

Graphic design, which has been evolving since the 15th century, plays a crucial role in advertising. The creation of high-quality designs demands design-oriented planning, reasoning, and layer-wise generation. Unlike the recent CanvaGPT, which integrates GPT-4 with existing design templates to build a custom GPT, this paper introduces the COLE system - a hierarchical generation framework designed to comprehensively address these challenges. This COLE system can transform a vague intention prompt into a high-quality multi-layered graphic design, while also supporting flexible editing based on user input. Examples of such input might include directives like ``design a poster for Hisaishi's concert.'' The key insight is to dissect the complex task of text-to-design generation into a hierarchy of simpler sub-tasks, each addressed by specialized models working collaboratively. The results from these models are then consolidated to produce a cohesive final output. Our hierarchical task decomposition can streamline the complex process and significantly enhance generation reliability. Our COLE system comprises multiple fine-tuned Large Language Models (LLMs), Large Multimodal Models (LMMs), and Diffusion Models (DMs), each specifically tailored for design-aware layer-wise captioning, layout planning, reasoning, and the task of generating images and text. Furthermore, we construct the DESIGNINTENTION benchmark to demonstrate the superiority of our COLE system over existing methods in generating high-quality graphic designs from user intent. Last, we present a Canva-like multi-layered image editing tool to support flexible editing of the generated multi-layered graphic design images. We perceive our COLE system as an important step towards addressing more complex and multi-layered graphic design generation tasks in the future.

  • 13 authors
·
Nov 28, 2023

Large Language Models (GPT) Struggle to Answer Multiple-Choice Questions about Code

We analyzed effectiveness of three generative pre-trained transformer (GPT) models in answering multiple-choice question (MCQ) assessments, often involving short snippets of code, from introductory and intermediate programming courses at the postsecondary level. This emerging technology stirs countless discussions of its potential uses (e.g., exercise generation, code explanation) as well as misuses in programming education (e.g., cheating). However, the capabilities of GPT models and their limitations to reason about and/or analyze code in educational settings have been under-explored. We evaluated several OpenAI's GPT models on formative and summative MCQ assessments from three Python courses (530 questions). We found that MCQs containing code snippets are not answered as successfully as those that only contain natural language. While questions requiring to fill-in a blank in the code or completing a natural language statement about the snippet are handled rather successfully, MCQs that require analysis and/or reasoning about the code (e.g., what is true/false about the snippet, or what is its output) appear to be the most challenging. These findings can be leveraged by educators to adapt their instructional practices and assessments in programming courses, so that GPT becomes a valuable assistant for a learner as opposed to a source of confusion and/or potential hindrance in the learning process.

  • 4 authors
·
Mar 9, 2023

Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning

Recently, leveraging pre-training techniques to enhance point cloud models has become a prominent research topic. However, existing approaches typically require full fine-tuning of pre-trained models to achieve satisfactory performance on downstream tasks, which is storage-intensive and computationally demanding. To address this issue, we propose a novel Parameter-Efficient Fine-Tuning (PEFT) method for point cloud, called PointGST (Point cloud Graph Spectral Tuning). PointGST freezes the pre-trained model and introduces a lightweight, trainable Point Cloud Spectral Adapter (PCSA) for fine-tuning parameters in the spectral domain. The core idea is built on two observations: 1) The inner tokens from frozen models might present confusion in the spatial domain; 2) Task-specific intrinsic information is important for transferring the general knowledge to the downstream task. Specifically, PointGST transfers the point tokens from the spatial domain to the spectral domain, effectively de-correlating confusion among tokens by using orthogonal components for separation. Moreover, the generated spectral basis involves intrinsic information about the downstream point clouds, enabling more targeted tuning. As a result, PointGST facilitates the efficient transfer of general knowledge to downstream tasks while significantly reducing training costs. Extensive experiments on challenging point cloud datasets across various tasks demonstrate that PointGST not only outperforms its fully fine-tuning counterpart but also significantly reduces trainable parameters, making it a promising solution for efficient point cloud learning. The code will be made available at https://github.com/jerryfeng2003/PointGST

  • 6 authors
·
Oct 10, 2024

MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials

Inverse design of solid-state materials with desired properties represents a formidable challenge in materials science. Although recent generative models have demonstrated potential, their adoption has been hindered by limitations such as inefficiency, architectural constraints and restricted open-source availability. The representation of crystal structures using the SLICES (Simplified Line-Input Crystal-Encoding System) notation as a string of characters enables the use of state-of-the-art natural language processing models, such as Transformers, for crystal design. Drawing inspiration from the success of GPT models in generating coherent text, we trained a generative Transformer on the next-token prediction task to generate solid-state materials with targeted properties. We demonstrate MatterGPT's capability to generate de novo crystal structures with targeted single properties, including both lattice-insensitive (formation energy) and lattice-sensitive (band gap) properties. Furthermore, we extend MatterGPT to simultaneously target multiple properties, addressing the complex challenge of multi-objective inverse design of crystals. Our approach showcases high validity, uniqueness, and novelty in generated structures, as well as the ability to generate materials with properties beyond the training data distribution. This work represents a significant step forward in computational materials discovery, offering a powerful and open tool for designing materials with tailored properties for various applications in energy, electronics, and beyond.

  • 8 authors
·
Aug 14, 2024

ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools

We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most capable models that are trained with all the insights and lessons gained from the preceding three generations of ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU, GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3) matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide when and which tool(s) touse -- including web browser, Python interpreter, text-to-image model, and user-defined functions -- to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter. Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M), GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone. The open models can be accessed through https://github.com/THUDM and https://huggingface.co/THUDM.

  • 56 authors
·
Jun 18, 2024 2

GraphGPT: Generative Pre-trained Graph Eulerian Transformer

We introduceGraphGPT, a novel self-supervised generative pre-trained model for graph learning based on the Graph Eulerian Transformer (GET). First, we propose GET, which combines a standard transformer encoder or decoder architecture with an innovative graph-to-sequence transformation method. This method converts graphs or sampled subgraphs into sequences of tokens representing nodes, edges, and attributes in a reversible manner using Eulerian paths. We pre-train GET using either of the two self-supervised tasks: next-token prediction (NTP) and scheduled masked-token prediction (SMTP). The pre-trained model is then fine-tuned for downstream tasks such as graph-, edge-, and node-level prediction. Despite its simplicity, GraphGPT achieves performance comparable to or surpassing state-of-the-art methods on multiple large-scale Open Graph Benchmark (OGB) datasets. It demonstrates exceptional results on the molecular property prediction dataset PCQM4Mv2 and the protein-protein interaction dataset ogbl-ppa. Notably, generative pre-training enables scaling GraphGPT to 2 billion parameters while maintaining performance gains - a breakthrough that overcomes the scalability limitations of traditional Graph Neural Networks (GNNs) and prior graph transformers (GTs). To advance research in graph foundation models and facilitate scientific discovery in chemistry, materials science, and related fields, we will release the source code (https://github.com/alibaba/graph-gpt) and pre-trained checkpoints.

