Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAPLA: Additional Perturbation for Latent Noise with Adversarial Training Enables Consistency
Diffusion models have exhibited promising progress in video generation. However, they often struggle to retain consistent details within local regions across frames. One underlying cause is that traditional diffusion models approximate Gaussian noise distribution by utilizing predictive noise, without fully accounting for the impact of inherent information within the input itself. Additionally, these models emphasize the distinction between predictions and references, neglecting information intrinsic to the videos. To address this limitation, inspired by the self-attention mechanism, we propose a novel text-to-video (T2V) generation network structure based on diffusion models, dubbed Additional Perturbation for Latent noise with Adversarial training (APLA). Our approach only necessitates a single video as input and builds upon pre-trained stable diffusion networks. Notably, we introduce an additional compact network, known as the Video Generation Transformer (VGT). This auxiliary component is designed to extract perturbations from the inherent information contained within the input, thereby refining inconsistent pixels during temporal predictions. We leverage a hybrid architecture of transformers and convolutions to compensate for temporal intricacies, enhancing consistency between different frames within the video. Experiments demonstrate a noticeable improvement in the consistency of the generated videos both qualitatively and quantitatively.
Masked Image Training for Generalizable Deep Image Denoising
When capturing and storing images, devices inevitably introduce noise. Reducing this noise is a critical task called image denoising. Deep learning has become the de facto method for image denoising, especially with the emergence of Transformer-based models that have achieved notable state-of-the-art results on various image tasks. However, deep learning-based methods often suffer from a lack of generalization ability. For example, deep models trained on Gaussian noise may perform poorly when tested on other noise distributions. To address this issue, we present a novel approach to enhance the generalization performance of denoising networks, known as masked training. Our method involves masking random pixels of the input image and reconstructing the missing information during training. We also mask out the features in the self-attention layers to avoid the impact of training-testing inconsistency. Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios. Additionally, our interpretability analysis demonstrates the superiority of our method.
Markup-to-Image Diffusion Models with Scheduled Sampling
Building on recent advances in image generation, we present a fully data-driven approach to rendering markup into images. The approach is based on diffusion models, which parameterize the distribution of data using a sequence of denoising operations on top of a Gaussian noise distribution. We view the diffusion denoising process as a sequential decision making process, and show that it exhibits compounding errors similar to exposure bias issues in imitation learning problems. To mitigate these issues, we adapt the scheduled sampling algorithm to diffusion training. We conduct experiments on four markup datasets: mathematical formulas (LaTeX), table layouts (HTML), sheet music (LilyPond), and molecular images (SMILES). These experiments each verify the effectiveness of the diffusion process and the use of scheduled sampling to fix generation issues. These results also show that the markup-to-image task presents a useful controlled compositional setting for diagnosing and analyzing generative image models.
Safeguarding Vision-Language Models: Mitigating Vulnerabilities to Gaussian Noise in Perturbation-based Attacks
Vision-Language Models (VLMs) extend the capabilities of Large Language Models (LLMs) by incorporating visual information, yet they remain vulnerable to jailbreak attacks, especially when processing noisy or corrupted images. Although existing VLMs adopt security measures during training to mitigate such attacks, vulnerabilities associated with noise-augmented visual inputs are overlooked. In this work, we identify that missing noise-augmented training causes critical security gaps: many VLMs are susceptible to even simple perturbations such as Gaussian noise. To address this challenge, we propose Robust-VLGuard, a multimodal safety dataset with aligned / misaligned image-text pairs, combined with noise-augmented fine-tuning that reduces attack success rates while preserving functionality of VLM. For stronger optimization-based visual perturbation attacks, we propose DiffPure-VLM, leveraging diffusion models to convert adversarial perturbations into Gaussian-like noise, which can be defended by VLMs with noise-augmented safety fine-tuning. Experimental results demonstrate that the distribution-shifting property of diffusion model aligns well with our fine-tuned VLMs, significantly mitigating adversarial perturbations across varying intensities. The dataset and code are available at https://github.com/JarvisUSTC/DiffPure-RobustVLM.
Gaussian Weight Sampling for Scalable, Efficient and Stable Pseudo-Quantization Training
Ever-growing scale of large language models (LLMs) is pushing for improved efficiency, favoring fully quantized training (FQT) over BF16. While FQT accelerates training, it faces consistency challenges and requires searching over an exponential number of cases, each needing over 200B tokens to ensure stability. Pseudo-quantization training (PQT) addresses the issues of FQT, although it is not well-studied. We explore the practical implications of PQT in detail and propose a noise distribution R that is floating-point (FP)-friendly, with ideal properties including stochastic precision annealing. As a result, the proposed method serves as an effective theoretical foundation for low-precision FP parameters through PQT, utilizing efficient fake quantization via an addition and subsequent FP casting. We demonstrate that Gaussian weight sampling is (1) scalable: supports low-precision FP parameters down to FP6 and high-precision noise up to 9-bit with BF16 operator. The proposed method is (2) efficient: incurring computational overhead as low as 1.40\% on the A100 GPU in terms of Llama2 training tokens per second, and requiring 2 bytes per parameter in GPU memory. We demonstrate that PQT with Gaussian weight sampling is (3) stable: closely following or even surpassing performance of the BF16 baseline while pre-training GPT2 and Llama2 models with up to 1B parameters and 300B tokens.
NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation
Image interpolation based on diffusion models is promising in creating fresh and interesting images. Advanced interpolation methods mainly focus on spherical linear interpolation, where images are encoded into the noise space and then interpolated for denoising to images. However, existing methods face challenges in effectively interpolating natural images (not generated by diffusion models), thereby restricting their practical applicability. Our experimental investigations reveal that these challenges stem from the invalidity of the encoding noise, which may no longer obey the expected noise distribution, e.g., a normal distribution. To address these challenges, we propose a novel approach to correct noise for image interpolation, NoiseDiffusion. Specifically, NoiseDiffusion approaches the invalid noise to the expected distribution by introducing subtle Gaussian noise and introduces a constraint to suppress noise with extreme values. In this context, promoting noise validity contributes to mitigating image artifacts, but the constraint and introduced exogenous noise typically lead to a reduction in signal-to-noise ratio, i.e., loss of original image information. Hence, NoiseDiffusion performs interpolation within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss. Consequently, NoiseDiffusion enables us to interpolate natural images without causing artifacts or information loss, thus achieving the best interpolation results.
Generative Modeling by Estimating Gradients of the Data Distribution
We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments.
DIAGen: Diverse Image Augmentation with Generative Models
Simple data augmentation techniques, such as rotations and flips, are widely used to enhance the generalization power of computer vision models. However, these techniques often fail to modify high-level semantic attributes of a class. To address this limitation, researchers have explored generative augmentation methods like the recently proposed DA-Fusion. Despite some progress, the variations are still largely limited to textural changes, thus falling short on aspects like varied viewpoints, environment, weather conditions, or even class-level semantic attributes (eg, variations in a dog's breed). To overcome this challenge, we propose DIAGen, building upon DA-Fusion. First, we apply Gaussian noise to the embeddings of an object learned with Textual Inversion to diversify generations using a pre-trained diffusion model's knowledge. Second, we exploit the general knowledge of a text-to-text generative model to guide the image generation of the diffusion model with varied class-specific prompts. Finally, we introduce a weighting mechanism to mitigate the impact of poorly generated samples. Experimental results across various datasets show that DIAGen not only enhances semantic diversity but also improves the performance of subsequent classifiers. The advantages of DIAGen over standard augmentations and the DA-Fusion baseline are particularly pronounced with out-of-distribution samples.
One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls
It is well known that many open-released foundational diffusion models have difficulty in generating images that substantially depart from average brightness, despite such images being present in the training data. This is due to an inconsistency: while denoising starts from pure Gaussian noise during inference, the training noise schedule retains residual data even in the final timestep distribution, due to difficulties in numerical conditioning in mainstream formulation, leading to unintended bias during inference. To mitigate this issue, certain epsilon-prediction models are combined with an ad-hoc offset-noise methodology. In parallel, some contemporary models have adopted zero-terminal SNR noise schedules together with v-prediction, which necessitate major alterations to pre-trained models. However, such changes risk destabilizing a large multitude of community-driven applications anchored on these pre-trained models. In light of this, our investigation revisits the fundamental causes, leading to our proposal of an innovative and principled remedy, called One More Step (OMS). By integrating a compact network and incorporating an additional simple yet effective step during inference, OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters. Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
Idempotent Generative Network
We propose a new approach for generative modeling based on training a neural network to be idempotent. An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application, namely f(f(z))=f(z). The proposed model f is trained to map a source distribution (e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the following objectives: (1) Instances from the target distribution should map to themselves, namely f(x)=x. We define the target manifold as the set of all instances that f maps to themselves. (2) Instances that form the source distribution should map onto the defined target manifold. This is achieved by optimizing the idempotence term, f(f(z))=f(z) which encourages the range of f(z) to be on the target manifold. Under ideal assumptions such a process provably converges to the target distribution. This strategy results in a model capable of generating an output in one step, maintaining a consistent latent space, while also allowing sequential applications for refinement. Additionally, we find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold. This work is a first step towards a ``global projector'' that enables projecting any input into a target data distribution.
Sample Complexity Bounds for Learning High-dimensional Simplices in Noisy Regimes
In this paper, we find a sample complexity bound for learning a simplex from noisy samples. Assume a dataset of size n is given which includes i.i.d. samples drawn from a uniform distribution over an unknown simplex in R^K, where samples are assumed to be corrupted by a multi-variate additive Gaussian noise of an arbitrary magnitude. We prove the existence of an algorithm that with high probability outputs a simplex having a ell_2 distance of at most varepsilon from the true simplex (for any varepsilon>0). Also, we theoretically show that in order to achieve this bound, it is sufficient to have ngeleft(K^2/varepsilon^2right)e^{Omegaleft(K/SNR^2right)} samples, where SNR stands for the signal-to-noise ratio. This result solves an important open problem and shows as long as SNRgeOmegaleft(K^{1/2}right), the sample complexity of the noisy regime has the same order to that of the noiseless case. Our proofs are a combination of the so-called sample compression technique in ashtiani2018nearly, mathematical tools from high-dimensional geometry, and Fourier analysis. In particular, we have proposed a general Fourier-based technique for recovery of a more general class of distribution families from additive Gaussian noise, which can be further used in a variety of other related problems.
CAR-Flow: Condition-Aware Reparameterization Aligns Source and Target for Better Flow Matching
Conditional generative modeling aims to learn a conditional data distribution from samples containing data-condition pairs. For this, diffusion and flow-based methods have attained compelling results. These methods use a learned (flow) model to transport an initial standard Gaussian noise that ignores the condition to the conditional data distribution. The model is hence required to learn both mass transport and conditional injection. To ease the demand on the model, we propose Condition-Aware Reparameterization for Flow Matching (CAR-Flow) -- a lightweight, learned shift that conditions the source, the target, or both distributions. By relocating these distributions, CAR-Flow shortens the probability path the model must learn, leading to faster training in practice. On low-dimensional synthetic data, we visualize and quantify the effects of CAR. On higher-dimensional natural image data (ImageNet-256), equipping SiT-XL/2 with CAR-Flow reduces FID from 2.07 to 1.68, while introducing less than 0.6% additional parameters.
Flowing from Words to Pixels: A Framework for Cross-Modality Evolution
Diffusion models, and their generalization, flow matching, have had a remarkable impact on the field of media generation. Here, the conventional approach is to learn the complex mapping from a simple source distribution of Gaussian noise to the target media distribution. For cross-modal tasks such as text-to-image generation, this same mapping from noise to image is learnt whilst including a conditioning mechanism in the model. One key and thus far relatively unexplored feature of flow matching is that, unlike Diffusion models, they are not constrained for the source distribution to be noise. Hence, in this paper, we propose a paradigm shift, and ask the question of whether we can instead train flow matching models to learn a direct mapping from the distribution of one modality to the distribution of another, thus obviating the need for both the noise distribution and conditioning mechanism. We present a general and simple framework, CrossFlow, for cross-modal flow matching. We show the importance of applying Variational Encoders to the input data, and introduce a method to enable Classifier-free guidance. Surprisingly, for text-to-image, CrossFlow with a vanilla transformer without cross attention slightly outperforms standard flow matching, and we show that it scales better with training steps and model size, while also allowing for interesting latent arithmetic which results in semantically meaningful edits in the output space. To demonstrate the generalizability of our approach, we also show that CrossFlow is on par with or outperforms the state-of-the-art for various cross-modal / intra-modal mapping tasks, viz. image captioning, depth estimation, and image super-resolution. We hope this paper contributes to accelerating progress in cross-modal media generation.
DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors for Change Detection
Remote sensing change detection is crucial for understanding the dynamics of our planet's surface, facilitating the monitoring of environmental changes, evaluating human impact, predicting future trends, and supporting decision-making. In this work, we introduce a novel approach for change detection that can leverage off-the-shelf, unlabeled remote sensing images in the training process by pre-training a Denoising Diffusion Probabilistic Model (DDPM) - a class of generative models used in image synthesis. DDPMs learn the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain. During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution, starting from Gaussian noise, achieving state-of-the-art image synthesis results. However, in this work, our focus is not on image synthesis but on utilizing it as a pre-trained feature extractor for the downstream application of change detection. Specifically, we fine-tune a lightweight change classifier utilizing the feature representations produced by the pre-trained DDPM alongside change labels. Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing state-of-the-art change detection methods in terms of F1 score, IoU, and overall accuracy, highlighting the pivotal role of pre-trained DDPM as a feature extractor for downstream applications. We have made both the code and pre-trained models available at https://github.com/wgcban/ddpm-cd
Learning Unnormalized Statistical Models via Compositional Optimization
Learning unnormalized statistical models (e.g., energy-based models) is computationally challenging due to the complexity of handling the partition function. To eschew this complexity, noise-contrastive estimation~(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise. However, as found in previous works, NCE may perform poorly in many tasks due to its flat loss landscape and slow convergence. In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models from the perspective of compositional optimization. To tackle the partition function, a noise distribution is introduced such that the log partition function can be written as a compositional function whose inner function can be estimated with stochastic samples. Hence, the objective can be optimized by stochastic compositional optimization algorithms. Despite being a simple method, we demonstrate that it is more favorable than NCE by (1) establishing a fast convergence rate and quantifying its dependence on the noise distribution through the variance of stochastic estimators; (2) developing better results for one-dimensional Gaussian mean estimation by showing our objective has a much favorable loss landscape and hence our method enjoys faster convergence; (3) demonstrating better performance on multiple applications, including density estimation, out-of-distribution detection, and real image generation.
Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
An Efficient Tester-Learner for Halfspaces
We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.
The Unreasonable Effectiveness of Gaussian Score Approximation for Diffusion Models and its Applications
By learning the gradient of smoothed data distributions, diffusion models can iteratively generate samples from complex distributions. The learned score function enables their generalization capabilities, but how the learned score relates to the score of the underlying data manifold remains largely unclear. Here, we aim to elucidate this relationship by comparing learned neural scores to the scores of two kinds of analytically tractable distributions: Gaussians and Gaussian mixtures. The simplicity of the Gaussian model makes it theoretically attractive, and we show that it admits a closed-form solution and predicts many qualitative aspects of sample generation dynamics. We claim that the learned neural score is dominated by its linear (Gaussian) approximation for moderate to high noise scales, and supply both theoretical and empirical arguments to support this claim. Moreover, the Gaussian approximation empirically works for a larger range of noise scales than naive theory suggests it should, and is preferentially learned early in training. At smaller noise scales, we observe that learned scores are better described by a coarse-grained (Gaussian mixture) approximation of training data than by the score of the training distribution, a finding consistent with generalization. Our findings enable us to precisely predict the initial phase of trained models' sampling trajectories through their Gaussian approximations. We show that this allows the skipping of the first 15-30% of sampling steps while maintaining high sample quality (with a near state-of-the-art FID score of 1.93 on CIFAR-10 unconditional generation). This forms the foundation of a novel hybrid sampling method, termed analytical teleportation, which can seamlessly integrate with and accelerate existing samplers, including DPM-Solver-v3 and UniPC. Our findings suggest ways to improve the design and training of diffusion models.
On the Identifiability and Estimation of Causal Location-Scale Noise Models
We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Conventional uncertainty-aware temporal difference (TD) learning methods often rely on simplistic assumptions, typically including a zero-mean Gaussian distribution for TD errors. Such oversimplification can lead to inaccurate error representations and compromised uncertainty estimation. In this paper, we introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning, applicable to both discrete and continuous control settings. Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent noise, i.e., aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to fully leverage the GGD. To address epistemic uncertainty, we enhance the batch inverse variance weighting by incorporating bias reduction and kurtosis considerations, resulting in improved robustness. Extensive experimental evaluations using policy gradient algorithms demonstrate the consistent efficacy of our method, showcasing significant performance improvements.
Tractable MCMC for Private Learning with Pure and Gaussian Differential Privacy
Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides varepsilon-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by (varepsilon,delta)-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing delta-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity (W_infty) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., delta=0). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in W_infty distance. We show that by combining our new techniques with a careful localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.
Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise
The concept class of low-degree polynomial threshold functions (PTFs) plays a fundamental role in machine learning. In this paper, we study PAC learning of K-sparse degree-d PTFs on R^n, where any such concept depends only on K out of n attributes of the input. Our main contribution is a new algorithm that runs in time ({nd}/{epsilon})^{O(d)} and under the Gaussian marginal distribution, PAC learns the class up to error rate epsilon with O(K^{4d}{epsilon^{2d}} cdot log^{5d} n) samples even when an eta leq O(epsilon^d) fraction of them are corrupted by the nasty noise of Bshouty et al. (2002), possibly the strongest corruption model. Prior to this work, attribute-efficient robust algorithms are established only for the special case of sparse homogeneous halfspaces. Our key ingredients are: 1) a structural result that translates the attribute sparsity to a sparsity pattern of the Chow vector under the basis of Hermite polynomials, and 2) a novel attribute-efficient robust Chow vector estimation algorithm which uses exclusively a restricted Frobenius norm to either certify a good approximation or to validate a sparsity-induced degree-2d polynomial as a filter to detect corrupted samples.
SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and Music Synthesis
Generative adversarial network (GAN) models can synthesize highquality audio signals while ensuring fast sample generation. However, they are difficult to train and are prone to several issues including mode collapse and divergence. In this paper, we introduce SpecDiff-GAN, a neural vocoder based on HiFi-GAN, which was initially devised for speech synthesis from mel spectrogram. In our model, the training stability is enhanced by means of a forward diffusion process which consists in injecting noise from a Gaussian distribution to both real and fake samples before inputting them to the discriminator. We further improve the model by exploiting a spectrally-shaped noise distribution with the aim to make the discriminator's task more challenging. We then show the merits of our proposed model for speech and music synthesis on several datasets. Our experiments confirm that our model compares favorably in audio quality and efficiency compared to several baselines.
Immiscible Diffusion: Accelerating Diffusion Training with Noise Assignment
In this paper, we point out suboptimal noise-data mapping leads to slow training of diffusion models. During diffusion training, current methods diffuse each image across the entire noise space, resulting in a mixture of all images at every point in the noise layer. We emphasize that this random mixture of noise-data mapping complicates the optimization of the denoising function in diffusion models. Drawing inspiration from the immiscible phenomenon in physics, we propose Immiscible Diffusion, a simple and effective method to improve the random mixture of noise-data mapping. In physics, miscibility can vary according to various intermolecular forces. Thus, immiscibility means that the mixing of the molecular sources is distinguishable. Inspired by this, we propose an assignment-then-diffusion training strategy. Specifically, prior to diffusing the image data into noise, we assign diffusion target noise for the image data by minimizing the total image-noise pair distance in a mini-batch. The assignment functions analogously to external forces to separate the diffuse-able areas of images, thus mitigating the inherent difficulties in diffusion training. Our approach is remarkably simple, requiring only one line of code to restrict the diffuse-able area for each image while preserving the Gaussian distribution of noise. This ensures that each image is projected only to nearby noise. To address the high complexity of the assignment algorithm, we employ a quantized-assignment method to reduce the computational overhead to a negligible level. Experiments demonstrate that our method achieve up to 3x faster training for consistency models and DDIM on the CIFAR dataset, and up to 1.3x faster on CelebA datasets for consistency models. Besides, we conduct thorough analysis about the Immiscible Diffusion, which sheds lights on how it improves diffusion training speed while improving the fidelity.
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior
Denoising diffusion probabilistic models have been recently proposed to generate high-quality samples by estimating the gradient of the data density. The framework defines the prior noise as a standard Gaussian distribution, whereas the corresponding data distribution may be more complicated than the standard Gaussian distribution, which potentially introduces inefficiency in denoising the prior noise into the data sample because of the discrepancy between the data and the prior. In this paper, we propose PriorGrad to improve the efficiency of the conditional diffusion model for speech synthesis (for example, a vocoder using a mel-spectrogram as the condition) by applying an adaptive prior derived from the data statistics based on the conditional information. We formulate the training and sampling procedures of PriorGrad and demonstrate the advantages of an adaptive prior through a theoretical analysis. Focusing on the speech synthesis domain, we consider the recently proposed diffusion-based speech generative models based on both the spectral and time domains and show that PriorGrad achieves faster convergence and inference with superior performance, leading to an improved perceptual quality and robustness to a smaller network capacity, and thereby demonstrating the efficiency of a data-dependent adaptive prior.
DDP: Diffusion Model for Dense Visual Prediction
We propose a simple, efficient, yet powerful framework for dense visual predictions based on the conditional diffusion pipeline. Our approach follows a "noise-to-map" generative paradigm for prediction by progressively removing noise from a random Gaussian distribution, guided by the image. The method, called DDP, efficiently extends the denoising diffusion process into the modern perception pipeline. Without task-specific design and architecture customization, DDP is easy to generalize to most dense prediction tasks, e.g., semantic segmentation and depth estimation. In addition, DDP shows attractive properties such as dynamic inference and uncertainty awareness, in contrast to previous single-step discriminative methods. We show top results on three representative tasks with six diverse benchmarks, without tricks, DDP achieves state-of-the-art or competitive performance on each task compared to the specialist counterparts. For example, semantic segmentation (83.9 mIoU on Cityscapes), BEV map segmentation (70.6 mIoU on nuScenes), and depth estimation (0.05 REL on KITTI). We hope that our approach will serve as a solid baseline and facilitate future research
SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy
Machine learning (ML) models frequently rely on training data that may include sensitive or personal information, raising substantial privacy concerns. Legislative frameworks such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) have necessitated the development of strategies that preserve privacy while maintaining the utility of data. In this paper, we investigate the capability of Large Language Models (LLMs) to generate synthetic datasets integrated with Differential Privacy (DP) mechanisms, thereby enabling data-driven research and model training without direct exposure of sensitive information. Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process. We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data. To substantiate privacy guarantees, we assess the resilience of the generated synthetic data to membership inference attacks and related threats. The experimental results demonstrate that integrating DP within LLM-driven synthetic data generation offers a viable balance between privacy protection and data utility. This study provides a foundational methodology and insight into the privacy-preserving capabilities of LLMs, paving the way for compliant and effective ML research and applications.
Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling
Score distillation sampling (SDS), the methodology in which the score from pretrained 2D diffusion models is distilled into 3D representation, has recently brought significant advancements in text-to-3D generation task. However, this approach is still confronted with critical geometric inconsistency problems such as the Janus problem. Starting from a hypothesis that such inconsistency problems may be induced by multiview inconsistencies between 2D scores predicted from various viewpoints, we introduce GSD, a simple and general plug-and-play framework for incorporating 3D consistency and therefore geometry awareness into the SDS process. Our methodology is composed of three components: 3D consistent noising, designed to produce 3D consistent noise maps that perfectly follow the standard Gaussian distribution, geometry-based gradient warping for identifying correspondences between predicted gradients of different viewpoints, and novel gradient consistency loss to optimize the scene geometry toward producing more consistent gradients. We demonstrate that our method significantly improves performance, successfully addressing the geometric inconsistency problems in text-to-3D generation task with minimal computation cost and being compatible with existing score distillation-based models. Our project page is available at https://ku-cvlab.github.io/GSD/.
Extraneousness-Aware Imitation Learning
Visual imitation learning provides an effective framework to learn skills from demonstrations. However, the quality of the provided demonstrations usually significantly affects the ability of an agent to acquire desired skills. Therefore, the standard visual imitation learning assumes near-optimal demonstrations, which are expensive or sometimes prohibitive to collect. Previous works propose to learn from noisy demonstrations; however, the noise is usually assumed to follow a context-independent distribution such as a uniform or gaussian distribution. In this paper, we consider another crucial yet underexplored setting -- imitation learning with task-irrelevant yet locally consistent segments in the demonstrations (e.g., wiping sweat while cutting potatoes in a cooking tutorial). We argue that such noise is common in real world data and term them "extraneous" segments. To tackle this problem, we introduce Extraneousness-Aware Imitation Learning (EIL), a self-supervised approach that learns visuomotor policies from third-person demonstrations with extraneous subsequences. EIL learns action-conditioned observation embeddings in a self-supervised manner and retrieves task-relevant observations across visual demonstrations while excluding the extraneous ones. Experimental results show that EIL outperforms strong baselines and achieves comparable policies to those trained with perfect demonstration on both simulated and real-world robot control tasks. The project page can be found at https://sites.google.com/view/eil-website.
Unsupervised speech enhancement with diffusion-based generative models
Recently, conditional score-based diffusion models have gained significant attention in the field of supervised speech enhancement, yielding state-of-the-art performance. However, these methods may face challenges when generalising to unseen conditions. To address this issue, we introduce an alternative approach that operates in an unsupervised manner, leveraging the generative power of diffusion models. Specifically, in a training phase, a clean speech prior distribution is learnt in the short-time Fourier transform (STFT) domain using score-based diffusion models, allowing it to unconditionally generate clean speech from Gaussian noise. Then, we develop a posterior sampling methodology for speech enhancement by combining the learnt clean speech prior with a noise model for speech signal inference. The noise parameters are simultaneously learnt along with clean speech estimation through an iterative expectationmaximisation (EM) approach. To the best of our knowledge, this is the first work exploring diffusion-based generative models for unsupervised speech enhancement, demonstrating promising results compared to a recent variational auto-encoder (VAE)-based unsupervised approach and a state-of-the-art diffusion-based supervised method. It thus opens a new direction for future research in unsupervised speech enhancement.
3DGS-DET: Empower 3D Gaussian Splatting with Boundary Guidance and Box-Focused Sampling for 3D Object Detection
Neural Radiance Fields (NeRF) are widely used for novel-view synthesis and have been adapted for 3D Object Detection (3DOD), offering a promising approach to 3DOD through view-synthesis representation. However, NeRF faces inherent limitations: (i) limited representational capacity for 3DOD due to its implicit nature, and (ii) slow rendering speeds. Recently, 3D Gaussian Splatting (3DGS) has emerged as an explicit 3D representation that addresses these limitations. Inspired by these advantages, this paper introduces 3DGS into 3DOD for the first time, identifying two main challenges: (i) Ambiguous spatial distribution of Gaussian blobs: 3DGS primarily relies on 2D pixel-level supervision, resulting in unclear 3D spatial distribution of Gaussian blobs and poor differentiation between objects and background, which hinders 3DOD; (ii) Excessive background blobs: 2D images often include numerous background pixels, leading to densely reconstructed 3DGS with many noisy Gaussian blobs representing the background, negatively affecting detection. To tackle the challenge (i), we leverage the fact that 3DGS reconstruction is derived from 2D images, and propose an elegant and efficient solution by incorporating 2D Boundary Guidance to significantly enhance the spatial distribution of Gaussian blobs, resulting in clearer differentiation between objects and their background. To address the challenge (ii), we propose a Box-Focused Sampling strategy using 2D boxes to generate object probability distribution in 3D spaces, allowing effective probabilistic sampling in 3D to retain more object blobs and reduce noisy background blobs. Benefiting from our designs, our 3DGS-DET significantly outperforms the SOTA NeRF-based method, NeRF-Det, achieving improvements of +6.6 on [email protected] and +8.1 on [email protected] for the ScanNet dataset, and impressive +31.5 on [email protected] for the ARKITScenes dataset.
Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method
Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.
Kernel Density Estimators in Large Dimensions
This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.
On the Posterior Distribution in Denoising: Application to Uncertainty Quantification
Denoisers play a central role in many applications, from noise suppression in low-grade imaging sensors, to empowering score-based generative models. The latter category of methods makes use of Tweedie's formula, which links the posterior mean in Gaussian denoising (\ie the minimum MSE denoiser) with the score of the data distribution. Here, we derive a fundamental relation between the higher-order central moments of the posterior distribution, and the higher-order derivatives of the posterior mean. We harness this result for uncertainty quantification of pre-trained denoisers. Particularly, we show how to efficiently compute the principal components of the posterior distribution for any desired region of an image, as well as to approximate the full marginal distribution along those (or any other) one-dimensional directions. Our method is fast and memory-efficient, as it does not explicitly compute or store the high-order moment tensors and it requires no training or fine tuning of the denoiser. Code and examples are available on the project webpage in https://hilamanor.github.io/GaussianDenoisingPosterior/ .
Generalized Gaussian Model for Learned Image Compression
In learned image compression, probabilistic models play an essential role in characterizing the distribution of latent variables. The Gaussian model with mean and scale parameters has been widely used for its simplicity and effectiveness. Probabilistic models with more parameters, such as the Gaussian mixture models, can fit the distribution of latent variables more precisely, but the corresponding complexity will also be higher. To balance between compression performance and complexity, we extend the Gaussian model to the generalized Gaussian model for more flexible latent distribution modeling, introducing only one additional shape parameter, beta, than the Gaussian model. To enhance the performance of the generalized Gaussian model by alleviating the train-test mismatch, we propose improved training methods, including beta-dependent lower bounds for scale parameters and gradient rectification. Our proposed generalized Gaussian model, coupled with the improved training methods, is demonstrated to outperform the Gaussian and Gaussian mixture models on a variety of learned image compression methods.
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.
Uncertainty Quantification via Stable Distribution Propagation
We propose a new approach for propagating stable probability distributions through neural networks. Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity. This allows propagating Gaussian and Cauchy input uncertainties through neural networks to quantify their output uncertainties. To demonstrate the utility of propagating distributions, we apply the proposed method to predicting calibrated confidence intervals and selective prediction on out-of-distribution data. The results demonstrate a broad applicability of propagating distributions and show the advantages of our method over other approaches such as moment matching.
Noise-Level Diffusion Guidance: Well Begun is Half Done
Diffusion models have achieved state-of-the-art image generation. However, the random Gaussian noise used to start the diffusion process influences the final output, causing variations in image quality and prompt adherence. Existing noise-level optimization approaches generally rely on extra dataset construction, additional networks, or backpropagation-based optimization, limiting their practicality. In this paper, we propose Noise Level Guidance (NLG), a simple, efficient, and general noise-level optimization approach that refines initial noise by increasing the likelihood of its alignment with general guidance - requiring no additional training data, auxiliary networks, or backpropagation. The proposed NLG approach provides a unified framework generalizable to both conditional and unconditional diffusion models, accommodating various forms of diffusion-level guidance. Extensive experiments on five standard benchmarks demonstrate that our approach enhances output generation quality and input condition adherence. By seamlessly integrating with existing guidance methods while maintaining computational efficiency, our method establishes NLG as a practical and scalable enhancement to diffusion models. Code can be found at https://github.com/harveymannering/NoiseLevelGuidance.
Dimensionality Reduction for General KDE Mode Finding
Finding the mode of a high dimensional probability distribution D is a fundamental algorithmic problem in statistics and data analysis. There has been particular interest in efficient methods for solving the problem when D is represented as a mixture model or kernel density estimate, although few algorithmic results with worst-case approximation and runtime guarantees are known. In this work, we significantly generalize a result of (LeeLiMusco:2021) on mode approximation for Gaussian mixture models. We develop randomized dimensionality reduction methods for mixtures involving a broader class of kernels, including the popular logistic, sigmoid, and generalized Gaussian kernels. As in Lee et al.'s work, our dimensionality reduction results yield quasi-polynomial algorithms for mode finding with multiplicative accuracy (1-epsilon) for any epsilon > 0. Moreover, when combined with gradient descent, they yield efficient practical heuristics for the problem. In addition to our positive results, we prove a hardness result for box kernels, showing that there is no polynomial time algorithm for finding the mode of a kernel density estimate, unless P = NP. Obtaining similar hardness results for kernels used in practice (like Gaussian or logistic kernels) is an interesting future direction.
Finite size corrections for neural network Gaussian processes
There has been a recent surge of interest in modeling neural networks (NNs) as Gaussian processes. In the limit of a NN of infinite width the NN becomes equivalent to a Gaussian process. Here we demonstrate that for an ensemble of large, finite, fully connected networks with a single hidden layer the distribution of outputs at initialization is well described by a Gaussian perturbed by the fourth Hermite polynomial for weights drawn from a symmetric distribution. We show that the scale of the perturbation is inversely proportional to the number of units in the NN and that higher order terms decay more rapidly, thereby recovering the Edgeworth expansion. We conclude by observing that understanding how this perturbation changes under training would reveal the regimes in which the Gaussian process framework is valid to model NN behavior.
A Noise is Worth Diffusion Guidance
Diffusion models excel in generating high-quality images. However, current diffusion models struggle to produce reliable images without guidance methods, such as classifier-free guidance (CFG). Are guidance methods truly necessary? Observing that noise obtained via diffusion inversion can reconstruct high-quality images without guidance, we focus on the initial noise of the denoising pipeline. By mapping Gaussian noise to `guidance-free noise', we uncover that small low-magnitude low-frequency components significantly enhance the denoising process, removing the need for guidance and thus improving both inference throughput and memory. Expanding on this, we propose \ours, a novel method that replaces guidance methods with a single refinement of the initial noise. This refined noise enables high-quality image generation without guidance, within the same diffusion pipeline. Our noise-refining model leverages efficient noise-space learning, achieving rapid convergence and strong performance with just 50K text-image pairs. We validate its effectiveness across diverse metrics and analyze how refined noise can eliminate the need for guidance. See our project page: https://cvlab-kaist.github.io/NoiseRefine/.
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the estimation performance significantly.
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Variational inference (VI) seeks to approximate a target distribution pi by an element of a tractable family of distributions. Of key interest in statistics and machine learning is Gaussian VI, which approximates pi by minimizing the Kullback-Leibler (KL) divergence to pi over the space of Gaussians. In this work, we develop the (Stochastic) Forward-Backward Gaussian Variational Inference (FB-GVI) algorithm to solve Gaussian VI. Our approach exploits the composite structure of the KL divergence, which can be written as the sum of a smooth term (the potential) and a non-smooth term (the entropy) over the Bures-Wasserstein (BW) space of Gaussians endowed with the Wasserstein distance. For our proposed algorithm, we obtain state-of-the-art convergence guarantees when pi is log-smooth and log-concave, as well as the first convergence guarantees to first-order stationary solutions when pi is only log-smooth.
The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions
In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.
3D Gaussian Splatting as Markov Chain Monte Carlo
While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene-in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) updates by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the 'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
On Kinetic Optimal Probability Paths for Generative Models
Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the data separation function. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to 1 in the general case of arbitrary normalized dataset consisting of n samples in d dimension as n/drightarrow 0. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes kinetic optimal as n/drightarrow 0. We further support this theory with empirical experiments on ImageNet.
What do you Mean? The Role of the Mean Function in Bayesian Optimisation
Bayesian optimisation is a popular approach for optimising expensive black-box functions. The next location to be evaluated is selected via maximising an acquisition function that balances exploitation and exploration. Gaussian processes, the surrogate models of choice in Bayesian optimisation, are often used with a constant prior mean function equal to the arithmetic mean of the observed function values. We show that the rate of convergence can depend sensitively on the choice of mean function. We empirically investigate 8 mean functions (constant functions equal to the arithmetic mean, minimum, median and maximum of the observed function evaluations, linear, quadratic polynomials, random forests and RBF networks), using 10 synthetic test problems and two real-world problems, and using the Expected Improvement and Upper Confidence Bound acquisition functions. We find that for design dimensions ge5 using a constant mean function equal to the worst observed quality value is consistently the best choice on the synthetic problems considered. We argue that this worst-observed-quality function promotes exploitation leading to more rapid convergence. However, for the real-world tasks the more complex mean functions capable of modelling the fitness landscape may be effective, although there is no clearly optimum choice.