  • 6 authors
·
Dec 31, 2023

Divide-Then-Aggregate: An Efficient Tool Learning Method via Parallel Tool Invocation

Although current Large Language Models (LLMs) exhibit impressive capabilities, performing complex real-world tasks still requires tool learning. Mainstream methods, such as CoT/ReAct, rely on step-by-step tool invocation to interact with external environments, but they are limited in perceptual scope and lack adequate task-planning capability. To address these limitations, other studies introduce the first Search-based Decision Tree (DFSDT), which still suffers from the high computational cost. In this paper, we introduce a novel parallel tool invocation paradigm, DTA-Llama (Divide-Then-Aggregate Llama). First, we transform traditional tree-based tool search paths into Directed Acyclic Graph (DAG) structure, generating a high-quality parallel tool invocation dataset. The DTA-Llama is then trained on the dataset to learn to iteratively divide the current task into several parallel tool invocation sub-tasks and aggregate the invocation results to decide the next actions. Furthermore, we introduce an efficient inference framework inspired by the Process/Threads mechanism when applying the DTA-Llama to practical tasks. Experimental results show that our approach substantially enhances task performance while reducing token consumption and inference time. Llama2-7B, using our method, is comparable to the official parallel function calling method of GPT-3.5. The relevant code, dataset, and model weights are available at https://corn0205.github.io/

  • 7 authors
·
Jan 21

CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models

Pre-trained on massive amounts of code and text data, large language models (LLMs) have demonstrated remarkable achievements in performing code generation tasks. With additional execution-based feedback, these models can act as agents with capabilities to self-refine and improve generated code autonomously. However, on challenging coding tasks with extremely large search space, current agentic approaches still struggle with multi-stage planning, generating, and debugging. To address this problem, we propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process. Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions. In each stage, critical decision-making (ranking, termination, expanding) of the exploration process is guided by both the environmental execution-based feedback and LLM-agent-generated feedback. We comprehensively evaluated CodeTree on 7 code generation benchmarks and demonstrated the significant performance gains of CodeTree against strong baselines. Using GPT-4o as the base model, we consistently achieved top results of 95.1 on HumanEval, 98.7 on MBPP, and 43.0 on CodeContests. On the challenging SWEBench benchmark, our approach led to significant performance gains.

  • 6 authors
·
Nov 6, 2024

Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch

The availability of high-quality data is one of the most important factors in improving the reasoning capability of LLMs. Existing works have demonstrated the effectiveness of creating more instruction data from seed questions or knowledge bases. Recent research indicates that continually scaling up data synthesis from strong models (e.g., GPT-4) can further elicit reasoning performance. Though promising, the open-sourced community still lacks high-quality data at scale and scalable data synthesis methods with affordable costs. To address this, we introduce ScaleQuest, a scalable and novel data synthesis method that utilizes "small-size" (e.g., 7B) open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. With the efficient ScaleQuest, we automatically constructed a mathematical reasoning dataset consisting of 1 million problem-solution pairs, which are more effective than existing open-sourced datasets. It can universally increase the performance of mainstream open-source models (i.e., Mistral, Llama3, DeepSeekMath, and Qwen2-Math) by achieving 29.2% to 46.4% gains on MATH. Notably, simply fine-tuning the Qwen2-Math-7B-Base model with our dataset can even surpass Qwen2-Math-7B-Instruct, a strong and well-aligned model on closed-source data, and proprietary models such as GPT-4-Turbo and Claude-3.5 Sonnet.

  • 6 authors
·
Oct 24, 2024 3

RecGPT Technical Report

Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.

  • 53 authors
·
Jul 30 2

BeyondBench: Benchmark-Free Evaluation of Reasoning in Language Models

Evaluating language models fairly is becoming harder as static benchmarks available on the internet risk contamination by training data. This makes it unclear whether models are truly reasoning or just recalling answers. In this paper, we introduce BeyondBench, an evaluation framework that avoids this problem by using algorithmic problem generation. Unlike traditional benchmarks that risk contamination from internet-scale training data, BeyondBench creates mathematically grounded problems on the fly, ensuring each test remains fresh and uncontaminated. Our framework covers 44 algorithmic tasks with a total of 117 variations, grouped into three difficulty levels: the Easy Suite (29 tasks) for basic arithmetic and statistics, the Medium Suite (5 tasks, 49 variations) for sequence patterns and reasoning, and the Hard Suite (10 tasks, 68 variations) tackling NP-complete and constraint satisfaction problems. Each task generates problems from a combinatorial space larger than 10^15 unique instances, with solutions verified deterministically by mathematical proofs. We evaluated 101 language models, including 85 open-source and 16 closed-source models, spanning sizes from 0.5B to 141B parameters and multiple quantization schemes. Our results show consistent reasoning deficiencies across model families, with performance degrading sharply as problem complexity increases from polynomial to exponential. In our Hard Suite evaluations, models such as Gemini-2.5-pro, Llama-3.3-70B, and Qwen2.5-72B achieved average accuracies of 56.38%, 26.91%, and 33.60%, respectively. Moreover, we observe that performance drops drastically without tool usage, with GPT-5, GPT-5-mini, and GPT-5-nano showing a decline of 16.81%, 28.05%, and 47.59% accuracy on the hard suite. Our leaderboard is publicly available at https://ctrl-gaurav.github.io/BeyondBench/

  • 8 authors
·
Sep 28

Look Before you Leap: Estimating LLM Benchmark Scores from Descriptions

Progress in large language models is constrained by an evaluation bottleneck: build a benchmark, evaluate models and settings, then iterate. We therefore ask a simple question: can we forecast outcomes before running any experiments? We study text-only performance forecasting: estimating a model's score from a redacted task description and intended configuration, with no access to dataset instances. To support systematic study, we curate PRECOG, a corpus of redacted description-performance pairs spanning diverse tasks, domains, and metrics. Experiments show the task is challenging but feasible: models equipped with a retrieval module that excludes source papers achieve moderate prediction performance with well-calibrated uncertainty, reaching mean absolute error as low as 8.7 on the Accuracy subset at high-confidence thresholds. Our analysis indicates that stronger reasoning models engage in diverse, iterative querying, whereas current open-source models lag and often skip retrieval or gather evidence with limited diversity. We further test a zero-leakage setting, forecasting on newly released datasets or experiments before their papers are indexed, where GPT-5 with built-in web search still attains nontrivial prediction accuracy. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter experiment prioritization.

  • 4 authors
·
Sep 24

IA-T2I: Internet-Augmented Text-to-Image Generation

Current text-to-image (T2I) generation models achieve promising results, but they fail on the scenarios where the knowledge implied in the text prompt is uncertain. For example, a T2I model released in February would struggle to generate a suitable poster for a movie premiering in April, because the character designs and styles are uncertain to the model. To solve this problem, we propose an Internet-Augmented text-to-image generation (IA-T2I) framework to compel T2I models clear about such uncertain knowledge by providing them with reference images. Specifically, an active retrieval module is designed to determine whether a reference image is needed based on the given text prompt; a hierarchical image selection module is introduced to find the most suitable image returned by an image search engine to enhance the T2I model; a self-reflection mechanism is presented to continuously evaluate and refine the generated image to ensure faithful alignment with the text prompt. To evaluate the proposed framework's performance, we collect a dataset named Img-Ref-T2I, where text prompts include three types of uncertain knowledge: (1) known but rare. (2) unknown. (3) ambiguous. Moreover, we carefully craft a complex prompt to guide GPT-4o in making preference evaluation, which has been shown to have an evaluation accuracy similar to that of human preference evaluation. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4o by about 30% in human evaluation.

  • 6 authors
·
May 21 2

Routine: A Structural Planning Framework for LLM Agent System in Enterprise

The deployment of agent systems in an enterprise environment is often hindered by several challenges: common models lack domain-specific process knowledge, leading to disorganized plans, missing key tools, and poor execution stability. To address this, this paper introduces Routine, a multi-step agent planning framework designed with a clear structure, explicit instructions, and seamless parameter passing to guide the agent's execution module in performing multi-step tool-calling tasks with high stability. In evaluations conducted within a real-world enterprise scenario, Routine significantly increases the execution accuracy in model tool calls, increasing the performance of GPT-4o from 41.1% to 96.3%, and Qwen3-14B from 32.6% to 83.3%. We further constructed a Routine-following training dataset and fine-tuned Qwen3-14B, resulting in an accuracy increase to 88.2% on scenario-specific evaluations, indicating improved adherence to execution plans. In addition, we employed Routine-based distillation to create a scenario-specific, multi-step tool-calling dataset. Fine-tuning on this distilled dataset raised the model's accuracy to 95.5%, approaching GPT-4o's performance. These results highlight Routine's effectiveness in distilling domain-specific tool-usage patterns and enhancing model adaptability to new scenarios. Our experimental results demonstrate that Routine provides a practical and accessible approach to building stable agent workflows, accelerating the deployment and adoption of agent systems in enterprise environments, and advancing the technical vision of AI for Process.

  • 16 authors
·
Jul 18

Towards a Physics Foundation Model

Foundation models have revolutionized natural language processing through a ``train once, deploy anywhere'' paradigm, where a single pre-trained model adapts to countless downstream tasks without retraining. Access to a Physics Foundation Model (PFM) would be transformative -- democratizing access to high-fidelity simulations, accelerating scientific discovery, and eliminating the need for specialized solver development. Yet current physics-aware machine learning approaches remain fundamentally limited to single, narrow domains and require retraining for each new system. We present the General Physics Transformer (GPhyT), trained on 1.8 TB of diverse simulation data, that demonstrates foundation model capabilities are achievable for physics. Our key insight is that transformers can learn to infer governing dynamics from context, enabling a single model to simulate fluid-solid interactions, shock waves, thermal convection, and multi-phase dynamics without being told the underlying equations. GPhyT achieves three critical breakthroughs: (1) superior performance across multiple physics domains, outperforming specialized architectures by up to 29x, (2) zero-shot generalization to entirely unseen physical systems through in-context learning, and (3) stable long-term predictions through 50-timestep rollouts. By establishing that a single model can learn generalizable physical principles from data alone, this work opens the path toward a universal PFM that could transform computational science and engineering.

  • 3 authors
·
Sep 17 2

JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models

Mathematical reasoning is an important capability of large language models~(LLMs) for real-world applications. To enhance this capability, existing work either collects large-scale math-related texts for pre-training, or relies on stronger LLMs (\eg GPT-4) to synthesize massive math problems. Both types of work generally lead to large costs in training or synthesis. To reduce the cost, based on open-source available texts, we propose an efficient way that trains a small LLM for math problem synthesis, to efficiently generate sufficient high-quality pre-training data. To achieve it, we create a dataset using GPT-4 to distill its data synthesis capability into the small LLM. Concretely, we craft a set of prompts based on human education stages to guide GPT-4, to synthesize problems covering diverse math knowledge and difficulty levels. Besides, we adopt the gradient-based influence estimation method to select the most valuable math-related texts. The both are fed into GPT-4 for creating the knowledge distillation dataset to train the small LLM. We leverage it to synthesize 6 million math problems for pre-training our JiuZhang3.0 model, which only needs to invoke GPT-4 API 9.3k times and pre-train on 4.6B data. Experimental results have shown that JiuZhang3.0 achieves state-of-the-art performance on several mathematical reasoning datasets, under both natural language reasoning and tool manipulation settings. Our code and data will be publicly released in https://github.com/RUCAIBox/JiuZhang3.0.

  • 9 authors
·
May 23, 2024

MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL

Recent In-Context Learning based methods have achieved remarkable success in Text-to-SQL task. However, there is still a large gap between the performance of these models and human performance on datasets with complex database schema and difficult questions, such as BIRD. Besides, existing work has neglected to supervise intermediate steps when solving questions iteratively with question decomposition methods, and the schema linking methods used in these works are very rudimentary. To address these issues, we propose MAG-SQL, a multi-agent generative approach with soft schema linking and iterative Sub-SQL refinement. In our framework, an entity-based method with tables' summary is used to select the columns in database, and a novel targets-conditions decomposition method is introduced to decompose those complex questions. Additionally, we build a iterative generating module which includes a Sub-SQL Generator and Sub-SQL Refiner, introducing external oversight for each step of generation. Through a series of ablation studies, the effectiveness of each agent in our framework has been demonstrated. When evaluated on the BIRD benchmark with GPT-4, MAG-SQL achieves an execution accuracy of 61.08\%, compared to the baseline accuracy of 46.35\% for vanilla GPT-4 and the baseline accuracy of 57.56\% for MAC-SQL. Besides, our approach makes similar progress on Spider.