Gaussian Splatting with NeRF-based Color and Opacity
Neural Radiance Fields (NeRFs) have demonstrated the remarkable potential of neural networks to capture the intricacies of 3D objects. By encoding the shape and color information within neural network weights, NeRFs excel at producing strikingly sharp novel views of 3D objects. Recently, numerous generalizations of NeRFs utilizing generative models have emerged, expanding its versatility. In contrast, Gaussian Splatting (GS) offers a similar render quality with faster training and inference as it does not need neural networks to work. It encodes information about the 3D objects in the set of Gaussian distributions that can be rendered in 3D similarly to classical meshes. Unfortunately, GS are difficult to condition since they usually require circa hundred thousand Gaussian components. To mitigate the caveats of both models, we propose a hybrid model Viewing Direction Gaussian Splatting (VDGS) that uses GS representation of the 3D object's shape and NeRF-based encoding of color and opacity. Our model uses Gaussian distributions with trainable positions (i.e. means of Gaussian), shape (i.e. covariance of Gaussian), color and opacity, and a neural network that takes Gaussian parameters and viewing direction to produce changes in the said color and opacity. As a result, our model better describes shadows, light reflections, and the transparency of 3D objects without adding additional texture and light components.
Width and Depth Limits Commute in Residual Networks
We show that taking the width and depth to infinity in a deep neural network with skip connections, when branches are scaled by 1/depth (the only nontrivial scaling), result in the same covariance structure no matter how that limit is taken. This explains why the standard infinite-width-then-depth approach provides practical insights even for networks with depth of the same order as width. We also demonstrate that the pre-activations, in this case, have Gaussian distributions which has direct applications in Bayesian deep learning. We conduct extensive simulations that show an excellent match with our theoretical findings.
Optimizing Hyperparameters with Conformal Quantile Regression
Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.
Cluster-Specific Predictions with Multi-Task Gaussian Processes
A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.
Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian probability distributions
While score-based generative models (SGMs) have achieved remarkable success in enormous image generation tasks, their mathematical foundations are still limited. In this paper, we analyze the approximation and generalization of SGMs in learning a family of sub-Gaussian probability distributions. We introduce a notion of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure. We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution in total variation with a dimension-independent rate. We illustrate our theory through examples, which include certain mixtures of Gaussians. An essential ingredient of our proof is to derive a dimension-free deep neural network approximation rate for the true score function associated with the forward process, which is interesting in its own right.
A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding
Given a stationary state-space model that relates a sequence of hidden states and corresponding measurements or observations, Bayesian filtering provides a principled statistical framework for inferring the posterior distribution of the current state given all measurements up to the present time. For example, the Apollo lunar module implemented a Kalman filter to infer its location from a sequence of earth-based radar measurements and land safely on the moon. To perform Bayesian filtering, we require a measurement model that describes the conditional distribution of each observation given state. The Kalman filter takes this measurement model to be linear, Gaussian. Here we show how a nonlinear, Gaussian approximation to the distribution of state given observation can be used in conjunction with Bayes' rule to build a nonlinear, non-Gaussian measurement model. The resulting approach, called the Discriminative Kalman Filter (DKF), retains fast closed-form updates for the posterior. We argue there are many cases where the distribution of state given measurement is better-approximated as Gaussian, especially when the dimensionality of measurements far exceeds that of states and the Bernstein-von Mises theorem applies. Online neural decoding for brain-computer interfaces provides a motivating example, where filtering incorporates increasingly detailed measurements of neural activity to provide users control over external devices. Within the BrainGate2 clinical trial, the DKF successfully enabled three volunteers with quadriplegia to control an on-screen cursor in real-time using mental imagery alone. Participant "T9" used the DKF to type out messages on a tablet PC.
Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series
Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTS's individually, and do not leverage the dynamic distributions underlying the MTS's, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting timeseries. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.
Approximate Inference for Fully Bayesian Gaussian Process Regression
Learning in Gaussian Process models occurs through the adaptation of hyperparameters of the mean and the covariance function. The classical approach entails maximizing the marginal likelihood yielding fixed point estimates (an approach called Type II maximum likelihood or ML-II). An alternative learning procedure is to infer the posterior over hyperparameters in a hierarchical specification of GPs we call Fully Bayesian Gaussian Process Regression (GPR). This work considers two approximation schemes for the intractable hyperparameter posterior: 1) Hamiltonian Monte Carlo (HMC) yielding a sampling-based approximation and 2) Variational Inference (VI) where the posterior over hyperparameters is approximated by a factorized Gaussian (mean-field) or a full-rank Gaussian accounting for correlations between hyperparameters. We analyze the predictive performance for fully Bayesian GPR on a range of benchmark data sets.
Chain of Log-Concave Markov Chains
We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution.
Density Modeling of Images using a Generalized Normalization Transformation
We introduce a parametric nonlinear transformation that is well-suited for Gaussianizing data from natural images. The data are linearly transformed, and each component is then normalized by a pooled activity measure, computed by exponentiating a weighted sum of rectified and exponentiated components and a constant. We optimize the parameters of the full transformation (linear transform, exponents, weights, constant) over a database of natural images, directly minimizing the negentropy of the responses. The optimized transformation substantially Gaussianizes the data, achieving a significantly smaller mutual information between transformed components than alternative methods including ICA and radial Gaussianization. The transformation is differentiable and can be efficiently inverted, and thus induces a density model on images. We show that samples of this model are visually similar to samples of natural image patches. We demonstrate the use of the model as a prior probability density that can be used to remove additive noise. Finally, we show that the transformation can be cascaded, with each layer optimized using the same Gaussianization objective, thus offering an unsupervised method of optimizing a deep network architecture.
Scale Mixtures of Neural Network Gaussian Processes
Recent works have revealed that infinitely-wide feed-forward or recurrent neural networks of any architecture correspond to Gaussian processes referred to as Neural Network Gaussian Processes (NNGPs). While these works have extended the class of neural networks converging to Gaussian processes significantly, however, there has been little focus on broadening the class of stochastic processes that such neural networks converge to. In this work, inspired by the scale mixture of Gaussian random variables, we propose the scale mixture of NNGPs for which we introduce a prior distribution on the scale of the last-layer parameters. We show that simply introducing a scale prior on the last-layer parameters can turn infinitely-wide neural networks of any architecture into a richer class of stochastic processes. With certain scale priors, we obtain heavy-tailed stochastic processes, and in the case of inverse gamma priors, we recover Student's t processes. We further analyze the distributions of the neural networks initialized with our prior setting and trained with gradient descents and obtain similar results as for NNGPs. We present a practical posterior-inference algorithm for the scale mixture of NNGPs and empirically demonstrate its usefulness on regression and classification tasks. In particular, we show that in both tasks, the heavy-tailed stochastic processes obtained from our framework are robust to out-of-distribution data.
Multi-layer random features and the approximation power of neural networks
A neural architecture with randomly initialized weights, in the infinite width limit, is equivalent to a Gaussian Random Field whose covariance function is the so-called Neural Network Gaussian Process kernel (NNGP). We prove that a reproducing kernel Hilbert space (RKHS) defined by the NNGP contains only functions that can be approximated by the architecture. To achieve a certain approximation error the required number of neurons in each layer is defined by the RKHS norm of the target function. Moreover, the approximation can be constructed from a supervised dataset by a random multi-layer representation of an input vector, together with training of the last layer's weights. For a 2-layer NN and a domain equal to an n-1-dimensional sphere in {mathbb R}^n, we compare the number of neurons required by Barron's theorem and by the multi-layer features construction. We show that if eigenvalues of the integral operator of the NNGP decay slower than k^{-n-2{3}} where k is an order of an eigenvalue, then our theorem guarantees a more succinct neural network approximation than Barron's theorem. We also make some computational experiments to verify our theoretical findings. Our experiments show that realistic neural networks easily learn target functions even when both theorems do not give any guarantees.
Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model
We derive a minimalist but powerful deterministic denoising-diffusion model. While denoising diffusion has shown great success in many domains, its underlying theory remains largely inaccessible to non-expert users. Indeed, an understanding of graduate-level concepts such as Langevin dynamics or score matching appears to be required to grasp how it works. We propose an alternative approach that requires no more than undergrad calculus and probability. We consider two densities and observe what happens when random samples from these densities are blended (linearly interpolated). We show that iteratively blending and deblending samples produces random paths between the two densities that converge toward a deterministic mapping. This mapping can be evaluated with a neural network trained to deblend samples. We obtain a model that behaves like deterministic denoising diffusion: it iteratively maps samples from one density (e.g., Gaussian noise) to another (e.g., cat images). However, compared to the state-of-the-art alternative, our model is simpler to derive, simpler to implement, more numerically stable, achieves higher quality results in our experiments, and has interesting connections to computer graphics.
There and Back Again: On the relation between noises, images, and their inversions in diffusion models
Denoising Diffusion Probabilistic Models (DDPMs) achieve state-of-the-art performance in synthesizing new images from random noise, but they lack meaningful latent space that encodes data into features. Recent DDPM-based editing techniques try to mitigate this issue by inverting images back to their approximated staring noise. In this work, we study the relation between the initial Gaussian noise, the samples generated from it, and their corresponding latent encodings obtained through the inversion procedure. First, we interpret their spatial distance relations to show the inaccuracy of the DDIM inversion technique by localizing latent representations manifold between the initial noise and generated samples. Then, we demonstrate the peculiar relation between initial Gaussian noise and its corresponding generations during diffusion training, showing that the high-level features of generated images stabilize rapidly, keeping the spatial distance relationship between noises and generations consistent throughout the training.
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Despite their many desirable properties, Gaussian processes (GPs) are often compared unfavorably to deep neural networks (NNs) for lacking the ability to learn representations. Recent efforts to bridge the gap between GPs and deep NNs have yielded a new class of inter-domain variational GPs in which the inducing variables correspond to hidden units of a feedforward NN. In this work, we examine some practical issues associated with this approach and propose an extension that leverages the orthogonal decomposition of GPs to mitigate these limitations. In particular, we introduce spherical inter-domain features to construct more flexible data-dependent basis functions for both the principal and orthogonal components of the GP approximation and show that incorporating NN activation features under this framework not only alleviates these shortcomings but is more scalable than alternative strategies. Experiments on multiple benchmark datasets demonstrate the effectiveness of our approach.
Learning Mixtures of Gaussians with Censored Data
We study the problem of learning mixtures of Gaussians with censored data. Statistical learning with censored data is a classical problem, with numerous practical applications, however, finite-sample guarantees for even simple latent variable models such as Gaussian mixtures are missing. Formally, we are given censored data from a mixture of univariate Gaussians $sum_{i=1}^k w_i N(mu_i,sigma^2), i.e. the sample is observed only if it lies inside a set S. The goal is to learn the weights w_i and the means \mu_i. We propose an algorithm that takes only 1{\varepsilon^{O(k)}} samples to estimate the weights w_i and the means \mu_i within \varepsilon$ error.
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.
Variational sparse inverse Cholesky approximation for latent Gaussian processes via double Kullback-Leibler minimization
To achieve scalable and accurate inference for latent Gaussian processes, we propose a variational approximation based on a family of Gaussian distributions whose covariance matrices have sparse inverse Cholesky (SIC) factors. We combine this variational approximation of the posterior with a similar and efficient SIC-restricted Kullback-Leibler-optimal approximation of the prior. We then focus on a particular SIC ordering and nearest-neighbor-based sparsity pattern resulting in highly accurate prior and posterior approximations. For this setting, our variational approximation can be computed via stochastic gradient descent in polylogarithmic time per iteration. We provide numerical comparisons showing that the proposed double-Kullback-Leibler-optimal Gaussian-process approximation (DKLGP) can sometimes be vastly more accurate for stationary kernels than alternative approaches such as inducing-point and mean-field approximations at similar computational complexity.
Noise Synthesis for Low-Light Image Denoising with Diffusion Models
Low-light photography produces images with low signal-to-noise ratios due to limited photons. In such conditions, common approximations like the Gaussian noise model fall short, and many denoising techniques fail to remove noise effectively. Although deep-learning methods perform well, they require large datasets of paired images that are impractical to acquire. As a remedy, synthesizing realistic low-light noise has gained significant attention. In this paper, we investigate the ability of diffusion models to capture the complex distribution of low-light noise. We show that a naive application of conventional diffusion models is inadequate for this task and propose three key adaptations that enable high-precision noise generation without calibration or post-processing: a two-branch architecture to better model signal-dependent and signal-independent noise, the incorporation of positional information to capture fixed-pattern noise, and a tailored diffusion noise schedule. Consequently, our model enables the generation of large datasets for training low-light denoising networks, leading to state-of-the-art performance. Through comprehensive analysis, including statistical evaluation and noise decomposition, we provide deeper insights into the characteristics of the generated data.
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
Standard diffusion models involve an image transform -- adding Gaussian noise -- and an image restoration operator that inverts this degradation. We observe that the generative behavior of diffusion models is not strongly dependent on the choice of image degradation, and in fact an entire family of generative models can be constructed by varying this choice. Even when using completely deterministic degradations (e.g., blur, masking, and more), the training and test-time update rules that underlie diffusion models can be easily generalized to create generative models. The success of these fully deterministic models calls into question the community's understanding of diffusion models, which relies on noise in either gradient Langevin dynamics or variational inference, and paves the way for generalized diffusion models that invert arbitrary processes. Our code is available at https://github.com/arpitbansal297/Cold-Diffusion-Models
Diffusion Models for Medical Image Analysis: A Comprehensive Survey
Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples despite their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. To help the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis. Specifically, we introduce the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modelling frameworks: diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging.
Compact3D: Compressing Gaussian Splat Radiance Field Models with Vector Quantization
3D Gaussian Splatting is a new method for modeling and rendering 3D radiance fields that achieves much faster learning and rendering time compared to SOTA NeRF methods. However, it comes with a drawback in the much larger storage demand compared to NeRF methods since it needs to store the parameters for several 3D Gaussians. We notice that many Gaussians may share similar parameters, so we introduce a simple vector quantization method based on \kmeans algorithm to quantize the Gaussian parameters. Then, we store the small codebook along with the index of the code for each Gaussian. Moreover, we compress the indices further by sorting them and using a method similar to run-length encoding. We do extensive experiments on standard benchmarks as well as a new benchmark which is an order of magnitude larger than the standard benchmarks. We show that our simple yet effective method can reduce the storage cost for the original 3D Gaussian Splatting method by a factor of almost 20times with a very small drop in the quality of rendered images.
An Edit Friendly DDPM Noise Space: Inversion and Manipulations
Denoising diffusion probabilistic models (DDPMs) employ a sequence of white Gaussian noise samples to generate an image. In analogy with GANs, those noise maps could be considered as the latent code associated with the generated image. However, this native noise space does not possess a convenient structure, and is thus challenging to work with in editing tasks. Here, we propose an alternative latent noise space for DDPM that enables a wide range of editing operations via simple means, and present an inversion method for extracting these edit-friendly noise maps for any given image (real or synthetically generated). As opposed to the native DDPM noise space, the edit-friendly noise maps do not have a standard normal distribution and are not statistically independent across timesteps. However, they allow perfect reconstruction of any desired image, and simple transformations on them translate into meaningful manipulations of the output image (e.g., shifting, color edits). Moreover, in text-conditional models, fixing those noise maps while changing the text prompt, modifies semantics while retaining structure. We illustrate how this property enables text-based editing of real images via the diverse DDPM sampling scheme (in contrast to the popular non-diverse DDIM inversion). We also show how it can be used within existing diffusion-based editing methods to improve their quality and diversity.
Physics-guided Noise Neural Proxy for Practical Low-light Raw Image Denoising
Recently, the mainstream practice for training low-light raw image denoising methods has shifted towards employing synthetic data. Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data. Currently, physics-based noise modeling struggles to characterize the entire real noise distribution, while learning-based noise modeling impractically depends on paired real data. In this paper, we propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency. Based on this strategy, we introduce an efficient physics-guided noise neural proxy (PNNP) to approximate the real-world sensor noise model. Specifically, we integrate physical priors into neural proxies and introduce three efficient techniques: physics-guided noise decoupling (PND), physics-guided proxy model (PPM), and differentiable distribution loss (DDL). PND decouples the dark frame into different components and handles different levels of noise flexibly, which reduces the complexity of noise modeling. PPM incorporates physical priors to constrain the generated noise, which promotes the accuracy of noise modeling. DDL provides explicit and reliable supervision for noise distribution, which promotes the precision of noise modeling. PNNP exhibits powerful potential in characterizing the real noise distribution. Extensive experiments on public datasets demonstrate superior performance in practical low-light raw image denoising. The code will be available at https://github.com/fenghansen/PNNP.
Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces
Typical generative diffusion models rely on a Gaussian diffusion process for training the backward transformations, which can then be used to generate samples from Gaussian noise. However, real world data often takes place in discrete-state spaces, including many scientific applications. Here, we develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process using exact (as opposed to variational) analysis. We relate the theory to the existing continuous-state Gaussian diffusion as well as other approaches to discrete diffusion, and identify the corresponding reverse-time stochastic process and score function in the continuous-time setting, and the reverse-time mapping in the discrete-time setting. As an example of this framework, we introduce ``Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise. Numerical experiments on the CIFAR-10, Binarized MNIST, and CelebA datasets confirm the feasibility of our approach. Generalizing from specific (Gaussian) forward processes to discrete-state processes without a variational approximation sheds light on how to interpret diffusion models, which we discuss.
Golden Noise for Diffusion Models: A Learning Framework
Text-to-image diffusion model is a popular paradigm that synthesizes personalized images by providing a text prompt and a random Gaussian noise. While people observe that some noises are ``golden noises'' that can achieve better text-image alignment and higher human preference than others, we still lack a machine learning framework to obtain those golden noises. To learn golden noises for diffusion sampling, we mainly make three contributions in this paper. First, we identify a new concept termed the noise prompt, which aims at turning a random Gaussian noise into a golden noise by adding a small desirable perturbation derived from the text prompt. Following the concept, we first formulate the noise prompt learning framework that systematically learns ``prompted'' golden noise associated with a text prompt for diffusion models. Second, we design a noise prompt data collection pipeline and collect a large-scale noise prompt dataset~(NPD) that contains 100k pairs of random noises and golden noises with the associated text prompts. With the prepared NPD as the training dataset, we trained a small noise prompt network~(NPNet) that can directly learn to transform a random noise into a golden noise. The learned golden noise perturbation can be considered as a kind of prompt for noise, as it is rich in semantic information and tailored to the given text prompt. Third, our extensive experiments demonstrate the impressive effectiveness and generalization of NPNet on improving the quality of synthesized images across various diffusion models, including SDXL, DreamShaper-xl-v2-turbo, and Hunyuan-DiT. Moreover, NPNet is a small and efficient controller that acts as a plug-and-play module with very limited additional inference and computational costs, as it just provides a golden noise instead of a random noise without accessing the original pipeline.