  • 3 authors
·
Aug 15, 2024

Gradient Boosting Reinforcement Learning

Neural networks (NN) achieve remarkable results in various tasks, but lack key characteristics: interpretability, support for categorical features, and lightweight implementations suitable for edge devices. While ongoing efforts aim to address these challenges, Gradient Boosting Trees (GBT) inherently meet these requirements. As a result, GBTs have become the go-to method for supervised learning tasks in many real-world applications and competitions. However, their application in online learning scenarios, notably in reinforcement learning (RL), has been limited. In this work, we bridge this gap by introducing Gradient-Boosting RL (GBRL), a framework that extends the advantages of GBT to the RL domain. Using the GBRL framework, we implement various actor-critic algorithms and compare their performance with their NN counterparts. Inspired by shared backbones in NN we introduce a tree-sharing approach for policy and value functions with distinct learning rates, enhancing learning efficiency over millions of interactions. GBRL achieves competitive performance across a diverse array of tasks, excelling in domains with structured or categorical features. Additionally, we present a high-performance, GPU-accelerated implementation that integrates seamlessly with widely-used RL libraries (available at https://github.com/NVlabs/gbrl). GBRL expands the toolkit for RL practitioners, demonstrating the viability and promise of GBT within the RL paradigm, particularly in domains characterized by structured or categorical features.

  • 3 authors
·
Jul 11, 2024 2

Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees

Influence estimation analyzes how changes to the training data can lead to different model predictions; this analysis can help us better understand these predictions, the models making those predictions, and the data sets they're trained on. However, most influence-estimation techniques are designed for deep learning models with continuous parameters. Gradient-boosted decision trees (GBDTs) are a powerful and widely-used class of models; however, these models are black boxes with opaque decision-making processes. In the pursuit of better understanding GBDT predictions and generally improving these models, we adapt recent and popular influence-estimation methods designed for deep learning models to GBDTs. Specifically, we adapt representer-point methods and TracIn, denoting our new methods TREX and BoostIn, respectively; source code is available at https://github.com/jjbrophy47/tree_influence. We compare these methods to LeafInfluence and other baselines using 5 different evaluation measures on 22 real-world data sets with 4 popular GBDT implementations. These experiments give us a comprehensive overview of how different approaches to influence estimation work in GBDT models. We find BoostIn is an efficient influence-estimation method for GBDTs that performs equally well or better than existing work while being four orders of magnitude faster. Our evaluation also suggests the gold-standard approach of leave-one-out (LOO) retraining consistently identifies the single-most influential training example but performs poorly at finding the most influential set of training examples for a given target prediction.

  • 3 authors
·
Apr 30, 2022

Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach

Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].

  • 3 authors
·
Nov 25, 2024

PGN: The RNN's New Successor is Effective for Long-Range Time Series Forecasting

Due to the recurrent structure of RNN, the long information propagation path poses limitations in capturing long-term dependencies, gradient explosion/vanishing issues, and inefficient sequential execution. Based on this, we propose a novel paradigm called Parallel Gated Network (PGN) as the new successor to RNN. PGN directly captures information from previous time steps through the designed Historical Information Extraction (HIE) layer and leverages gated mechanisms to select and fuse it with the current time step information. This reduces the information propagation path to O(1), effectively addressing the limitations of RNN. To enhance PGN's performance in long-range time series forecasting tasks, we propose a novel temporal modeling framework called Temporal PGN (TPGN). TPGN incorporates two branches to comprehensively capture the semantic information of time series. One branch utilizes PGN to capture long-term periodic patterns while preserving their local characteristics. The other branch employs patches to capture short-term information and aggregate the global representation of the series. TPGN achieves a theoretical complexity of O(L), ensuring efficiency in its operations. Experimental results on five benchmark datasets demonstrate the state-of-the-art (SOTA) performance and high efficiency of TPGN, further confirming the effectiveness of PGN as the new successor to RNN in long-range time series forecasting. The code is available in this repository: https://github.com/Water2sea/TPGN.

  • 6 authors
·
Sep 26, 2024

Empowering LLM to use Smartphone for Intelligent Task Automation

Mobile task automation is an attractive technique that aims to enable voice-based hands-free user interaction with smartphones. However, existing approaches suffer from poor scalability due to the limited language understanding ability and the non-trivial manual efforts required from developers or end-users. The recent advance of large language models (LLMs) in language understanding and reasoning inspires us to rethink the problem from a model-centric perspective, where task preparation, comprehension, and execution are handled by a unified language model. In this work, we introduce AutoDroid, a mobile task automation system that can handle arbitrary tasks on any Android application without manual efforts. The key insight is to combine the commonsense knowledge of LLMs and domain-specific knowledge of apps through automated dynamic analysis. The main components include a functionality-aware UI representation method that bridges the UI with the LLM, exploration-based memory injection techniques that augment the app-specific domain knowledge of LLM, and a multi-granularity query optimization module that reduces the cost of model inference. We integrate AutoDroid with off-the-shelf LLMs including online GPT-4/GPT-3.5 and on-device Vicuna, and evaluate its performance on a new benchmark for memory-augmented Android task automation with 158 common tasks. The results demonstrated that AutoDroid is able to precisely generate actions with an accuracy of 90.9%, and complete tasks with a success rate of 71.3%, outperforming the GPT-4-powered baselines by 36.4% and 39.7%. The demo, benchmark suites, and source code of AutoDroid will be released at url{https://autodroid-sys.github.io/}.

  • 10 authors
·
Aug 29, 2023

Code-Driven Planning in Grid Worlds with Large Language Models

We propose an iterative programmatic planning (IPP) framework for solving grid-based tasks by synthesizing interpretable agent policies expressed in code using large language models (LLMs). Instead of relying on traditional search or reinforcement learning, our approach uses code generation as policy synthesis, where the LLM outputs executable programs that map environment states to action sequences. Our proposed architecture incorporates several prompting strategies, including direct code generation, pseudocode-conditioned refinement, and curriculum-based prompting, but also includes an iterative refinement mechanism that updates code based on task performance feedback. We evaluate our approach using six leading LLMs and two challenging grid-based benchmarks (GRASP and MiniGrid). Our IPP framework demonstrates improvements over direct code generation ranging from 10\% to as much as 10x across five of the six models and establishes a new state-of-the-art result for GRASP. IPP is found to significantly outperform direct elicitation of a solution from GPT-o3-mini (by 63\% on MiniGrid to 116\% on GRASP), demonstrating the viability of the overall approach. Computational costs of all code generation approaches are similar. While code generation has a higher initial prompting cost compared to direct solution elicitation (\0.08 per task vs. 0.002 per instance for GPT-o3-mini), the code can be reused for any number of instances, making the amortized cost significantly lower (by 400x on GPT-o3-mini across the complete GRASP benchmark).

  • 3 authors
·
May 15

Octo-planner: On-device Language Model for Planner-Action Agents

AI agents have become increasingly significant in various domains, enabling autonomous decision-making and problem-solving. To function effectively, these agents require a planning process that determines the best course of action and then executes the planned actions. In this paper, we present an efficient on-device Planner-Action framework that separates planning and action execution into two distinct components: a planner agent based on Phi-3 Mini, a 3.8 billion parameter LLM optimized for edge devices, and an action agent using the Octopus model for function execution. The planner agent first responds to user queries by decomposing tasks into a sequence of sub-steps, which are then executed by the action agent. To optimize performance on resource-constrained devices, we employ model fine-tuning instead of in-context learning, reducing computational costs and energy consumption while improving response times. Our approach involves using GPT-4 to generate diverse planning queries and responses based on available functions, with subsequent validations to ensure data quality. We fine-tune the Phi-3 Mini model on this curated dataset, achieving a 97\% success rate in our in-domain test environment. To address multi-domain planning challenges, we developed a multi-LoRA training method that merges weights from LoRAs trained on distinct function subsets. This approach enables flexible handling of complex, multi-domain queries while maintaining computational efficiency on resource-constrained devices. To support further research, we have open-sourced our model weights at https://huggingface.co/NexaAIDev/octopus-planning. For the demo, please refer to https://www.nexa4ai.com/octo-planner.

  • 4 authors
·
Jun 26, 2024 5

Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning

There is a growing interest in applying pre-trained large language models (LLMs) to planning problems. However, methods that use LLMs directly as planners are currently impractical due to several factors, including limited correctness of plans, strong reliance on feedback from interactions with simulators or even the actual environment, and the inefficiency in utilizing human feedback. In this work, we introduce a novel alternative paradigm that constructs an explicit world (domain) model in planning domain definition language (PDDL) and then uses it to plan with sound domain-independent planners. To address the fact that LLMs may not generate a fully functional PDDL model initially, we employ LLMs as an interface between PDDL and sources of corrective feedback, such as PDDL validators and humans. For users who lack a background in PDDL, we show that LLMs can translate PDDL into natural language and effectively encode corrective feedback back to the underlying domain model. Our framework not only enjoys the correctness guarantee offered by the external planners but also reduces human involvement by allowing users to correct domain models at the beginning, rather than inspecting and correcting (through interactive prompting) every generated plan as in previous work. On two IPC domains and a Household domain that is more complicated than commonly used benchmarks such as ALFWorld, we demonstrate that GPT-4 can be leveraged to produce high-quality PDDL models for over 40 actions, and the corrected PDDL models are then used to successfully solve 48 challenging planning tasks. Resources including the source code will be released at: https://guansuns.github.io/pages/llm-dm.

  • 4 authors
·
May 24, 2023

MetaGPT: Meta Programming for Multi-Agent Collaborative Framework

Recently, remarkable progress has been made in automated task-solving through the use of multi-agent driven by large language models (LLMs). However, existing LLM-based multi-agent works primarily focus on solving simple dialogue tasks, and complex tasks are rarely studied, mainly due to the LLM hallucination problem. This type of hallucination becomes cascading when naively chaining multiple intelligent agents, resulting in a failure to effectively address complex problems. Therefore, we introduce MetaGPT, an innovative framework that incorporates efficient human workflows as a meta programming approach into LLM-based multi-agent collaboration. Specifically, MetaGPT encodes Standardized Operating Procedures (SOPs) into prompts to enhance structured coordination. Subsequently, it mandates modular outputs, empowering agents with domain expertise comparable to human professionals, to validate outputs and minimize compounded errors. In this way, MetaGPT leverages the assembly line paradigm to assign diverse roles to various agents, thereby establishing a framework that can effectively and cohesively deconstruct complex multi-agent collaborative problems. Our experiments on collaborative software engineering benchmarks demonstrate that MetaGPT generates more coherent and correct solutions compared to existing chat-based multi-agent systems. This highlights the potential of integrating human domain knowledge into multi-agent systems, thereby creating new opportunities to tackle complex real-world challenges. The GitHub repository of this project is publicly available on:https://github.com/geekan/MetaGPT.

  • 13 authors
·
Aug 1, 2023

ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation

This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.

  • 8 authors
·
Mar 4, 2024

3DGabSplat: 3D Gabor Splatting for Frequency-adaptive Radiance Field Rendering

Recent prominence in 3D Gaussian Splatting (3DGS) has enabled real-time rendering while maintaining high-fidelity novel view synthesis. However, 3DGS resorts to the Gaussian function that is low-pass by nature and is restricted in representing high-frequency details in 3D scenes. Moreover, it causes redundant primitives with degraded training and rendering efficiency and excessive memory overhead. To overcome these limitations, we propose 3D Gabor Splatting (3DGabSplat) that leverages a novel 3D Gabor-based primitive with multiple directional 3D frequency responses for radiance field representation supervised by multi-view images. The proposed 3D Gabor-based primitive forms a filter bank incorporating multiple 3D Gabor kernels at different frequencies to enhance flexibility and efficiency in capturing fine 3D details. Furthermore, to achieve novel view rendering, an efficient CUDA-based rasterizer is developed to project the multiple directional 3D frequency components characterized by 3D Gabor-based primitives onto the 2D image plane, and a frequency-adaptive mechanism is presented for adaptive joint optimization of primitives. 3DGabSplat is scalable to be a plug-and-play kernel for seamless integration into existing 3DGS paradigms to enhance both efficiency and quality of novel view synthesis. Extensive experiments demonstrate that 3DGabSplat outperforms 3DGS and its variants using alternative primitives, and achieves state-of-the-art rendering quality across both real-world and synthetic scenes. Remarkably, we achieve up to 1.35 dB PSNR gain over 3DGS with simultaneously reduced number of primitives and memory consumption.

  • 8 authors
·
Aug 7

Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey

Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.