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Generative Models (GMs) have attracted considerable attention due to their tremendous success in various domains, such as computer vision where they are capable to generate impressive realistic-looking images. Likelihood-based GMs are attractive due to the possibility to generate new data by a single model evaluation. However, they typically achieve lower sample quality compared to state-of-the-art score-based diffusion models (DMs). This paper provides a significant step in the direction of addressing this limitation. The idea is to borrow one of the strengths of score-based DMs, which is the ability to perform accurate density estimation in low-density regions and to address manifold overfitting by means of data mollification. We connect data mollification through the addition of Gaussian noise to Gaussian homotopy, which is a well-known technique to improve optimization. Data mollification can be implemented by adding one line of code in the optimization loop, and we demonstrate that this provides a boost in generation quality of likelihood-based GMs, without computational overheads. We report results on image data sets with popular likelihood-based GMs, including variants of variational autoencoders and normalizing flows, showing large improvements in FID score.
A Coreset-based, Tempered Variational Posterior for Accurate and Scalable Stochastic Gaussian Process Inference
We present a novel stochastic variational Gaussian process (GP) inference method, based on a posterior over a learnable set of weighted pseudo input-output points (coresets). Instead of a free-form variational family, the proposed coreset-based, variational tempered family for GPs (CVTGP) is defined in terms of the GP prior and the data-likelihood; hence, accommodating the modeling inductive biases. We derive CVTGP's lower bound for the log-marginal likelihood via marginalization of the proposed posterior over latent GP coreset variables, and show it is amenable to stochastic optimization. CVTGP reduces the learnable parameter size to O(M), enjoys numerical stability, and maintains O(M^3) time- and O(M^2) space-complexity, by leveraging a coreset-based tempered posterior that, in turn, provides sparse and explainable representations of the data. Results on simulated and real-world regression problems with Gaussian observation noise validate that CVTGP provides better evidence lower-bound estimates and predictive root mean squared error than alternative stochastic GP inference methods.
GaussianEditor: Editing 3D Gaussians Delicately with Text Instructions
Recently, impressive results have been achieved in 3D scene editing with text instructions based on a 2D diffusion model. However, current diffusion models primarily generate images by predicting noise in the latent space, and the editing is usually applied to the whole image, which makes it challenging to perform delicate, especially localized, editing for 3D scenes. Inspired by recent 3D Gaussian splatting, we propose a systematic framework, named GaussianEditor, to edit 3D scenes delicately via 3D Gaussians with text instructions. Benefiting from the explicit property of 3D Gaussians, we design a series of techniques to achieve delicate editing. Specifically, we first extract the region of interest (RoI) corresponding to the text instruction, aligning it to 3D Gaussians. The Gaussian RoI is further used to control the editing process. Our framework can achieve more delicate and precise editing of 3D scenes than previous methods while enjoying much faster training speed, i.e. within 20 minutes on a single V100 GPU, more than twice as fast as Instruct-NeRF2NeRF (45 minutes -- 2 hours).
A Tutorial on Bayesian Optimization
Bayesian optimization is an approach to optimizing objective functions that take a long time (minutes or hours) to evaluate. It is best-suited for optimization over continuous domains of less than 20 dimensions, and tolerates stochastic noise in function evaluations. It builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning technique, Gaussian process regression, and then uses an acquisition function defined from this surrogate to decide where to sample. In this tutorial, we describe how Bayesian optimization works, including Gaussian process regression and three common acquisition functions: expected improvement, entropy search, and knowledge gradient. We then discuss more advanced techniques, including running multiple function evaluations in parallel, multi-fidelity and multi-information source optimization, expensive-to-evaluate constraints, random environmental conditions, multi-task Bayesian optimization, and the inclusion of derivative information. We conclude with a discussion of Bayesian optimization software and future research directions in the field. Within our tutorial material we provide a generalization of expected improvement to noisy evaluations, beyond the noise-free setting where it is more commonly applied. This generalization is justified by a formal decision-theoretic argument, standing in contrast to previous ad hoc modifications.
Local linearization for estimating the diffusion parameter of nonlinear stochastic wave equations with spatially correlated noise
We study the bi-parameter local linearization of the one-dimensional nonlinear stochastic wave equation driven by a Gaussian noise, which is white in time and has a spatially homogeneous covariance structure of Riesz-kernel type. We establish that the second-order increments of the solution can be approximated by those of the corresponding linearized wave equation, modulated by the diffusion coefficient. These findings extend the previous results of Huang et al. HOO2024, which addressed the case of space-time white noise. As applications, we analyze the quadratic variation of the solution and construct a consistent estimator for the diffusion parameter.
GaussianDreamerPro: Text to Manipulable 3D Gaussians with Highly Enhanced Quality
Recently, 3D Gaussian splatting (3D-GS) has achieved great success in reconstructing and rendering real-world scenes. To transfer the high rendering quality to generation tasks, a series of research works attempt to generate 3D-Gaussian assets from text. However, the generated assets have not achieved the same quality as those in reconstruction tasks. We observe that Gaussians tend to grow without control as the generation process may cause indeterminacy. Aiming at highly enhancing the generation quality, we propose a novel framework named GaussianDreamerPro. The main idea is to bind Gaussians to reasonable geometry, which evolves over the whole generation process. Along different stages of our framework, both the geometry and appearance can be enriched progressively. The final output asset is constructed with 3D Gaussians bound to mesh, which shows significantly enhanced details and quality compared with previous methods. Notably, the generated asset can also be seamlessly integrated into downstream manipulation pipelines, e.g. animation, composition, and simulation etc., greatly promoting its potential in wide applications. Demos are available at https://taoranyi.com/gaussiandreamerpro/.
Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model
Diffusion-based image super-resolution methods have demonstrated significant advantages over GAN-based approaches, particularly in terms of perceptual quality. Building upon a lengthy Markov chain, diffusion-based methods possess remarkable modeling capacity, enabling them to achieve outstanding performance in real-world scenarios. Unlike previous methods that focus on modifying the noise schedule or sampling process to enhance performance, our approach emphasizes the improved utilization of LR information. We find that different regions of the LR image can be viewed as corresponding to different timesteps in a diffusion process, where flat areas are closer to the target HR distribution but edge and texture regions are farther away. In these flat areas, applying a slight noise is more advantageous for the reconstruction. We associate this characteristic with uncertainty and propose to apply uncertainty estimate to guide region-specific noise level control, a technique we refer to as Uncertainty-guided Noise Weighting. Pixels with lower uncertainty (i.e., flat regions) receive reduced noise to preserve more LR information, therefore improving performance. Furthermore, we modify the network architecture of previous methods to develop our Uncertainty-guided Perturbation Super-Resolution (UPSR) model. Extensive experimental results demonstrate that, despite reduced model size and training overhead, the proposed UWSR method outperforms current state-of-the-art methods across various datasets, both quantitatively and qualitatively.
Beyond IID weights: sparse and low-rank deep Neural Networks are also Gaussian Processes
The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that allows a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews et al. (2018) to a larger class of initial weight distributions (which we call PSEUDO-IID), including the established cases of IID and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with PSEUDO-IID distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training. Moreover, they enable the posterior distribution of Bayesian Neural Networks to be tractable across these various initialization schemes.
Concentration of Measure for Distributions Generated via Diffusion Models
We show via a combination of mathematical arguments and empirical evidence that data distributions sampled from diffusion models satisfy a Concentration of Measure Property saying that any Lipschitz 1-dimensional projection of a random vector is not too far from its mean with high probability. This implies that such models are quite restrictive and gives an explanation for a fact previously observed in the literature that conventional diffusion models cannot capture "heavy-tailed" data (i.e. data x for which the norm |x|_2 does not possess a sub-Gaussian tail) well. We then proceed to train a generalized linear model using stochastic gradient descent (SGD) on the diffusion-generated data for a multiclass classification task and observe empirically that a Gaussian universality result holds for the test error. In other words, the test error depends only on the first and second order statistics of the diffusion-generated data in the linear setting. Results of such forms are desirable because they allow one to assume the data itself is Gaussian for analyzing performance of the trained classifier. Finally, we note that current approaches to proving universality do not apply to this case as the covariance matrices of the data tend to have vanishing minimum singular values for the diffusion-generated data, while the current proofs assume that this is not the case (see Subsection 3.4 for more details). This leaves extending previous mathematical universality results as an intriguing open question.
GVGEN: Text-to-3D Generation with Volumetric Representation
In recent years, 3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities. To address these shortcomings, this paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input. We propose two innovative techniques:(1) Structured Volumetric Representation. We first arrange disorganized 3D Gaussian points as a structured form GaussianVolume. This transformation allows the capture of intricate texture details within a volume composed of a fixed number of Gaussians. To better optimize the representation of these details, we propose a unique pruning and densifying method named the Candidate Pool Strategy, enhancing detail fidelity through selective optimization. (2) Coarse-to-fine Generation Pipeline. To simplify the generation of GaussianVolume and empower the model to generate instances with detailed 3D geometry, we propose a coarse-to-fine pipeline. It initially constructs a basic geometric structure, followed by the prediction of complete Gaussian attributes. Our framework, GVGEN, demonstrates superior performance in qualitative and quantitative assessments compared to existing 3D generation methods. Simultaneously, it maintains a fast generation speed (sim7 seconds), effectively striking a balance between quality and efficiency.
Bayesian Optimization through Gaussian Cox Process Models for Spatio-temporal Data
Bayesian optimization (BO) has established itself as a leading strategy for efficiently optimizing expensive-to-evaluate functions. Existing BO methods mostly rely on Gaussian process (GP) surrogate models and are not applicable to (doubly-stochastic) Gaussian Cox processes, where the observation process is modulated by a latent intensity function modeled as a GP. In this paper, we propose a novel maximum a posteriori inference of Gaussian Cox processes. It leverages the Laplace approximation and change of kernel technique to transform the problem into a new reproducing kernel Hilbert space, where it becomes more tractable computationally. It enables us to obtain both a functional posterior of the latent intensity function and the covariance of the posterior, thus extending existing works that often focus on specific link functions or estimating the posterior mean. Using the result, we propose a BO framework based on the Gaussian Cox process model and further develop a Nystr\"om approximation for efficient computation. Extensive evaluations on various synthetic and real-world datasets demonstrate significant improvement over state-of-the-art inference solutions for Gaussian Cox processes, as well as effective BO with a wide range of acquisition functions designed through the underlying Gaussian Cox process model.
Common Diffusion Noise Schedules and Sample Steps are Flawed
We discover that common diffusion noise schedules do not enforce the last timestep to have zero signal-to-noise ratio (SNR), and some implementations of diffusion samplers do not start from the last timestep. Such designs are flawed and do not reflect the fact that the model is given pure Gaussian noise at inference, creating a discrepancy between training and inference. We show that the flawed design causes real problems in existing implementations. In Stable Diffusion, it severely limits the model to only generate images with medium brightness and prevents it from generating very bright and dark samples. We propose a few simple fixes: (1) rescale the noise schedule to enforce zero terminal SNR; (2) train the model with v prediction; (3) change the sampler to always start from the last timestep; (4) rescale classifier-free guidance to prevent over-exposure. These simple changes ensure the diffusion process is congruent between training and inference and allow the model to generate samples more faithful to the original data distribution.
Distributionally Robust Receive Beamforming
This article investigates signal estimation in wireless transmission (i.e., receive beamforming) from the perspective of statistical machine learning, where the transmit signals may be from an integrated sensing and communication system; that is, 1) signals may be not only discrete constellation points but also arbitrary complex values; 2) signals may be spatially correlated. Particular attention is paid to handling various uncertainties such as the uncertainty of the transmit signal covariance, the uncertainty of the channel matrix, the uncertainty of the channel noise covariance, the existence of channel impulse noises, and the limited sample size of pilots. To proceed, a distributionally robust machine learning framework that is insensitive to the above uncertainties is proposed, which reveals that channel estimation is not a necessary operation. For optimal linear estimation, the proposed framework includes several existing beamformers as special cases such as diagonal loading and eigenvalue thresholding. For optimal nonlinear estimation, estimators are limited in reproducing kernel Hilbert spaces and neural network function spaces, and corresponding uncertainty-aware solutions (e.g., kernelized diagonal loading) are derived. In addition, we prove that the ridge and kernel ridge regression methods in machine learning are distributionally robust against diagonal perturbation in feature covariance.
Generalized Polya's theorem on connected locally compact Abelian groups of dimension 1
According to the generalized Polya theorem, the Gaussian distribution on the real line is characterized by the property of equidistribution of a monomial and a linear form of independent identically distributed random variables. We give a complete description of a-adic solenoids for which an analog of this theorem is true. The proof of the main theorem is reduced to solving some functional equation in the class of continuous positive definite functions on the character group of an a-adic solenoid
All You Need is a Good Functional Prior for Bayesian Deep Learning
The Bayesian treatment of neural networks dictates that a prior distribution is specified over their weight and bias parameters. This poses a challenge because modern neural networks are characterized by a large number of parameters, and the choice of these priors has an uncontrolled effect on the induced functional prior, which is the distribution of the functions obtained by sampling the parameters from their prior distribution. We argue that this is a hugely limiting aspect of Bayesian deep learning, and this work tackles this limitation in a practical and effective way. Our proposal is to reason in terms of functional priors, which are easier to elicit, and to "tune" the priors of neural network parameters in a way that they reflect such functional priors. Gaussian processes offer a rigorous framework to define prior distributions over functions, and we propose a novel and robust framework to match their prior with the functional prior of neural networks based on the minimization of their Wasserstein distance. We provide vast experimental evidence that coupling these priors with scalable Markov chain Monte Carlo sampling offers systematically large performance improvements over alternative choices of priors and state-of-the-art approximate Bayesian deep learning approaches. We consider this work a considerable step in the direction of making the long-standing challenge of carrying out a fully Bayesian treatment of neural networks, including convolutional neural networks, a concrete possibility.
Score Priors Guided Deep Variational Inference for Unsupervised Real-World Single Image Denoising
Real-world single image denoising is crucial and practical in computer vision. Bayesian inversions combined with score priors now have proven effective for single image denoising but are limited to white Gaussian noise. Moreover, applying existing score-based methods for real-world denoising requires not only the explicit train of score priors on the target domain but also the careful design of sampling procedures for posterior inference, which is complicated and impractical. To address these limitations, we propose a score priors-guided deep variational inference, namely ScoreDVI, for practical real-world denoising. By considering the deep variational image posterior with a Gaussian form, score priors are extracted based on easily accessible minimum MSE Non-i.i.d Gaussian denoisers and variational samples, which in turn facilitate optimizing the variational image posterior. Such a procedure adaptively applies cheap score priors to denoising. Additionally, we exploit a Non-i.i.d Gaussian mixture model and variational noise posterior to model the real-world noise. This scheme also enables the pixel-wise fusion of multiple image priors and variational image posteriors. Besides, we develop a noise-aware prior assignment strategy that dynamically adjusts the weight of image priors in the optimization. Our method outperforms other single image-based real-world denoising methods and achieves comparable performance to dataset-based unsupervised methods.
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
Image denoising is a fundamental challenge in computer vision, with applications in photography and medical imaging. While deep learning-based methods have shown remarkable success, their reliance on specific noise distributions limits generalization to unseen noise types and levels. Existing approaches attempt to address this with extensive training data and high computational resources but they still suffer from overfitting. To address these issues, we conduct image denoising by utilizing dynamically generated kernels via efficient operations. This approach helps prevent overfitting and improves resilience to unseen noise. Specifically, our method leverages a Feature Extraction Module for robust noise-invariant features, Global Statistics and Local Correlation Modules to capture comprehensive noise characteristics and structural correlations. The Kernel Prediction Module then employs these cues to produce pixel-wise varying kernels adapted to local structures, which are then applied iteratively for denoising. This ensures both efficiency and superior restoration quality. Despite being trained on single-level Gaussian noise, our compact model (~ 0.04 M) excels across diverse noise types and levels, demonstrating the promise of iterative dynamic filtering for practical image denoising.
Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration
The 3D Gaussian Splatting (3DGS) gained its popularity recently by combining the advantages of both primitive-based and volumetric 3D representations, resulting in improved quality and efficiency for 3D scene rendering. However, 3DGS is not alias-free, and its rendering at varying resolutions could produce severe blurring or jaggies. This is because 3DGS treats each pixel as an isolated, single point rather than as an area, causing insensitivity to changes in the footprints of pixels. Consequently, this discrete sampling scheme inevitably results in aliasing, owing to the restricted sampling bandwidth. In this paper, we derive an analytical solution to address this issue. More specifically, we use a conditioned logistic function as the analytic approximation of the cumulative distribution function (CDF) in a one-dimensional Gaussian signal and calculate the Gaussian integral by subtracting the CDFs. We then introduce this approximation in the two-dimensional pixel shading, and present Analytic-Splatting, which analytically approximates the Gaussian integral within the 2D-pixel window area to better capture the intensity response of each pixel. Moreover, we use the approximated response of the pixel window integral area to participate in the transmittance calculation of volume rendering, making Analytic-Splatting sensitive to the changes in pixel footprint at different resolutions. Experiments on various datasets validate that our approach has better anti-aliasing capability that gives more details and better fidelity.
The SIML method without microstructure noise
The SIML (abbreviation of Separating Information Maximal Likelihood) method, has been introduced by N. Kunitomo and S. Sato and their collaborators to estimate the integrated volatility of high-frequency data that is assumed to be an It\^o process but with so-called microstructure noise. The SIML estimator turned out to share many properties with the estimator introduced by P. Malliavin and M.E. Mancino. The present paper establishes the consistency and the asymptotic normality under a general sampling scheme but without microstructure noise. Specifically, a fast convergence shown for Malliavin--Mancino estimator by E. Clement and A. Gloter is also established for the SIML estimator.
Deep Neural Network Initialization with Sparsity Inducing Activations
Inducing and leveraging sparse activations during training and inference is a promising avenue for improving the computational efficiency of deep networks, which is increasingly important as network sizes continue to grow and their application becomes more widespread. Here we use the large width Gaussian process limit to analyze the behaviour, at random initialization, of nonlinear activations that induce sparsity in the hidden outputs. A previously unreported form of training instability is proven for arguably two of the most natural candidates for hidden layer sparsification; those being a shifted ReLU (phi(x)=max(0, x-tau) for tauge 0) and soft thresholding (phi(x)=0 for |x|letau and x-sign(x)tau for |x|>tau). We show that this instability is overcome by clipping the nonlinear activation magnitude, at a level prescribed by the shape of the associated Gaussian process variance map. Numerical experiments verify the theory and show that the proposed magnitude clipped sparsifying activations can be trained with training and test fractional sparsity as high as 85\% while retaining close to full accuracy.
TC-GS: Tri-plane based compression for 3D Gaussian Splatting
Recently, 3D Gaussian Splatting (3DGS) has emerged as a prominent framework for novel view synthesis, providing high fidelity and rapid rendering speed. However, the substantial data volume of 3DGS and its attributes impede its practical utility, requiring compression techniques for reducing memory cost. Nevertheless, the unorganized shape of 3DGS leads to difficulties in compression. To formulate unstructured attributes into normative distribution, we propose a well-structured tri-plane to encode Gaussian attributes, leveraging the distribution of attributes for compression. To exploit the correlations among adjacent Gaussians, K-Nearest Neighbors (KNN) is used when decoding Gaussian distribution from the Tri-plane. We also introduce Gaussian position information as a prior of the position-sensitive decoder. Additionally, we incorporate an adaptive wavelet loss, aiming to focus on the high-frequency details as iterations increase. Our approach has achieved results that are comparable to or surpass that of SOTA 3D Gaussians Splatting compression work in extensive experiments across multiple datasets. The codes are released at https://github.com/timwang2001/TC-GS.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis
X-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud model inspired by the isotropic nature of X-ray imaging. Our model excludes the influence of view direction when learning to predict the radiation intensity of 3D points. Based on this model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA implementation. Secondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy that directly uses the parameters of the X-ray scanner to compute the camera information and then uniformly samples point positions within a cuboid enclosing the scanned object. Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed. The application on sparse-view CT reconstruction also reveals the practical values of our method. Code and models will be publicly available at https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg .
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
Latent Gaussian process (GP) models are widely used in neuroscience to uncover hidden state evolutions from sequential observations, mainly in neural activity recordings. While latent GP models provide a principled and powerful solution in theory, the intractable posterior in non-conjugate settings necessitates approximate inference schemes, which may lack scalability. In this work, we propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat\'ern kernels and conjugate computation variational inference (CVI). With cvHM, we are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods. The reparameterization of stationary kernels using Hida-Mat\'ern GPs helps us connect the latent variable models that encode prior assumptions through dynamical systems to those that encode trajectory assumptions through GPs. In contrast to previous work, we use bidirectional information filtering, leading to a more concise implementation. Furthermore, we employ the Whittle approximate likelihood to achieve highly efficient hyperparameter learning.
On Convergence of Federated Averaging Langevin Dynamics
We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize communication costs. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe there is a trade-off between the pairs among communication, accuracy, and data privacy. As local devices may become inactive in federated networks, we also show convergence results based on different averaging schemes where only partial device updates are available. In such a case, we discover an additional bias that does not decay to zero.
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.
Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference
Given time series data, how can we answer questions like "what will happen in the future?" and "how did we get here?" These sorts of probabilistic inference questions are challenging when observations are high-dimensional. In this paper, we show how these questions can have compact, closed form solutions in terms of learned representations. The key idea is to apply a variant of contrastive learning to time series data. Prior work already shows that the representations learned by contrastive learning encode a probability ratio. By extending prior work to show that the marginal distribution over representations is Gaussian, we can then prove that joint distribution of representations is also Gaussian. Taken together, these results show that representations learned via temporal contrastive learning follow a Gauss-Markov chain, a graphical model where inference (e.g., prediction, planning) over representations corresponds to inverting a low-dimensional matrix. In one special case, inferring intermediate representations will be equivalent to interpolating between the learned representations. We validate our theory using numerical simulations on tasks up to 46-dimensions.
Learning to See by Looking at Noise
Current vision systems are trained on huge datasets, and these datasets come with costs: curation is expensive, they inherit human biases, and there are concerns over privacy and usage rights. To counter these costs, interest has surged in learning from cheaper data sources, such as unlabeled images. In this paper we go a step further and ask if we can do away with real image datasets entirely, instead learning from noise processes. We investigate a suite of image generation models that produce images from simple random processes. These are then used as training data for a visual representation learner with a contrastive loss. We study two types of noise processes, statistical image models and deep generative models under different random initializations. Our findings show that it is important for the noise to capture certain structural properties of real data but that good performance can be achieved even with processes that are far from realistic. We also find that diversity is a key property to learn good representations. Datasets, models, and code are available at https://mbaradad.github.io/learning_with_noise.
Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Gaussian processes (GPs) stand as crucial tools in machine learning and signal processing, with their effectiveness hinging on kernel design and hyper-parameter optimization. This paper presents a novel GP linear multiple kernel (LMK) and a generic sparsity-aware distributed learning framework to optimize the hyper-parameters. The newly proposed grid spectral mixture product (GSMP) kernel is tailored for multi-dimensional data, effectively reducing the number of hyper-parameters while maintaining good approximation capability. We further demonstrate that the associated hyper-parameter optimization of this kernel yields sparse solutions. To exploit the inherent sparsity of the solutions, we introduce the Sparse LInear Multiple Kernel Learning (SLIM-KL) framework. The framework incorporates a quantized alternating direction method of multipliers (ADMM) scheme for collaborative learning among multiple agents, where the local optimization problem is solved using a distributed successive convex approximation (DSCA) algorithm. SLIM-KL effectively manages large-scale hyper-parameter optimization for the proposed kernel, simultaneously ensuring data privacy and minimizing communication costs. Theoretical analysis establishes convergence guarantees for the learning framework, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our proposed methods.
Speech Enhancement and Dereverberation with Diffusion-based Generative Models
In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online, see https://github.com/sp-uhh/sgmse
Noise2Score: Tweedie's Approach to Self-Supervised Image Denoising without Clean Images
Recently, there has been extensive research interest in training deep networks to denoise images without clean reference. However, the representative approaches such as Noise2Noise, Noise2Void, Stein's unbiased risk estimator (SURE), etc. seem to differ from one another and it is difficult to find the coherent mathematical structure. To address this, here we present a novel approach, called Noise2Score, which reveals a missing link in order to unite these seemingly different approaches. Specifically, we show that image denoising problems without clean images can be addressed by finding the mode of the posterior distribution and that the Tweedie's formula offers an explicit solution through the score function (i.e. the gradient of log likelihood). Our method then uses the recent finding that the score function can be stably estimated from the noisy images using the amortized residual denoising autoencoder, the method of which is closely related to Noise2Noise or Nose2Void. Our Noise2Score approach is so universal that the same network training can be used to remove noises from images that are corrupted by any exponential family distributions and noise parameters. Using extensive experiments with Gaussian, Poisson, and Gamma noises, we show that Noise2Score significantly outperforms the state-of-the-art self-supervised denoising methods in the benchmark data set such as (C)BSD68, Set12, and Kodak, etc.
Are Gaussian data all you need? Extents and limits of universality in high-dimensional generalized linear estimation
In this manuscript we consider the problem of generalized linear estimation on Gaussian mixture data with labels given by a single-index model. Our first result is a sharp asymptotic expression for the test and training errors in the high-dimensional regime. Motivated by the recent stream of results on the Gaussian universality of the test and training errors in generalized linear estimation, we ask ourselves the question: "when is a single Gaussian enough to characterize the error?". Our formula allow us to give sharp answers to this question, both in the positive and negative directions. More precisely, we show that the sufficient conditions for Gaussian universality (or lack of thereof) crucially depend on the alignment between the target weights and the means and covariances of the mixture clusters, which we precisely quantify. In the particular case of least-squares interpolation, we prove a strong universality property of the training error, and show it follows a simple, closed-form expression. Finally, we apply our results to real datasets, clarifying some recent discussion in the literature about Gaussian universality of the errors in this context.
GaussianSR: 3D Gaussian Super-Resolution with 2D Diffusion Priors
Achieving high-resolution novel view synthesis (HRNVS) from low-resolution input views is a challenging task due to the lack of high-resolution data. Previous methods optimize high-resolution Neural Radiance Field (NeRF) from low-resolution input views but suffer from slow rendering speed. In this work, we base our method on 3D Gaussian Splatting (3DGS) due to its capability of producing high-quality images at a faster rendering speed. To alleviate the shortage of data for higher-resolution synthesis, we propose to leverage off-the-shelf 2D diffusion priors by distilling the 2D knowledge into 3D with Score Distillation Sampling (SDS). Nevertheless, applying SDS directly to Gaussian-based 3D super-resolution leads to undesirable and redundant 3D Gaussian primitives, due to the randomness brought by generative priors. To mitigate this issue, we introduce two simple yet effective techniques to reduce stochastic disturbances introduced by SDS. Specifically, we 1) shrink the range of diffusion timestep in SDS with an annealing strategy; 2) randomly discard redundant Gaussian primitives during densification. Extensive experiments have demonstrated that our proposed GaussainSR can attain high-quality results for HRNVS with only low-resolution inputs on both synthetic and real-world datasets. Project page: https://chchnii.github.io/GaussianSR/
GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering
Advancements in 3D Gaussian Splatting have significantly accelerated 3D reconstruction and generation. However, it may require a large number of Gaussians, which creates a substantial memory footprint. This paper introduces GES (Generalized Exponential Splatting), a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes, requiring far fewer particles to represent a scene and thus significantly outperforming Gaussian Splatting methods in efficiency with a plug-and-play replacement ability for Gaussian-based utilities. GES is validated theoretically and empirically in both principled 1D setup and realistic 3D scenes. It is shown to represent signals with sharp edges more accurately, which are typically challenging for Gaussians due to their inherent low-pass characteristics. Our empirical analysis demonstrates that GEF outperforms Gaussians in fitting natural-occurring signals (e.g. squares, triangles, and parabolic signals), thereby reducing the need for extensive splitting operations that increase the memory footprint of Gaussian Splatting. With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks while requiring less than half the memory storage of Gaussian Splatting and increasing the rendering speed by up to 39%. The code is available on the project website https://abdullahamdi.com/ges .
Distribution Matching for Crowd Counting
In crowd counting, each training image contains multiple people, where each person is annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth each annotated dot or to estimate the likelihood of every pixel given the annotated point. In this paper, we show that imposing Gaussians to annotations hurts generalization performance. Instead, we propose to use Distribution Matching for crowd COUNTing (DM-Count). In DM-Count, we use Optimal Transport (OT) to measure the similarity between the normalized predicted density map and the normalized ground truth density map. To stabilize OT computation, we include a Total Variation loss in our model. We show that the generalization error bound of DM-Count is tighter than that of the Gaussian smoothed methods. In terms of Mean Absolute Error, DM-Count outperforms the previous state-of-the-art methods by a large margin on two large-scale counting datasets, UCF-QNRF and NWPU, and achieves the state-of-the-art results on the ShanghaiTech and UCF-CC50 datasets. DM-Count reduced the error of the state-of-the-art published result by approximately 16%. Code is available at https://github.com/cvlab-stonybrook/DM-Count.
On the infinite-depth limit of finite-width neural networks
In this paper, we study the infinite-depth limit of finite-width residual neural networks with random Gaussian weights. With proper scaling, we show that by fixing the width and taking the depth to infinity, the pre-activations converge in distribution to a zero-drift diffusion process. Unlike the infinite-width limit where the pre-activation converge weakly to a Gaussian random variable, we show that the infinite-depth limit yields different distributions depending on the choice of the activation function. We document two cases where these distributions have closed-form (different) expressions. We further show an intriguing change of regime phenomenon of the post-activation norms when the width increases from 3 to 4. Lastly, we study the sequential limit infinite-depth-then-infinite-width and compare it with the more commonly studied infinite-width-then-infinite-depth limit.
Divide-and-Conquer Fusion
Combining several (sample approximations of) distributions, which we term sub-posteriors, into a single distribution proportional to their product, is a common challenge. Occurring, for instance, in distributed 'big data' problems, or when working under multi-party privacy constraints. Many existing approaches resort to approximating the individual sub-posteriors for practical necessity, then find either an analytical approximation or sample approximation of the resulting (product-pooled) posterior. The quality of the posterior approximation for these approaches is poor when the sub-posteriors fall out-with a narrow range of distributional form, such as being approximately Gaussian. Recently, a Fusion approach has been proposed which finds an exact Monte Carlo approximation of the posterior, circumventing the drawbacks of approximate approaches. Unfortunately, existing Fusion approaches have a number of computational limitations, particularly when unifying a large number of sub-posteriors. In this paper, we generalise the theory underpinning existing Fusion approaches, and embed the resulting methodology within a recursive divide-and-conquer sequential Monte Carlo paradigm. This ultimately leads to a competitive Fusion approach, which is robust to increasing numbers of sub-posteriors.
Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients
Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or pointwise defined initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.
On the statistical theory of self-gravitating collisionless dark matter flow: Scale and redshift variation of velocity and density distributions
This paper studies the scale and redshift variation of density and velocity distributions in self-gravitating collisionless dark matter flow by a halo-based non-projection approach. All particles are divided into halo and out-of-halo particles for redshift variation of distributions. Without projecting particle fields onto a structured grid, the scale variation is analyzed by identifying all particle pairs on different scales r. We demonstrate that: i) Delaunay tessellation can be used to reconstruct the density field. The density correlation, spectrum, and dispersion functions were obtained, modeled, and compared with the N-body simulation; ii) the velocity distributions are symmetric on both small and large scales and are non-symmetric with a negative skewness on intermediate scales due to the inverse energy cascade at a constant rate varepsilon_u; iii) On small scales, the even order moments of pairwise velocity Delta u_L follow a two-thirds law (-varepsilon_ur)^{2/3}, while the odd order moments follow a linear scaling langle(Delta u_L)^{2n+1}rangle=(2n+1)langle(Delta u_L)^{2n}ranglelangleDelta u_Lrangler; iv) The scale variation of the velocity distributions was studied for longitudinal velocities u_L or u_L^{'}, pairwise velocity (velocity difference) Delta u_L=u_L^{'}-u_L and velocity sum Sigma u_L=u^{'}_L+u_L. Fully developed velocity fields are never Gaussian on any scale, despite that they can initially be Gaussian; v) On small scales, u_L and Sigma u_L can be modeled by a X distribution to maximize the system entropy; vi) On large scales, Delta u_L and Sigma u_L can be modeled by a logistic or a X distribution; vii) the redshift variation of the velocity distributions follows the evolution of the X distribution involving a shape parameter alpha(z) decreasing with time.
VeGaS: Video Gaussian Splatting
Implicit Neural Representations (INRs) employ neural networks to approximate discrete data as continuous functions. In the context of video data, such models can be utilized to transform the coordinates of pixel locations along with frame occurrence times (or indices) into RGB color values. Although INRs facilitate effective compression, they are unsuitable for editing purposes. One potential solution is to use a 3D Gaussian Splatting (3DGS) based model, such as the Video Gaussian Representation (VGR), which is capable of encoding video as a multitude of 3D Gaussians and is applicable for numerous video processing operations, including editing. Nevertheless, in this case, the capacity for modification is constrained to a limited set of basic transformations. To address this issue, we introduce the Video Gaussian Splatting (VeGaS) model, which enables realistic modifications of video data. To construct VeGaS, we propose a novel family of Folded-Gaussian distributions designed to capture nonlinear dynamics in a video stream and model consecutive frames by 2D Gaussians obtained as respective conditional distributions. Our experiments demonstrate that VeGaS outperforms state-of-the-art solutions in frame reconstruction tasks and allows realistic modifications of video data. The code is available at: https://github.com/gmum/VeGaS.
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Approximate inference in Gaussian process (GP) models with non-conjugate likelihoods gets entangled with the learning of the model hyperparameters. We improve hyperparameter learning in GP models and focus on the interplay between variational inference (VI) and the learning target. While VI's lower bound to the marginal likelihood is a suitable objective for inferring the approximate posterior, we show that a direct approximation of the marginal likelihood as in Expectation Propagation (EP) is a better learning objective for hyperparameter optimization. We design a hybrid training procedure to bring the best of both worlds: it leverages conjugate-computation VI for inference and uses an EP-like marginal likelihood approximation for hyperparameter learning. We compare VI, EP, Laplace approximation, and our proposed training procedure and empirically demonstrate the effectiveness of our proposal across a wide range of data sets.
Towards General Low-Light Raw Noise Synthesis and Modeling
Modeling and synthesizing low-light raw noise is a fundamental problem for computational photography and image processing applications. Although most recent works have adopted physics-based models to synthesize noise, the signal-independent noise in low-light conditions is far more complicated and varies dramatically across camera sensors, which is beyond the description of these models. To address this issue, we introduce a new perspective to synthesize the signal-independent noise by a generative model. Specifically, we synthesize the signal-dependent and signal-independent noise in a physics- and learning-based manner, respectively. In this way, our method can be considered as a general model, that is, it can simultaneously learn different noise characteristics for different ISO levels and generalize to various sensors. Subsequently, we present an effective multi-scale discriminator termed Fourier transformer discriminator (FTD) to distinguish the noise distribution accurately. Additionally, we collect a new low-light raw denoising (LRD) dataset for training and benchmarking. Qualitative validation shows that the noise generated by our proposed noise model can be highly similar to the real noise in terms of distribution. Furthermore, extensive denoising experiments demonstrate that our method performs favorably against state-of-the-art methods on different sensors.
Noise Distribution Adaptive Self-Supervised Image Denoising using Tweedie Distribution and Score Matching
Tweedie distributions are a special case of exponential dispersion models, which are often used in classical statistics as distributions for generalized linear models. Here, we reveal that Tweedie distributions also play key roles in modern deep learning era, leading to a distribution independent self-supervised image denoising formula without clean reference images. Specifically, by combining with the recent Noise2Score self-supervised image denoising approach and the saddle point approximation of Tweedie distribution, we can provide a general closed-form denoising formula that can be used for large classes of noise distributions without ever knowing the underlying noise distribution. Similar to the original Noise2Score, the new approach is composed of two successive steps: score matching using perturbed noisy images, followed by a closed form image denoising formula via distribution-independent Tweedie's formula. This also suggests a systematic algorithm to estimate the noise model and noise parameters for a given noisy image data set. Through extensive experiments, we demonstrate that the proposed method can accurately estimate noise models and parameters, and provide the state-of-the-art self-supervised image denoising performance in the benchmark dataset and real-world dataset.