  • 5 authors
·
Mar 21, 2024 3

DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text

Large language models (LLMs) have notably enhanced the fluency and diversity of machine-generated text. However, this progress also presents a significant challenge in detecting the origin of a given text, and current research on detection methods lags behind the rapid evolution of LLMs. Conventional training-based methods have limitations in flexibility, particularly when adapting to new domains, and they often lack explanatory power. To address this gap, we propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT). Given a text, we first truncate it in the middle and then use only the preceding portion as input to the LLMs to regenerate the new remaining parts. By analyzing the differences between the original and new remaining parts through N-gram analysis in black-box or probability divergence in white-box, we can clearly illustrate significant discrepancies between machine-generated and human-written text. We conducted extensive experiments on the most advanced LLMs from OpenAI, including text-davinci-003, GPT-3.5-turbo, and GPT-4, as well as open-source models such as GPT-NeoX-20B and LLaMa-13B. Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text on four English and one German dataset, outperforming OpenAI's own classifier, which is trained on millions of text. Additionally, our methods provide reasonable explanations and evidence to support our claim, which is a unique feature of explainable detection. Our method is also robust under the revised text attack and can additionally solve model sourcing. Codes are available at https://github.com/Xianjun-Yang/DNA-GPT.

  • 5 authors
·
May 26, 2023

StreamBP: Memory-Efficient Exact Backpropagation for Long Sequence Training of LLMs

Training language models on long sequence data is a demanding requirement for enhancing the model's capability on complex tasks, e.g., long-chain reasoning. However, as the sequence length scales up, the memory cost for storing activation values becomes huge during the Backpropagation (BP) process, even with the application of gradient checkpointing technique. To tackle this challenge, we propose a memory-efficient and exact BP method called StreamBP, which performs a linear decomposition of the chain rule along the sequence dimension in a layer-wise manner, significantly reducing the memory cost of activation values and logits. The proposed method is applicable to common objectives such as SFT, GRPO, and DPO. From an implementation perspective, StreamBP achieves less computational FLOPs and faster BP speed by leveraging the causal structure of the language model. Compared to gradient checkpointing, StreamBP scales up the maximum sequence length of BP by 2.8-5.5 times larger, while using comparable or even less BP time. Note that StreamBP's sequence length scaling ability can be directly transferred to batch size scaling for accelerating training. We further develop a communication-efficient distributed StreamBP to effectively support multi-GPU training and broaden its applicability. Our code can be easily integrated into the training pipeline of any transformer models and is available at https://github.com/Ledzy/StreamBP.

  • 4 authors
·
Jun 3 2

Test-Case-Driven Programming Understanding in Large Language Models for Better Code Generation

Code generation is to automatically generate source code conforming to a given programming specification, which has received extensive attention especially with the development of large language models (LLMs). Due to the inherent difficulty of code generation, the code generated by LLMs may be also not aligned with the specification. To improve the perfor mance of LLMs in code generation, some Chain of Thought (CoT) techniques have been proposed to guide LLMs for programming understanding before code generation. However, they are still hard to figure out complicated programming logic according to the (concise) specification, leadingto unsatisfactory code generation performance. In this work, we propose the first test-case-driven CoT technique, called TCoT, to further enhance the ability of LLMs in code generation. It understands the programming specification from the novel perspective of test cases, which is aligned with human practice by using examples to understand complicated problems. Due to the existence of the expected output specified in a test case, TCoT can instantly check the correctness of the programming understanding and then refine it to be as correct as possible before code generation. In this way, it is more likely to generate correct code. Our evaluation on 6 datasets and 14 baselines demonstrates the effectiveness of TCoT. For example, TCoT improves ChatGPT by 13.93%~69.44% in terms of Pass@1 (measuring the ratio of programming problems for which the generated code passes all test cases), and outperforms the existing CoT technique with the improvement of 12.14%~53.72% in terms of Pass@1.

  • 2 authors
·
Sep 27, 2023

Cloud-Device Collaborative Adaptation to Continual Changing Environments in the Real-world

When facing changing environments in the real world, the lightweight model on client devices suffers from severe performance drops under distribution shifts. The main limitations of the existing device model lie in (1) unable to update due to the computation limit of the device, (2) the limited generalization ability of the lightweight model. Meanwhile, recent large models have shown strong generalization capability on the cloud while they can not be deployed on client devices due to poor computation constraints. To enable the device model to deal with changing environments, we propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device and improves the generalization of the device model. Based on this paradigm, we further propose an Uncertainty-based Visual Prompt Adapted (U-VPA) teacher-student model to transfer the generalization capability of the large model on the cloud to the device model. Specifically, we first design the Uncertainty Guided Sampling (UGS) to screen out challenging data continuously and transmit the most out-of-distribution samples from the device to the cloud. Then we propose a Visual Prompt Learning Strategy with Uncertainty guided updating (VPLU) to specifically deal with the selected samples with more distribution shifts. We transmit the visual prompts to the device and concatenate them with the incoming data to pull the device testing distribution closer to the cloud training distribution. We conduct extensive experiments on two object detection datasets with continually changing environments. Our proposed U-VPA teacher-student framework outperforms previous state-of-the-art test time adaptation and device-cloud collaboration methods. The code and datasets will be released.

  • 7 authors
·
Dec 2, 2022

ProxyGPT: Enabling Anonymous Queries in AI Chatbots with (Un)Trustworthy Browser Proxies

AI-powered chatbots (ChatGPT, Claude, etc.) require users to create an account using their email and phone number, thereby linking their personally identifiable information to their conversational data and usage patterns. As these chatbots are increasingly being used for tasks involving sensitive information, privacy concerns have been raised about how chatbot providers handle user data. To address these concerns, we present ProxyGPT, a privacy-enhancing system that enables anonymous queries in popular chatbot platforms. ProxyGPT leverages volunteer proxies to submit user queries on their behalf, thus providing network-level anonymity for chatbot users. The system is designed to support key security properties such as content integrity via TLS-backed data provenance, end-to-end encryption, and anonymous payment, while also ensuring usability and sustainability. We provide a thorough analysis of the privacy, security, and integrity of our system and identify various future research directions, particularly in the area of private chatbot query synthesis. Our human evaluation shows that ProxyGPT offers users a greater sense of privacy compared to traditional AI chatbots, especially in scenarios where users are hesitant to share their identity with chatbot providers. Although our proof-of-concept has higher latency than popular chatbots, our human interview participants consider this to be an acceptable trade-off for anonymity. To the best of our knowledge, ProxyGPT is the first comprehensive proxy-based solution for privacy-preserving AI chatbots. Our codebase is available at https://github.com/dzungvpham/proxygpt.

  • 4 authors
·
Jul 11, 2024

MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification

Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.

  • 5 authors
·
Jan 2

Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G

Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces. While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks. Such tools struggle to cope with the non-trivial challenges of the network environment and the growing demands of emerging use cases. In this paper, we revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. These systems acquire common sense by exploiting different cognitive abilities such as perception, analogy, and reasoning, that enable them to generalize and deal with unforeseen scenarios. Towards developing the components of such a system, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyper-dimensional (HD) computing, that aligns with intuitive physics and enables analogical reasoning, that define common sense. Then, we explain how methods such as integrated information theory play a role in the proposed intent-driven and objective-driven planning methods that maneuver the AGI-native network to take actions. Next, we discuss how an AGI-native network can enable use cases related to human and autonomous agents: a) analogical reasoning for next-generation DTs, b) synchronized and resilient experiences for cognitive avatars, and c) brain-level metaverse experiences like holographic teleportation. Finally, we conclude with a set of recommendations to build AGI-native systems. Ultimately, we envision this paper as a roadmap for the beyond 6G era.

  • 7 authors
·
Apr 29, 2024

CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs

Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain and costly to store. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.

  • 7 authors
·
Dec 27, 2024

Reformulating Domain Adaptation of Large Language Models as Adapt-Retrieve-Revise

While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it's not plausible to continue training LLMs of such scale on in-domain data. This paper introduces a simple and effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the target domain by continuing learning on in-domain data. When solving a task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves accuracy by 33.3\% compared to the direct generation by GPT-4. When compared to two stronger retrieval-based baselines, our method outperforms them by 15.4\% and 23.9\%. Our code will be released

  • 5 authors
·
Oct 5, 2023

Evaluating Binary Decision Biases in Large Language Models: Implications for Fair Agent-Based Financial Simulations

Large Language Models (LLMs) are increasingly being used to simulate human-like decision making in agent-based financial market models (ABMs). As models become more powerful and accessible, researchers can now incorporate individual LLM decisions into ABM environments. However, integration may introduce inherent biases that need careful evaluation. In this paper we test three state-of-the-art GPT models for bias using two model sampling approaches: one-shot and few-shot API queries. We observe significant variations in distributions of outputs between specific models, and model sub versions, with GPT-4o-Mini-2024-07-18 showing notably better performance (32-43% yes responses) compared to GPT-4-0125-preview's extreme bias (98-99% yes responses). We show that sampling methods and model sub-versions significantly impact results: repeated independent API calls produce different distributions compared to batch sampling within a single call. While no current GPT model can simultaneously achieve a uniform distribution and Markovian properties in one-shot testing, few-shot sampling can approach uniform distributions under certain conditions. We explore the Temperature parameter, providing a definition and comparative results. We further compare our results to true random binary series and test specifically for the common human bias of Negative Recency - finding LLMs have a mixed ability to 'beat' humans in this one regard. These findings emphasise the critical importance of careful LLM integration into ABMs for financial markets and more broadly.

  • 2 authors
·
Jan 20

Exploring Recommendation Capabilities of GPT-4V(ision): A Preliminary Case Study

Large Multimodal Models (LMMs) have demonstrated impressive performance across various vision and language tasks, yet their potential applications in recommendation tasks with visual assistance remain unexplored. To bridge this gap, we present a preliminary case study investigating the recommendation capabilities of GPT-4V(ison), a recently released LMM by OpenAI. We construct a series of qualitative test samples spanning multiple domains and employ these samples to assess the quality of GPT-4V's responses within recommendation scenarios. Evaluation results on these test samples prove that GPT-4V has remarkable zero-shot recommendation abilities across diverse domains, thanks to its robust visual-text comprehension capabilities and extensive general knowledge. However, we have also identified some limitations in using GPT-4V for recommendations, including a tendency to provide similar responses when given similar inputs. This report concludes with an in-depth discussion of the challenges and research opportunities associated with utilizing GPT-4V in recommendation scenarios. Our objective is to explore the potential of extending LMMs from vision and language tasks to recommendation tasks. We hope to inspire further research into next-generation multimodal generative recommendation models, which can enhance user experiences by offering greater diversity and interactivity. All images and prompts used in this report will be accessible at https://github.com/PALIN2018/Evaluate_GPT-4V_Rec.

  • 9 authors
·
Nov 7, 2023

GenPRM: Scaling Test-Time Compute of Process Reward Models via Generative Reasoning

Recent advancements in Large Language Models (LLMs) have shown that it is promising to utilize Process Reward Models (PRMs) as verifiers to enhance the performance of LLMs. However, current PRMs face three key challenges: (1) limited process supervision and generalization capabilities, (2) dependence on scalar value prediction without leveraging the generative abilities of LLMs, and (3) inability to scale the test-time compute of PRMs. In this work, we introduce GenPRM, a generative process reward model that performs explicit Chain-of-Thought (CoT) reasoning with code verification before providing judgment for each reasoning step. To obtain high-quality process supervision labels and rationale data, we propose Relative Progress Estimation (RPE) and a rationale synthesis framework that incorporates code verification. Experimental results on ProcessBench and several mathematical reasoning tasks show that GenPRM significantly outperforms prior PRMs with only 23K training data from MATH dataset. Through test-time scaling, a 1.5B GenPRM outperforms GPT-4o, and a 7B GenPRM surpasses Qwen2.5-Math-PRM-72B on ProcessBench. Additionally, GenPRM demonstrates strong abilities to serve as a critic model for policy model refinement. This work establishes a new paradigm for process supervision that bridges the gap between PRMs and critic models in LLMs. Our code, model, and data will be available in https://ryanliu112.github.io/GenPRM.

When to Pre-Train Graph Neural Networks? From Data Generation Perspective!

In recent years, graph pre-training has gained significant attention, focusing on acquiring transferable knowledge from unlabeled graph data to improve downstream performance. Despite these recent endeavors, the problem of negative transfer remains a major concern when utilizing graph pre-trained models to downstream tasks. Previous studies made great efforts on the issue of what to pre-train and how to pre-train by designing a variety of graph pre-training and fine-tuning strategies. However, there are cases where even the most advanced "pre-train and fine-tune" paradigms fail to yield distinct benefits. This paper introduces a generic framework W2PGNN to answer the crucial question of when to pre-train (i.e., in what situations could we take advantage of graph pre-training) before performing effortful pre-training or fine-tuning. We start from a new perspective to explore the complex generative mechanisms from the pre-training data to downstream data. In particular, W2PGNN first fits the pre-training data into graphon bases, each element of graphon basis (i.e., a graphon) identifies a fundamental transferable pattern shared by a collection of pre-training graphs. All convex combinations of graphon bases give rise to a generator space, from which graphs generated form the solution space for those downstream data that can benefit from pre-training. In this manner, the feasibility of pre-training can be quantified as the generation probability of the downstream data from any generator in the generator space. W2PGNN offers three broad applications: providing the application scope of graph pre-trained models, quantifying the feasibility of pre-training, and assistance in selecting pre-training data to enhance downstream performance. We provide a theoretically sound solution for the first application and extensive empirical justifications for the latter two applications.