Deterministic equivalent and error universality of deep random features learning
This manuscript considers the problem of learning a random Gaussian network function using a fully connected network with frozen intermediate layers and trainable readout layer. This problem can be seen as a natural generalization of the widely studied random features model to deeper architectures. First, we prove Gaussian universality of the test error in a ridge regression setting where the learner and target networks share the same intermediate layers, and provide a sharp asymptotic formula for it. Establishing this result requires proving a deterministic equivalent for traces of the deep random features sample covariance matrices which can be of independent interest. Second, we conjecture the asymptotic Gaussian universality of the test error in the more general setting of arbitrary convex losses and generic learner/target architectures. We provide extensive numerical evidence for this conjecture, which requires the derivation of closed-form expressions for the layer-wise post-activation population covariances. In light of our results, we investigate the interplay between architecture design and implicit regularization.
Optimal Online Generalized Linear Regression with Stochastic Noise and Its Application to Heteroscedastic Bandits
We study the problem of online generalized linear regression in the stochastic setting, where the label is generated from a generalized linear model with possibly unbounded additive noise. We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise. More specifically, for sigma-sub-Gaussian label noise, our analysis provides a regret upper bound of O(sigma^2 d log T) + o(log T), where d is the dimension of the input vector, T is the total number of rounds. We also prove a Omega(sigma^2dlog(T/d)) lower bound for stochastic online linear regression, which indicates that our upper bound is nearly optimal. In addition, we extend our analysis to a more refined Bernstein noise condition. As an application, we study generalized linear bandits with heteroscedastic noise and propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
A theory of representation learning gives a deep generalisation of kernel methods
The successes of modern deep machine learning methods are founded on their ability to transform inputs across multiple layers to build good high-level representations. It is therefore critical to understand this process of representation learning. However, standard theoretical approaches (formally NNGPs) involving infinite width limits eliminate representation learning. We therefore develop a new infinite width limit, the Bayesian representation learning limit, that exhibits representation learning mirroring that in finite-width models, yet at the same time, retains some of the simplicity of standard infinite-width limits. In particular, we show that Deep Gaussian processes (DGPs) in the Bayesian representation learning limit have exactly multivariate Gaussian posteriors, and the posterior covariances can be obtained by optimizing an interpretable objective combining a log-likelihood to improve performance with a series of KL-divergences which keep the posteriors close to the prior. We confirm these results experimentally in wide but finite DGPs. Next, we introduce the possibility of using this limit and objective as a flexible, deep generalisation of kernel methods, that we call deep kernel machines (DKMs). Like most naive kernel methods, DKMs scale cubically in the number of datapoints. We therefore use methods from the Gaussian process inducing point literature to develop a sparse DKM that scales linearly in the number of datapoints. Finally, we extend these approaches to NNs (which have non-Gaussian posteriors) in the Appendices.
Is your stochastic signal really detectable?
Separating a stochastic gravitational wave background (SGWB) from noise is a challenging statistical task. One approach to establishing a detection criterion for the SGWB is using Bayesian evidence. If the evidence ratio (Bayes factor) between models with and without the signal exceeds a certain threshold, the signal is considered detected. We present a formalism to compute the averaged Bayes factor, incorporating instrumental-noise and SGWB uncertainties. As an example, we consider the case of power-law-shaped SGWB in LISA and generate the corresponding bayesian sensitivity curve. Unlike existing methods in the literature, which typically neglect uncertainties in both the signal and noise, our approach provides a reliable and realistic alternative. This flexible framework opens avenues for more robust stochastic gravitational wave background detection across gravitational-wave experiments.
Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering
Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene geometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene coverage. We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent observations, without sacrificing the rendering speed.
SVNR: Spatially-variant Noise Removal with Denoising Diffusion
Denoising diffusion models have recently shown impressive results in generative tasks. By learning powerful priors from huge collections of training images, such models are able to gradually modify complete noise to a clean natural image via a sequence of small denoising steps, seemingly making them well-suited for single image denoising. However, effectively applying denoising diffusion models to removal of realistic noise is more challenging than it may seem, since their formulation is based on additive white Gaussian noise, unlike noise in real-world images. In this work, we present SVNR, a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model. SVNR enables using the noisy input image as the starting point for the denoising diffusion process, in addition to conditioning the process on it. To this end, we adapt the diffusion process to allow each pixel to have its own time embedding, and propose training and inference schemes that support spatially-varying time maps. Our formulation also accounts for the correlation that exists between the condition image and the samples along the modified diffusion process. In our experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
Compact 3D Scene Representation via Self-Organizing Gaussian Grids
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g.~on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 8x to 26x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/
REdiSplats: Ray Tracing for Editable Gaussian Splatting
Gaussian Splatting (GS) has become one of the most important neural rendering algorithms. GS represents 3D scenes using Gaussian components with trainable color and opacity. This representation achieves high-quality renderings with fast inference. Regrettably, it is challenging to integrate such a solution with varying light conditions, including shadows and light reflections, manual adjustments, and a physical engine. Recently, a few approaches have appeared that incorporate ray-tracing or mesh primitives into GS to address some of these caveats. However, no such solution can simultaneously solve all the existing limitations of the classical GS. Consequently, we introduce REdiSplats, which employs ray tracing and a mesh-based representation of flat 3D Gaussians. In practice, we model the scene using flat Gaussian distributions parameterized by the mesh. We can leverage fast ray tracing and control Gaussian modification by adjusting the mesh vertices. Moreover, REdiSplats allows modeling of light conditions, manual adjustments, and physical simulation. Furthermore, we can render our models using 3D tools such as Blender or Nvdiffrast, which opens the possibility of integrating them with all existing 3D graphics techniques dedicated to mesh representations.
Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion Models
Because diffusion models have shown impressive performances in a number of tasks, such as image synthesis, there is a trend in recent works to prove (with certain assumptions) that these models have strong approximation capabilities. In this paper, we show that current diffusion models actually have an expressive bottleneck in backward denoising and some assumption made by existing theoretical guarantees is too strong. Based on this finding, we prove that diffusion models have unbounded errors in both local and global denoising. In light of our theoretical studies, we introduce soft mixture denoising (SMD), an expressive and efficient model for backward denoising. SMD not only permits diffusion models to well approximate any Gaussian mixture distributions in theory, but also is simple and efficient for implementation. Our experiments on multiple image datasets show that SMD significantly improves different types of diffusion models (e.g., DDPM), espeically in the situation of few backward iterations.
Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
Wrapped Cauchy Distributed Angular Softmax for Long-Tailed Visual Recognition
Addressing imbalanced or long-tailed data is a major challenge in visual recognition tasks due to disparities between training and testing distributions and issues with data noise. We propose the Wrapped Cauchy Distributed Angular Softmax (WCDAS), a novel softmax function that incorporates data-wise Gaussian-based kernels into the angular correlation between feature representations and classifier weights, effectively mitigating noise and sparse sampling concerns. The class-wise distribution of angular representation becomes a sum of these kernels. Our theoretical analysis reveals that the wrapped Cauchy distribution excels the Gaussian distribution in approximating mixed distributions. Additionally, WCDAS uses trainable concentration parameters to dynamically adjust the compactness and margin of each class. Empirical results confirm label-aware behavior in these parameters and demonstrate WCDAS's superiority over other state-of-the-art softmax-based methods in handling long-tailed visual recognition across multiple benchmark datasets. The code is public available.
High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors
In location estimation, we are given n samples from a known distribution f shifted by an unknown translation lambda, and want to estimate lambda as precisely as possible. Asymptotically, the maximum likelihood estimate achieves the Cram\'er-Rao bound of error mathcal N(0, 1{nmathcal I}), where mathcal I is the Fisher information of f. However, the n required for convergence depends on f, and may be arbitrarily large. We build on the theory using smoothed estimators to bound the error for finite n in terms of mathcal I_r, the Fisher information of the r-smoothed distribution. As n to infty, r to 0 at an explicit rate and this converges to the Cram\'er-Rao bound. We (1) improve the prior work for 1-dimensional f to converge for constant failure probability in addition to high probability, and (2) extend the theory to high-dimensional distributions. In the process, we prove a new bound on the norm of a high-dimensional random variable whose 1-dimensional projections are subgamma, which may be of independent interest.
What's the score? Automated Denoising Score Matching for Nonlinear Diffusions
Reversing a diffusion process by learning its score forms the heart of diffusion-based generative modeling and for estimating properties of scientific systems. The diffusion processes that are tractable center on linear processes with a Gaussian stationary distribution. This limits the kinds of models that can be built to those that target a Gaussian prior or more generally limits the kinds of problems that can be generically solved to those that have conditionally linear score functions. In this work, we introduce a family of tractable denoising score matching objectives, called local-DSM, built using local increments of the diffusion process. We show how local-DSM melded with Taylor expansions enables automated training and score estimation with nonlinear diffusion processes. To demonstrate these ideas, we use automated-DSM to train generative models using non-Gaussian priors on challenging low dimensional distributions and the CIFAR10 image dataset. Additionally, we use the automated-DSM to learn the scores for nonlinear processes studied in statistical physics.
Debias the Training of Diffusion Models
Diffusion models have demonstrated compelling generation quality by optimizing the variational lower bound through a simple denoising score matching loss. In this paper, we provide theoretical evidence that the prevailing practice of using a constant loss weight strategy in diffusion models leads to biased estimation during the training phase. Simply optimizing the denoising network to predict Gaussian noise with constant weighting may hinder precise estimations of original images. To address the issue, we propose an elegant and effective weighting strategy grounded in the theoretically unbiased principle. Moreover, we conduct a comprehensive and systematic exploration to dissect the inherent bias problem deriving from constant weighting loss from the perspectives of its existence, impact and reasons. These analyses are expected to advance our understanding and demystify the inner workings of diffusion models. Through empirical evaluation, we demonstrate that our proposed debiased estimation method significantly enhances sample quality without the reliance on complex techniques, and exhibits improved efficiency compared to the baseline method both in training and sampling processes.
Untangling Gaussian Mixtures
Tangles were originally introduced as a concept to formalize regions of high connectivity in graphs. In recent years, they have also been discovered as a link between structural graph theory and data science: when interpreting similarity in data sets as connectivity between points, finding clusters in the data essentially amounts to finding tangles in the underlying graphs. This paper further explores the potential of tangles in data sets as a means for a formal study of clusters. Real-world data often follow a normal distribution. Accounting for this, we develop a quantitative theory of tangles in data sets drawn from Gaussian mixtures. To this end, we equip the data with a graph structure that models similarity between the points and allows us to apply tangle theory to the data. We provide explicit conditions under which tangles associated with the marginal Gaussian distributions exist asymptotically almost surely. This can be considered as a sufficient formal criterion for the separabability of clusters in the data.
SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images
Sparse Multi-view Images can be Learned to predict explicit radiance fields via Generalizable Gaussian Splatting approaches, which can achieve wider application prospects in real-life when ground-truth camera parameters are not required as inputs. In this paper, a novel generalizable Gaussian Splatting method, SmileSplat, is proposed to reconstruct pixel-aligned Gaussian surfels for diverse scenarios only requiring unconstrained sparse multi-view images. First, Gaussian surfels are predicted based on the multi-head Gaussian regression decoder, which can are represented with less degree-of-freedom but have better multi-view consistency. Furthermore, the normal vectors of Gaussian surfel are enhanced based on high-quality of normal priors. Second, the Gaussians and camera parameters (both extrinsic and intrinsic) are optimized to obtain high-quality Gaussian radiance fields for novel view synthesis tasks based on the proposed Bundle-Adjusting Gaussian Splatting module. Extensive experiments on novel view rendering and depth map prediction tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in various 3D vision tasks. More information can be found on our project page (https://yanyan-li.github.io/project/gs/smilesplat)
DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models
Generating high-quality 3D content requires models capable of learning robust distributions of complex scenes and the real-world objects within them. Recent Gaussian-based 3D reconstruction techniques have achieved impressive results in recovering high-fidelity 3D assets from sparse input images by predicting 3D Gaussians in a feed-forward manner. However, these techniques often lack the extensive priors and expressiveness offered by Diffusion Models. On the other hand, 2D Diffusion Models, which have been successfully applied to denoise multiview images, show potential for generating a wide range of photorealistic 3D outputs but still fall short on explicit 3D priors and consistency. In this work, we aim to bridge these two approaches by introducing DSplats, a novel method that directly denoises multiview images using Gaussian Splat-based Reconstructors to produce a diverse array of realistic 3D assets. To harness the extensive priors of 2D Diffusion Models, we incorporate a pretrained Latent Diffusion Model into the reconstructor backbone to predict a set of 3D Gaussians. Additionally, the explicit 3D representation embedded in the denoising network provides a strong inductive bias, ensuring geometrically consistent novel view generation. Our qualitative and quantitative experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction. When evaluated on the Google Scanned Objects dataset, DSplats achieves a PSNR of 20.38, an SSIM of 0.842, and an LPIPS of 0.109.
Adaptive Two-Stage Cloud Resource Scaling via Hierarchical Multi-Indicator Forecasting and Bayesian Decision-Making
The surging demand for cloud computing resources, driven by the rapid growth of sophisticated large-scale models and data centers, underscores the critical importance of efficient and adaptive resource allocation. As major tech enterprises deploy massive infrastructures with thousands of GPUs, existing cloud platforms still struggle with low resource utilization due to key challenges: capturing hierarchical indicator structures, modeling non-Gaussian distributions, and decision-making under uncertainty. To address these challenges, we propose HRAMONY, an adaptive Hierarchical Attention-based Resource Modeling and Decision-Making System. HARMONY combines hierarchical multi-indicator distribution forecasting and uncertainty-aware Bayesian decision-making. It introduces a novel hierarchical attention mechanism that comprehensively models complex inter-indicator dependencies, enabling accurate predictions that can adapt to evolving environment states. By transforming Gaussian projections into adaptive non-Gaussian distributions via Normalizing Flows. Crucially, HARMONY leverages the full predictive distributions in an adaptive Bayesian process, proactively incorporating uncertainties to optimize resource allocation while robustly meeting SLA constraints under varying conditions. Extensive evaluations across four large-scale cloud datasets demonstrate HARMONY's state-of-the-art performance, significantly outperforming nine established methods. A month-long real-world deployment validated HARMONY's substantial practical impact, realizing over 35,000 GPU hours in savings and translating to $100K+ in cost reduction, showcasing its remarkable economic value through adaptive, uncertainty-aware scaling. Our code is available at https://github.com/Floating-LY/HARMONY1.
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?
We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.
Compressed Image Generation with Denoising Diffusion Codebook Models
We present a novel generative approach based on Denoising Diffusion Models (DDMs), which produces high-quality image samples along with their losslessly compressed bit-stream representations. This is obtained by replacing the standard Gaussian noise sampling in the reverse diffusion with a selection of noise samples from pre-defined codebooks of fixed iid Gaussian vectors. Surprisingly, we find that our method, termed Denoising Diffusion Codebook Model (DDCM), retains sample quality and diversity of standard DDMs, even for extremely small codebooks. We leverage DDCM and pick the noises from the codebooks that best match a given image, converting our generative model into a highly effective lossy image codec achieving state-of-the-art perceptual image compression results. More generally, by setting other noise selections rules, we extend our compression method to any conditional image generation task (e.g., image restoration), where the generated images are produced jointly with their condensed bit-stream representations. Our work is accompanied by a mathematical interpretation of the proposed compressed conditional generation schemes, establishing a connection with score-based approximations of posterior samplers for the tasks considered.
Self-Distillation for Gaussian Process Regression and Classification
We propose two approaches to extend the notion of knowledge distillation to Gaussian Process Regression (GPR) and Gaussian Process Classification (GPC); data-centric and distribution-centric. The data-centric approach resembles most current distillation techniques for machine learning, and refits a model on deterministic predictions from the teacher, while the distribution-centric approach, re-uses the full probabilistic posterior for the next iteration. By analyzing the properties of these approaches, we show that the data-centric approach for GPR closely relates to known results for self-distillation of kernel ridge regression and that the distribution-centric approach for GPR corresponds to ordinary GPR with a very particular choice of hyperparameters. Furthermore, we demonstrate that the distribution-centric approach for GPC approximately corresponds to data duplication and a particular scaling of the covariance and that the data-centric approach for GPC requires redefining the model from a Binomial likelihood to a continuous Bernoulli likelihood to be well-specified. To the best of our knowledge, our proposed approaches are the first to formulate knowledge distillation specifically for Gaussian Process models.
1000+ FPS 4D Gaussian Splatting for Dynamic Scene Rendering
4D Gaussian Splatting (4DGS) has recently gained considerable attention as a method for reconstructing dynamic scenes. Despite achieving superior quality, 4DGS typically requires substantial storage and suffers from slow rendering speed. In this work, we delve into these issues and identify two key sources of temporal redundancy. (Q1) Short-Lifespan Gaussians: 4DGS uses a large portion of Gaussians with short temporal span to represent scene dynamics, leading to an excessive number of Gaussians. (Q2) Inactive Gaussians: When rendering, only a small subset of Gaussians contributes to each frame. Despite this, all Gaussians are processed during rasterization, resulting in redundant computation overhead. To address these redundancies, we present 4DGS-1K, which runs at over 1000 FPS on modern GPUs. For Q1, we introduce the Spatial-Temporal Variation Score, a new pruning criterion that effectively removes short-lifespan Gaussians while encouraging 4DGS to capture scene dynamics using Gaussians with longer temporal spans. For Q2, we store a mask for active Gaussians across consecutive frames, significantly reducing redundant computations in rendering. Compared to vanilla 4DGS, our method achieves a 41times reduction in storage and 9times faster rasterization speed on complex dynamic scenes, while maintaining comparable visual quality. Please see our project page at https://4DGS-1K.github.io.
Gaussian Mixture Flow Matching Models
Diffusion models approximate the denoising distribution as a Gaussian and predict its mean, whereas flow matching models reparameterize the Gaussian mean as flow velocity. However, they underperform in few-step sampling due to discretization error and tend to produce over-saturated colors under classifier-free guidance (CFG). To address these limitations, we propose a novel Gaussian mixture flow matching (GMFlow) model: instead of predicting the mean, GMFlow predicts dynamic Gaussian mixture (GM) parameters to capture a multi-modal flow velocity distribution, which can be learned with a KL divergence loss. We demonstrate that GMFlow generalizes previous diffusion and flow matching models where a single Gaussian is learned with an L_2 denoising loss. For inference, we derive GM-SDE/ODE solvers that leverage analytic denoising distributions and velocity fields for precise few-step sampling. Furthermore, we introduce a novel probabilistic guidance scheme that mitigates the over-saturation issues of CFG and improves image generation quality. Extensive experiments demonstrate that GMFlow consistently outperforms flow matching baselines in generation quality, achieving a Precision of 0.942 with only 6 sampling steps on ImageNet 256times256.
Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting
In this work, we consider rather general and broad class of Markov chains, Ito chains, that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one as in most related papers. Moreover, in our chain the drift and diffusion coefficient can be inexact in order to cover wide range of applications as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent or Stochastic Gradient Boosting. We prove the bound in W_{2}-distance between the laws of our Ito chain and corresponding differential equation. These results improve or cover most of the known estimates. And for some particular cases, our analysis is the first.
pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction
We introduce pixelSplat, a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images. Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time. To overcome local minima inherent to sparse and locally supported representations, we predict a dense probability distribution over 3D and sample Gaussian means from that probability distribution. We make this sampling operation differentiable via a reparameterization trick, allowing us to back-propagate gradients through the Gaussian splatting representation. We benchmark our method on wide-baseline novel view synthesis on the real-world RealEstate10k and ACID datasets, where we outperform state-of-the-art light field transformers and accelerate rendering by 2.5 orders of magnitude while reconstructing an interpretable and editable 3D radiance field.
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) infinite-width BNNs are particularly promising, especially in high dimensions.
Sigma-Delta and Distributed Noise-Shaping Quantization Methods for Random Fourier Features
We propose the use of low bit-depth Sigma-Delta and distributed noise-shaping methods for quantizing the Random Fourier features (RFFs) associated with shift-invariant kernels. We prove that our quantized RFFs -- even in the case of 1-bit quantization -- allow a high accuracy approximation of the underlying kernels, and the approximation error decays at least polynomially fast as the dimension of the RFFs increases. We also show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy. Namely, the approximation error now decays exponentially as a function of the bits used. Moreover, we empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
We study the problem of approximate sampling from non-log-concave distributions, e.g., Gaussian mixtures, which is often challenging even in low dimensions due to their multimodality. We focus on performing this task via Markov chain Monte Carlo (MCMC) methods derived from discretizations of the overdamped Langevin diffusions, which are commonly known as Langevin Monte Carlo algorithms. Furthermore, we are also interested in two nonsmooth cases for which a large class of proximal MCMC methods have been developed: (i) a nonsmooth prior is considered with a Gaussian mixture likelihood; (ii) a Laplacian mixture distribution. Such nonsmooth and non-log-concave sampling tasks arise from a wide range of applications to Bayesian inference and imaging inverse problems such as image deconvolution. We perform numerical simulations to compare the performance of most commonly used Langevin Monte Carlo algorithms.
Some Properties of Large Excursions of a Stationary Gaussian Process
The present work investigates two properties of level crossings of a stationary Gaussian process X(t) with autocorrelation function R_X(tau). We show firstly that if R_X(tau) admits finite second and fourth derivatives at the origin, the length of up-excursions above a large negative level -gamma is asymptotically exponential as -gamma to -infty. Secondly, assuming that R_X(tau) admits a finite second derivative at the origin and some defined properties, we derive the mean number of crossings as well as the length of successive excursions above two subsequent large levels. The asymptotic results are shown to be effective even for moderate values of crossing level. An application of the developed results is proposed to derive the probability of successive excursions above adjacent levels during a time window.
High-fidelity 3D Object Generation from Single Image with RGBN-Volume Gaussian Reconstruction Model
Recently single-view 3D generation via Gaussian splatting has emerged and developed quickly. They learn 3D Gaussians from 2D RGB images generated from pre-trained multi-view diffusion (MVD) models, and have shown a promising avenue for 3D generation through a single image. Despite the current progress, these methods still suffer from the inconsistency jointly caused by the geometric ambiguity in the 2D images, and the lack of structure of 3D Gaussians, leading to distorted and blurry 3D object generation. In this paper, we propose to fix these issues by GS-RGBN, a new RGBN-volume Gaussian Reconstruction Model designed to generate high-fidelity 3D objects from single-view images. Our key insight is a structured 3D representation can simultaneously mitigate the afore-mentioned two issues. To this end, we propose a novel hybrid Voxel-Gaussian representation, where a 3D voxel representation contains explicit 3D geometric information, eliminating the geometric ambiguity from 2D images. It also structures Gaussians during learning so that the optimization tends to find better local optima. Our 3D voxel representation is obtained by a fusion module that aligns RGB features and surface normal features, both of which can be estimated from 2D images. Extensive experiments demonstrate the superiority of our methods over prior works in terms of high-quality reconstruction results, robust generalization, and good efficiency.
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Understanding when the noise in stochastic gradient descent (SGD) affects generalization of deep neural networks remains a challenge, complicated by the fact that networks can operate in distinct training regimes. Here we study how the magnitude of this noise T affects performance as the size of the training set P and the scale of initialization alpha are varied. For gradient descent, alpha is a key parameter that controls if the network is `lazy'(alphagg1) or instead learns features (alphall1). For classification of MNIST and CIFAR10 images, our central results are: (i) obtaining phase diagrams for performance in the (alpha,T) plane. They show that SGD noise can be detrimental or instead useful depending on the training regime. Moreover, although increasing T or decreasing alpha both allow the net to escape the lazy regime, these changes can have opposite effects on performance. (ii) Most importantly, we find that the characteristic temperature T_c where the noise of SGD starts affecting the trained model (and eventually performance) is a power law of P. We relate this finding with the observation that key dynamical quantities, such as the total variation of weights during training, depend on both T and P as power laws. These results indicate that a key effect of SGD noise occurs late in training by affecting the stopping process whereby all data are fitted. Indeed, we argue that due to SGD noise, nets must develop a stronger `signal', i.e. larger informative weights, to fit the data, leading to a longer training time. A stronger signal and a longer training time are also required when the size of the training set P increases. We confirm these views in the perceptron model, where signal and noise can be precisely measured. Interestingly, exponents characterizing the effect of SGD depend on the density of data near the decision boundary, as we explain.
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
The quality of many modern machine learning models improves as model complexity increases, an effect that has been quantified, for predictive performance, with the non-monotonic double descent learning curve. Here, we address the overarching question: is there an analogous theory of double descent for models which estimate uncertainty? We provide a partially affirmative and partially negative answer in the setting of Gaussian processes (GP). Under standard assumptions, we prove that higher model quality for optimally-tuned GPs (including uncertainty prediction) under marginal likelihood is realized for larger input dimensions, and therefore exhibits a monotone error curve. After showing that marginal likelihood does not naturally exhibit double descent in the input dimension, we highlight related forms of posterior predictive loss that do exhibit non-monotonicity. Finally, we verify empirically that our results hold for real data, beyond our considered assumptions, and we explore consequences involving synthetic covariates.
Adversarial Generation of Hierarchical Gaussians for 3D Generative Model
Most advances in 3D Generative Adversarial Networks (3D GANs) largely depend on ray casting-based volume rendering, which incurs demanding rendering costs. One promising alternative is rasterization-based 3D Gaussian Splatting (3D-GS), providing a much faster rendering speed and explicit 3D representation. In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics. However, in an adversarial framework, we observe that a na\"ive generator architecture suffers from training instability and lacks the capability to adjust the scale of Gaussians. This leads to model divergence and visual artifacts due to the absence of proper guidance for initialized positions of Gaussians and densification to manage their scales adaptively. To address these issues, we introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians. Specifically, we design a hierarchy of Gaussians where finer-level Gaussians are parameterized by their coarser-level counterparts; the position of finer-level Gaussians would be located near their coarser-level counterparts, and the scale would monotonically decrease as the level becomes finer, modeling both coarse and fine details of the 3D scene. Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs with comparable 3D generation capability. Project page: https://hse1032.github.io/gsgan.
Inference Stage Denoising for Undersampled MRI Reconstruction
Reconstruction of magnetic resonance imaging (MRI) data has been positively affected by deep learning. A key challenge remains: to improve generalisation to distribution shifts between the training and testing data. Most approaches aim to address this via inductive design or data augmentation. However, they can be affected by misleading data, e.g. random noise, and cases where the inference stage data do not match assumptions in the modelled shifts. In this work, by employing a conditional hyperparameter network, we eliminate the need of augmentation, yet maintain robust performance under various levels of Gaussian noise. We demonstrate that our model withstands various input noise levels while producing high-definition reconstructions during the test stage. Moreover, we present a hyperparameter sampling strategy that accelerates the convergence of training. Our proposed method achieves the highest accuracy and image quality in all settings compared to baseline methods.
Matrix approach to generalized ensemble theory
We provide a concise framework for generalized ensemble theory through a matrix-based approach. By introducing an observation matrix, any discrete probability distribution, including those for non-equilibrium steady states, can be expressed as a generalized Boltzmann distribution, with observables and conjugate variables as the basis and coordinates in a linear space. In this framework, we identify the minimal sufficient statistics required for inferring the Boltzmann distribution. Furthermore, we show that the Hadamard and Vandermonde matrices are suitable observation matrices for spin systems and random walks. In master equation systems, the probability flux observation matrix facilitates the identification of detailed balance violations. Our findings provide a new approach to developing generalized ensemble theory for non-equilibrium steady-state systems.
How much is a noisy image worth? Data Scaling Laws for Ambient Diffusion
The quality of generative models depends on the quality of the data they are trained on. Creating large-scale, high-quality datasets is often expensive and sometimes impossible, e.g. in certain scientific applications where there is no access to clean data due to physical or instrumentation constraints. Ambient Diffusion and related frameworks train diffusion models with solely corrupted data (which are usually cheaper to acquire) but ambient models significantly underperform models trained on clean data. We study this phenomenon at scale by training more than 80 models on data with different corruption levels across three datasets ranging from 30,000 to approx 1.3M samples. We show that it is impossible, at these sample sizes, to match the performance of models trained on clean data when only training on noisy data. Yet, a combination of a small set of clean data (e.g.~10% of the total dataset) and a large set of highly noisy data suffices to reach the performance of models trained solely on similar-size datasets of clean data, and in particular to achieve near state-of-the-art performance. We provide theoretical evidence for our findings by developing novel sample complexity bounds for learning from Gaussian Mixtures with heterogeneous variances. Our theoretical model suggests that, for large enough datasets, the effective marginal utility of a noisy sample is exponentially worse than that of a clean sample. Providing a small set of clean samples can significantly reduce the sample size requirements for noisy data, as we also observe in our experiments.
Generalized Kernel Thinning
The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a probability distribution more effectively than independent sampling by targeting a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel, any distribution, and any fixed function in the RKHS. Second, we show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, target KT admits maximum mean discrepancy (MMD) guarantees comparable to or better than those of square-root KT without making explicit use of a square-root kernel. Third, we prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Mat\'ern, that do not have square-roots. Fourth, we establish that KT applied to a sum of the target and power kernels (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of target KT. In our experiments with target KT and KT+, we witness significant improvements in integration error even in 100 dimensions and when compressing challenging differential equation posteriors.
Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression
Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.
Second-Order Uncertainty Quantification: A Distance-Based Approach
In the past couple of years, various approaches to representing and quantifying different types of predictive uncertainty in machine learning, notably in the setting of classification, have been proposed on the basis of second-order probability distributions, i.e., predictions in the form of distributions on probability distributions. A completely conclusive solution has not yet been found, however, as shown by recent criticisms of commonly used uncertainty measures associated with second-order distributions, identifying undesirable theoretical properties of these measures. In light of these criticisms, we propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey. Moreover, we provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance, for which we prove that all criteria are satisfied.
X^{2}-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction
Four-dimensional computed tomography (4D CT) reconstruction is crucial for capturing dynamic anatomical changes but faces inherent limitations from conventional phase-binning workflows. Current methods discretize temporal resolution into fixed phases with respiratory gating devices, introducing motion misalignment and restricting clinical practicality. In this paper, We propose X^2-Gaussian, a novel framework that enables continuous-time 4D-CT reconstruction by integrating dynamic radiative Gaussian splatting with self-supervised respiratory motion learning. Our approach models anatomical dynamics through a spatiotemporal encoder-decoder architecture that predicts time-varying Gaussian deformations, eliminating phase discretization. To remove dependency on external gating devices, we introduce a physiology-driven periodic consistency loss that learns patient-specific breathing cycles directly from projections via differentiable optimization. Extensive experiments demonstrate state-of-the-art performance, achieving a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior Gaussian splatting techniques. By unifying continuous motion modeling with hardware-free period learning, X^2-Gaussian advances high-fidelity 4D CT reconstruction for dynamic clinical imaging. Project website at: https://x2-gaussian.github.io/.
GAN-EM: GAN based EM learning framework
Expectation maximization (EM) algorithm is to find maximum likelihood solution for models having latent variables. A typical example is Gaussian Mixture Model (GMM) which requires Gaussian assumption, however, natural images are highly non-Gaussian so that GMM cannot be applied to perform clustering task on pixel space. To overcome such limitation, we propose a GAN based EM learning framework that can maximize the likelihood of images and estimate the latent variables with only the constraint of L-Lipschitz continuity. We call this model GAN-EM, which is a framework for image clustering, semi-supervised classification and dimensionality reduction. In M-step, we design a novel loss function for discriminator of GAN to perform maximum likelihood estimation (MLE) on data with soft class label assignments. Specifically, a conditional generator captures data distribution for K classes, and a discriminator tells whether a sample is real or fake for each class. Since our model is unsupervised, the class label of real data is regarded as latent variable, which is estimated by an additional network (E-net) in E-step. The proposed GAN-EM achieves state-of-the-art clustering and semi-supervised classification results on MNIST, SVHN and CelebA, as well as comparable quality of generated images to other recently developed generative models.
Uncertainty-Aware Remaining Lifespan Prediction from Images
Predicting mortality-related outcomes from images offers the prospect of accessible, noninvasive, and scalable health screening. We present a method that leverages pretrained vision transformer foundation models to estimate remaining lifespan from facial and whole-body images, alongside robust uncertainty quantification. We show that predictive uncertainty varies systematically with the true remaining lifespan, and that this uncertainty can be effectively modeled by learning a Gaussian distribution for each sample. Our approach achieves state-of-the-art mean absolute error (MAE) of 7.48 years on an established Dataset, and further improves to 4.79 and 5.07 years MAE on two new, higher-quality datasets curated and published in this work. Importantly, our models provide well-calibrated uncertainty estimates, as demonstrated by a bucketed expected calibration error of 0.62 years. While not intended for clinical deployment, these results highlight the potential of extracting medically relevant signals from images. We make all code and datasets available to facilitate further research.
Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in novel view synthesis (NVS). However, 3DGS tends to overfit when trained with sparse views, limiting its generalization to novel viewpoints. In this paper, we address this overfitting issue by introducing Self-Ensembling Gaussian Splatting (SE-GS). We achieve self-ensembling by incorporating an uncertainty-aware perturbation strategy during training. A Delta-model and a Sigma-model are jointly trained on the available images. The Delta-model is dynamically perturbed based on rendering uncertainty across training steps, generating diverse perturbed models with negligible computational overhead. Discrepancies between the Sigma-model and these perturbed models are minimized throughout training, forming a robust ensemble of 3DGS models. This ensemble, represented by the Sigma-model, is then used to generate novel-view images during inference. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets demonstrate that our approach enhances NVS quality under few-shot training conditions, outperforming existing state-of-the-art methods. The code is released at: https://sailor-z.github.io/projects/SEGS.html.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
Spectrally Pruned Gaussian Fields with Neural Compensation
Recently, 3D Gaussian Splatting, as a novel 3D representation, has garnered attention for its fast rendering speed and high rendering quality. However, this comes with high memory consumption, e.g., a well-trained Gaussian field may utilize three million Gaussian primitives and over 700 MB of memory. We credit this high memory footprint to the lack of consideration for the relationship between primitives. In this paper, we propose a memory-efficient Gaussian field named SUNDAE with spectral pruning and neural compensation. On one hand, we construct a graph on the set of Gaussian primitives to model their relationship and design a spectral down-sampling module to prune out primitives while preserving desired signals. On the other hand, to compensate for the quality loss of pruning Gaussians, we exploit a lightweight neural network head to mix splatted features, which effectively compensates for quality losses while capturing the relationship between primitives in its weights. We demonstrate the performance of SUNDAE with extensive results. For example, SUNDAE can achieve 26.80 PSNR at 145 FPS using 104 MB memory while the vanilla Gaussian splatting algorithm achieves 25.60 PSNR at 160 FPS using 523 MB memory, on the Mip-NeRF360 dataset. Codes are publicly available at https://runyiyang.github.io/projects/SUNDAE/.
Efficient Gaussian Splatting for Monocular Dynamic Scene Rendering via Sparse Time-Variant Attribute Modeling
Rendering dynamic scenes from monocular videos is a crucial yet challenging task. The recent deformable Gaussian Splatting has emerged as a robust solution to represent real-world dynamic scenes. However, it often leads to heavily redundant Gaussians, attempting to fit every training view at various time steps, leading to slower rendering speeds. Additionally, the attributes of Gaussians in static areas are time-invariant, making it unnecessary to model every Gaussian, which can cause jittering in static regions. In practice, the primary bottleneck in rendering speed for dynamic scenes is the number of Gaussians. In response, we introduce Efficient Dynamic Gaussian Splatting (EDGS), which represents dynamic scenes via sparse time-variant attribute modeling. Our approach formulates dynamic scenes using a sparse anchor-grid representation, with the motion flow of dense Gaussians calculated via a classical kernel representation. Furthermore, we propose an unsupervised strategy to efficiently filter out anchors corresponding to static areas. Only anchors associated with deformable objects are input into MLPs to query time-variant attributes. Experiments on two real-world datasets demonstrate that our EDGS significantly improves the rendering speed with superior rendering quality compared to previous state-of-the-art methods.
Special Properties of Gradient Descent with Large Learning Rates
When training neural networks, it has been widely observed that a large step size is essential in stochastic gradient descent (SGD) for obtaining superior models. However, the effect of large step sizes on the success of SGD is not well understood theoretically. Several previous works have attributed this success to the stochastic noise present in SGD. However, we show through a novel set of experiments that the stochastic noise is not sufficient to explain good non-convex training, and that instead the effect of a large learning rate itself is essential for obtaining best performance.We demonstrate the same effects also in the noise-less case, i.e. for full-batch GD. We formally prove that GD with large step size -- on certain non-convex function classes -- follows a different trajectory than GD with a small step size, which can lead to convergence to a global minimum instead of a local one. Our settings provide a framework for future analysis which allows comparing algorithms based on behaviors that can not be observed in the traditional settings.