  • 8 authors
·
Mar 29, 2023

Automating High Quality RT Planning at Scale

Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances in artificial intelligence (AI) promise to improve its precision, efficiency, and consistency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Eclipse of Varian. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. This data set features more than 10 times the number of plans compared to the largest existing well-curated public data set to our best knowledge. Repo:{https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge}

  • 13 authors
·
Jan 20

Learning Physical Models that Can Respect Conservation Laws

Recent work in scientific machine learning (SciML) has focused on incorporating partial differential equation (PDE) information into the learning process. Much of this work has focused on relatively ``easy'' PDE operators (e.g., elliptic and parabolic), with less emphasis on relatively ``hard'' PDE operators (e.g., hyperbolic). Within numerical PDEs, the latter problem class requires control of a type of volume element or conservation constraint, which is known to be challenging. Delivering on the promise of SciML requires seamlessly incorporating both types of problems into the learning process. To address this issue, we propose ProbConserv, a framework for incorporating conservation constraints into a generic SciML architecture. To do so, ProbConserv combines the integral form of a conservation law with a Bayesian update. We provide a detailed analysis of ProbConserv on learning with the Generalized Porous Medium Equation (GPME), a widely-applicable parameterized family of PDEs that illustrates the qualitative properties of both easier and harder PDEs. ProbConserv is effective for easy GPME variants, performing well with state-of-the-art competitors; and for harder GPME variants it outperforms other approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with shocks and heteroscedasticities. In each case, it achieves superior predictive performance on downstream tasks.

  • 5 authors
·
Feb 21, 2023

"Kurosawa": A Script Writer's Assistant

Storytelling is the lifeline of the entertainment industry -- movies, TV shows, and stand-up comedies, all need stories. A good and gripping script is the lifeline of storytelling and demands creativity and resource investment. Good scriptwriters are rare to find and often work under severe time pressure. Consequently, entertainment media are actively looking for automation. In this paper, we present an AI-based script-writing workbench called KUROSAWA which addresses the tasks of plot generation and script generation. Plot generation aims to generate a coherent and creative plot (600-800 words) given a prompt (15-40 words). Script generation, on the other hand, generates a scene (200-500 words) in a screenplay format from a brief description (15-40 words). Kurosawa needs data to train. We use a 4-act structure of storytelling to annotate the plot dataset manually. We create a dataset of 1000 manually annotated plots and their corresponding prompts/storylines and a gold-standard dataset of 1000 scenes with four main elements -- scene headings, action lines, dialogues, and character names -- tagged individually. We fine-tune GPT-3 with the above datasets to generate plots and scenes. These plots and scenes are first evaluated and then used by the scriptwriters of a large and famous media platform ErosNow. We release the annotated datasets and the models trained on these datasets as a working benchmark for automatic movie plot and script generation.

  • 3 authors
·
Aug 6, 2023

PhyX: Does Your Model Have the "Wits" for Physical Reasoning?

Existing benchmarks fail to capture a crucial aspect of intelligence: physical reasoning, the integrated ability to combine domain knowledge, symbolic reasoning, and understanding of real-world constraints. To address this gap, we introduce PhyX: the first large-scale benchmark designed to assess models capacity for physics-grounded reasoning in visual scenarios. PhyX includes 3K meticulously curated multimodal questions spanning 6 reasoning types across 25 sub-domains and 6 core physics domains: thermodynamics, electromagnetism, mechanics, modern physics, optics, and wave\&acoustics. In our comprehensive evaluation, even state-of-the-art models struggle significantly with physical reasoning. GPT-4o, Claude3.7-Sonnet, and GPT-o4-mini achieve only 32.5\%, 42.2\%, and 45.8\% accuracy respectively-performance gaps exceeding 29\% compared to human experts. Our analysis exposes critical limitations in current models: over-reliance on memorized disciplinary knowledge, excessive dependence on mathematical formulations, and surface-level visual pattern matching rather than genuine physical understanding. We provide in-depth analysis through fine-grained statistics, detailed case studies, and multiple evaluation paradigms to thoroughly examine physical reasoning capabilities. To ensure reproducibility, we implement a compatible evaluation protocol based on widely-used toolkits such as VLMEvalKit, enabling one-click evaluation.

  • 19 authors
·
May 21 4

No More Manual Tests? Evaluating and Improving ChatGPT for Unit Test Generation

Unit testing is essential in detecting bugs in functionally-discrete program units. Manually writing high-quality unit tests is time-consuming and laborious. Although traditional techniques can generate tests with reasonable coverage, they exhibit low readability and cannot be directly adopted by developers. Recent work has shown the large potential of large language models (LLMs) in unit test generation, which can generate more human-like and meaningful test code. ChatGPT, the latest LLM incorporating instruction tuning and reinforcement learning, has performed well in various domains. However, It remains unclear how effective ChatGPT is in unit test generation. In this work, we perform the first empirical study to evaluate ChatGPT's capability of unit test generation. Specifically, we conduct a quantitative analysis and a user study to systematically investigate the quality of its generated tests regarding the correctness, sufficiency, readability, and usability. The tests generated by ChatGPT still suffer from correctness issues, including diverse compilation errors and execution failures. Still, the passing tests generated by ChatGPT resemble manually-written tests by achieving comparable coverage, readability, and even sometimes developers' preference. Our findings indicate that generating unit tests with ChatGPT could be very promising if the correctness of its generated tests could be further improved. Inspired by our findings above, we propose ChatTESTER, a novel ChatGPT-based unit test generation approach, which leverages ChatGPT itself to improve the quality of its generated tests. ChatTESTER incorporates an initial test generator and an iterative test refiner. Our evaluation demonstrates the effectiveness of ChatTESTER by generating 34.3% more compilable tests and 18.7% more tests with correct assertions than the default ChatGPT.

  • 7 authors
·
May 7, 2023