Physics-based Noise Modeling for Extreme Low-light Photography
Enhancing the visibility in extreme low-light environments is a challenging task. Under nearly lightless condition, existing image denoising methods could easily break down due to significantly low SNR. In this paper, we systematically study the noise statistics in the imaging pipeline of CMOS photosensors, and formulate a comprehensive noise model that can accurately characterize the real noise structures. Our novel model considers the noise sources caused by digital camera electronics which are largely overlooked by existing methods yet have significant influence on raw measurement in the dark. It provides a way to decouple the intricate noise structure into different statistical distributions with physical interpretations. Moreover, our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms. In this regard, although promising results have been shown recently with deep convolutional neural networks, the success heavily depends on abundant noisy clean image pairs for training, which are tremendously difficult to obtain in practice. Generalizing their trained models to images from new devices is also problematic. Extensive experiments on multiple low-light denoising datasets -- including a newly collected one in this work covering various devices -- show that a deep neural network trained with our proposed noise formation model can reach surprisingly-high accuracy. The results are on par with or sometimes even outperform training with paired real data, opening a new door to real-world extreme low-light photography.
Learning Unified Representation of 3D Gaussian Splatting
A well-designed vectorized representation is crucial for the learning systems natively based on 3D Gaussian Splatting. While 3DGS enables efficient and explicit 3D reconstruction, its parameter-based representation remains hard to learn as features, especially for neural-network-based models. Directly feeding raw Gaussian parameters into learning frameworks fails to address the non-unique and heterogeneous nature of the Gaussian parameterization, yielding highly data-dependent models. This challenge motivates us to explore a more principled approach to represent 3D Gaussian Splatting in neural networks that preserves the underlying color and geometric structure while enforcing unique mapping and channel homogeneity. In this paper, we propose an embedding representation of 3DGS based on continuous submanifold fields that encapsulate the intrinsic information of Gaussian primitives, thereby benefiting the learning of 3DGS.
MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--
For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.
Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent
In this article, we study the consistency of the template estimation with the Fr\'echet mean in quotient spaces. The Fr\'echet mean in quotient spaces is often used when the observations are deformed or transformed by a group action. We show that in most cases this estimator is actually inconsistent. We exhibit a sufficient condition for this inconsistency, which amounts to the folding of the distribution of the noisy template when it is projected to the quotient space. This condition appears to be fulfilled as soon as the support of the noise is large enough. To quantify this inconsistency we provide lower and upper bounds of the bias as a function of the variability (the noise level). This shows that the consistency bias cannot be neglected when the variability increases.
MP-GELU Bayesian Neural Networks: Moment Propagation by GELU Nonlinearity
Bayesian neural networks (BNNs) have been an important framework in the study of uncertainty quantification. Deterministic variational inference, one of the inference methods, utilizes moment propagation to compute the predictive distributions and objective functions. Unfortunately, deriving the moments requires computationally expensive Taylor expansion in nonlinear functions, such as a rectified linear unit (ReLU) or a sigmoid function. Therefore, a new nonlinear function that realizes faster moment propagation than conventional functions is required. In this paper, we propose a novel nonlinear function named moment propagating-Gaussian error linear unit (MP-GELU) that enables the fast derivation of first and second moments in BNNs. MP-GELU enables the analytical computation of moments by applying nonlinearity to the input statistics, thereby reducing the computationally expensive calculations required for nonlinear functions. In empirical experiments on regression tasks, we observed that the proposed MP-GELU provides higher prediction accuracy and better quality of uncertainty with faster execution than those of ReLU-based BNNs.
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
This work introduces the Efficient Transformed Gaussian Process (ETGP), a new way of creating C stochastic processes characterized by: 1) the C processes are non-stationary, 2) the C processes are dependent by construction without needing a mixing matrix, 3) training and making predictions is very efficient since the number of Gaussian Processes (GP) operations (e.g. inverting the inducing point's covariance matrix) do not depend on the number of processes. This makes the ETGP particularly suited for multi-class problems with a very large number of classes, which are the problems studied in this work. ETGPs exploit the recently proposed Transformed Gaussian Process (TGP), a stochastic process specified by transforming a Gaussian Process using an invertible transformation. However, unlike TGPs, ETGPs are constructed by transforming a single sample from a GP using C invertible transformations. We derive an efficient sparse variational inference algorithm for the proposed model and demonstrate its utility in 5 classification tasks which include low/medium/large datasets and a different number of classes, ranging from just a few to hundreds. Our results show that ETGPs, in general, outperform state-of-the-art methods for multi-class classification based on GPs, and have a lower computational cost (around one order of magnitude smaller).
Optimized Minimal 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for real-time, high-performance rendering, enabling a wide range of applications. However, representing 3D scenes with numerous explicit Gaussian primitives imposes significant storage and memory overhead. Recent studies have shown that high-quality rendering can be achieved with a substantially reduced number of Gaussians when represented with high-precision attributes. Nevertheless, existing 3DGS compression methods still rely on a relatively large number of Gaussians, focusing primarily on attribute compression. This is because a smaller set of Gaussians becomes increasingly sensitive to lossy attribute compression, leading to severe quality degradation. Since the number of Gaussians is directly tied to computational costs, it is essential to reduce the number of Gaussians effectively rather than only optimizing storage. In this paper, we propose Optimized Minimal Gaussians representation (OMG), which significantly reduces storage while using a minimal number of primitives. First, we determine the distinct Gaussian from the near ones, minimizing redundancy without sacrificing quality. Second, we propose a compact and precise attribute representation that efficiently captures both continuity and irregularity among primitives. Additionally, we propose a sub-vector quantization technique for improved irregularity representation, maintaining fast training with a negligible codebook size. Extensive experiments demonstrate that OMG reduces storage requirements by nearly 50% compared to the previous state-of-the-art and enables 600+ FPS rendering while maintaining high rendering quality. Our source code is available at https://maincold2.github.io/omg/.
DP-SPRT: Differentially Private Sequential Probability Ratio Tests
We revisit Wald's celebrated Sequential Probability Ratio Test for sequential tests of two simple hypotheses, under privacy constraints. We propose DP-SPRT, a wrapper that can be calibrated to achieve desired error probabilities and privacy constraints, addressing a significant gap in previous work. DP-SPRT relies on a private mechanism that processes a sequence of queries and stops after privately determining when the query results fall outside a predefined interval. This OutsideInterval mechanism improves upon naive composition of existing techniques like AboveThreshold, potentially benefiting other sequential algorithms. We prove generic upper bounds on the error and sample complexity of DP-SPRT that can accommodate various noise distributions based on the practitioner's privacy needs. We exemplify them in two settings: Laplace noise (pure Differential Privacy) and Gaussian noise (R\'enyi differential privacy). In the former setting, by providing a lower bound on the sample complexity of any epsilon-DP test with prescribed type I and type II errors, we show that DP-SPRT is near optimal when both errors are small and the two hypotheses are close. Moreover, we conduct an experimental study revealing its good practical performance.
Scaling limit of a long-range random walk in time-correlated random environment
This paper concerns a long-range random walk in random environment in dimension 1+1, where the environmental disorder is independent in space but has long-range correlations in time. We prove that two types of rescaled partition functions converge weakly to the Stratonovich solution and the It\^o-Skorohod solution respectively of a fractional stochastic heat equation with multiplicative Gaussian noise which is white in space and colored in time.
An Agnostic View on the Cost of Overfitting in (Kernel) Ridge Regression
We study the cost of overfitting in noisy kernel ridge regression (KRR), which we define as the ratio between the test error of the interpolating ridgeless model and the test error of the optimally-tuned model. We take an "agnostic" view in the following sense: we consider the cost as a function of sample size for any target function, even if the sample size is not large enough for consistency or the target is outside the RKHS. We analyze the cost of overfitting under a Gaussian universality ansatz using recently derived (non-rigorous) risk estimates in terms of the task eigenstructure. Our analysis provides a more refined characterization of benign, tempered and catastrophic overfitting (cf. Mallinar et al. 2022).
RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances. To address this, we propose RobustSplat, a robust solution based on two critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method. Our project page is https://fcyycf.github.io/RobustSplat/.
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize
This paper provides a non-asymptotic analysis of linear stochastic approximation (LSA) algorithms with fixed stepsize. This family of methods arises in many machine learning tasks and is used to obtain approximate solutions of a linear system Atheta = b for which A and b can only be accessed through random estimates {({bf A}_n, {bf b}_n): n in N^*}. Our analysis is based on new results regarding moments and high probability bounds for products of matrices which are shown to be tight. We derive high probability bounds on the performance of LSA under weaker conditions on the sequence {({bf A}_n, {bf b}_n): n in N^*} than previous works. However, in contrast, we establish polynomial concentration bounds with order depending on the stepsize. We show that our conclusions cannot be improved without additional assumptions on the sequence of random matrices {{bf A}_n: n in N^*}, and in particular that no Gaussian or exponential high probability bounds can hold. Finally, we pay a particular attention to establishing bounds with sharp order with respect to the number of iterations and the stepsize and whose leading terms contain the covariance matrices appearing in the central limit theorems.
Adaptive sequential Monte Carlo by means of mixture of experts
Appropriately designing the proposal kernel of particle filters is an issue of significant importance, since a bad choice may lead to deterioration of the particle sample and, consequently, waste of computational power. In this paper we introduce a novel algorithm adaptively approximating the so-called optimal proposal kernel by a mixture of integrated curved exponential distributions with logistic weights. This family of distributions, referred to as mixtures of experts, is broad enough to be used in the presence of multi-modality or strongly skewed distributions. The mixtures are fitted, via online-EM methods, to the optimal kernel through minimisation of the Kullback-Leibler divergence between the auxiliary target and instrumental distributions of the particle filter. At each iteration of the particle filter, the algorithm is required to solve only a single optimisation problem for the whole particle sample, yielding an algorithm with only linear complexity. In addition, we illustrate in a simulation study how the method can be successfully applied to optimal filtering in nonlinear state-space models.
Diffusion Noise Feature: Accurate and Fast Generated Image Detection
Generative models have reached an advanced stage where they can produce remarkably realistic images. However, this remarkable generative capability also introduces the risk of disseminating false or misleading information. Notably, existing image detectors for generated images encounter challenges such as low accuracy and limited generalization. This paper seeks to address this issue by seeking a representation with strong generalization capabilities to enhance the detection of generated images. Our investigation has revealed that real and generated images display distinct latent Gaussian representations when subjected to an inverse diffusion process within a pre-trained diffusion model. Exploiting this disparity, we can amplify subtle artifacts in generated images. Building upon this insight, we introduce a novel image representation known as Diffusion Noise Feature (DNF). DNF is extracted from the estimated noise generated during the inverse diffusion process. A simple classifier, e.g., ResNet50, trained on DNF achieves high accuracy, robustness, and generalization capabilities for detecting generated images (even the corresponding generator is built with datasets/structures that are not seen during the classifier's training). We conducted experiments using four training datasets and five testsets, achieving state-of-the-art detection performance.
Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision
Denoising diffusion models are a powerful type of generative models used to capture complex distributions of real-world signals. However, their applicability is limited to scenarios where training samples are readily available, which is not always the case in real-world applications. For example, in inverse graphics, the goal is to generate samples from a distribution of 3D scenes that align with a given image, but ground-truth 3D scenes are unavailable and only 2D images are accessible. To address this limitation, we propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed. Instead, these signals are measured indirectly through a known differentiable forward model, which produces partial observations of the unknown signal. Our approach involves integrating the forward model directly into the denoising process. This integration effectively connects the generative modeling of observations with the generative modeling of the underlying signals, allowing for end-to-end training of a conditional generative model over signals. During inference, our approach enables sampling from the distribution of underlying signals that are consistent with a given partial observation. We demonstrate the effectiveness of our method on three challenging computer vision tasks. For instance, in the context of inverse graphics, our model enables direct sampling from the distribution of 3D scenes that align with a single 2D input image.
Only Pay for What Is Uncertain: Variance-Adaptive Thompson Sampling
Most bandit algorithms assume that the reward variances or their upper bounds are known, and that they are the same for all arms. This naturally leads to suboptimal performance and higher regret due to variance overestimation. On the other hand, underestimated reward variances may lead to linear regret due to committing early to a suboptimal arm. This motivated prior works on variance-adaptive frequentist algorithms, which have strong instance-dependent regret bounds but cannot incorporate prior knowledge on reward variances. We lay foundations for the Bayesian setting, which incorporates prior knowledge. This results in lower regret in practice, due to using the prior in the algorithm design, and also improved regret guarantees. Specifically, we study Gaussian bandits with {unknown heterogeneous reward variances}, and develop a Thompson sampling algorithm with prior-dependent Bayes regret bounds. We achieve lower regret with lower reward variances and more informative priors on them, which is precisely why we pay only for what is uncertain. This is the first result of its kind. Finally, we corroborate our theory with extensive experiments, which show the superiority of our variance-adaptive Bayesian algorithm over prior frequentist approaches. We also show that our approach is robust to model misspecification and can be applied with estimated priors.
DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions
This study introduces a novel and interpretable model, DiffVox, for matching vocal effects in music production. DiffVox, short for ``Differentiable Vocal Fx", integrates parametric equalisation, dynamic range control, delay, and reverb with efficient differentiable implementations to enable gradient-based optimisation for parameter estimation. Vocal presets are retrieved from two datasets, comprising 70 tracks from MedleyDB and 365 tracks from a private collection. Analysis of parameter correlations highlights strong relationships between effects and parameters, such as the high-pass and low-shelf filters often behaving together to shape the low end, and the delay time correlates with the intensity of the delayed signals. Principal component analysis reveals connections to McAdams' timbre dimensions, where the most crucial component modulates the perceived spaciousness while the secondary components influence spectral brightness. Statistical testing confirms the non-Gaussian nature of the parameter distribution, highlighting the complexity of the vocal effects space. These initial findings on the parameter distributions set the foundation for future research in vocal effects modelling and automatic mixing. Our source code and datasets are accessible at https://github.com/SonyResearch/diffvox.
Computable Stochastic Processes
The aim of this paper is to present an elementary computable theory of probability, random variables and stochastic processes. The probability theory is baed on existing approaches using valuations and lower integrals. Various approaches to random variables are discussed, including the approach based on completions in a Polish space. We apply the theory to the study of stochastic dynamical systems in discrete-time, and give a brief exposition of the Wiener process as a foundation for stochastic differential equations. The theory is based within the framework of type-two effectivity, so has an explicit direct link with Turing computation, and is expressed in a system of computable types and operations, so has a clean mathematical description.
Improved Noise Schedule for Diffusion Training
Diffusion models have emerged as the de facto choice for generating visual signals. However, training a single model to predict noise across various levels poses significant challenges, necessitating numerous iterations and incurring significant computational costs. Various approaches, such as loss weighting strategy design and architectural refinements, have been introduced to expedite convergence. In this study, we propose a novel approach to design the noise schedule for enhancing the training of diffusion models. Our key insight is that the importance sampling of the logarithm of the Signal-to-Noise ratio (logSNR), theoretically equivalent to a modified noise schedule, is particularly beneficial for training efficiency when increasing the sample frequency around log SNR=0. We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule. Furthermore, we highlight the advantages of our noise schedule design on the ImageNet benchmark, showing that the designed schedule consistently benefits different prediction targets.
Free-Form Variational Inference for Gaussian Process State-Space Models
Gaussian process state-space models (GPSSMs) provide a principled and flexible approach to modeling the dynamics of a latent state, which is observed at discrete-time points via a likelihood model. However, inference in GPSSMs is computationally and statistically challenging due to the large number of latent variables in the model and the strong temporal dependencies between them. In this paper, we propose a new method for inference in Bayesian GPSSMs, which overcomes the drawbacks of previous approaches, namely over-simplified assumptions, and high computational requirements. Our method is based on free-form variational inference via stochastic gradient Hamiltonian Monte Carlo within the inducing-variable formalism. Furthermore, by exploiting our proposed variational distribution, we provide a collapsed extension of our method where the inducing variables are marginalized analytically. We also showcase results when combining our framework with particle MCMC methods. We show that, on six real-world datasets, our approach can learn transition dynamics and latent states more accurately than competing methods.
Adaptive Pruning for Increased Robustness and Reduced Computational Overhead in Gaussian Process Accelerated Saddle Point Searches
Gaussian process (GP) regression provides a strategy for accelerating saddle point searches on high-dimensional energy surfaces by reducing the number of times the energy and its derivatives with respect to atomic coordinates need to be evaluated. The computational overhead in the hyperparameter optimization can, however, be large and make the approach inefficient. Failures can also occur if the search ventures too far into regions that are not represented well enough by the GP model. Here, these challenges are resolved by using geometry-aware optimal transport measures and an active pruning strategy using a summation over Wasserstein-1 distances for each atom-type in farthest-point sampling, selecting a fixed-size subset of geometrically diverse configurations to avoid rapidly increasing cost of GP updates as more observations are made. Stability is enhanced by permutation-invariant metric that provides a reliable trust radius for early-stopping and a logarithmic barrier penalty for the growth of the signal variance. These physically motivated algorithmic changes prove their efficacy by reducing to less than a half the mean computational time on a set of 238 challenging configurations from a previously published data set of chemical reactions. With these improvements, the GP approach is established as, a robust and scalable algorithm for accelerating saddle point searches when the evaluation of the energy and atomic forces requires significant computational effort.
Sparse Point Cloud Patches Rendering via Splitting 2D Gaussians
Current learning-based methods predict NeRF or 3D Gaussians from point clouds to achieve photo-realistic rendering but still depend on categorical priors, dense point clouds, or additional refinements. Hence, we introduce a novel point cloud rendering method by predicting 2D Gaussians from point clouds. Our method incorporates two identical modules with an entire-patch architecture enabling the network to be generalized to multiple datasets. The module normalizes and initializes the Gaussians utilizing the point cloud information including normals, colors and distances. Then, splitting decoders are employed to refine the initial Gaussians by duplicating them and predicting more accurate results, making our methodology effectively accommodate sparse point clouds as well. Once trained, our approach exhibits direct generalization to point clouds across different categories. The predicted Gaussians are employed directly for rendering without additional refinement on the rendered images, retaining the benefits of 2D Gaussians. We conduct extensive experiments on various datasets, and the results demonstrate the superiority and generalization of our method, which achieves SOTA performance. The code is available at https://github.com/murcherful/GauPCRender}{https://github.com/murcherful/GauPCRender.
Comparison of Clustering Algorithms for Statistical Features of Vibration Data Sets
Vibration-based condition monitoring systems are receiving increasing attention due to their ability to accurately identify different conditions by capturing dynamic features over a broad frequency range. However, there is little research on clustering approaches in vibration data and the resulting solutions are often optimized for a single data set. In this work, we present an extensive comparison of the clustering algorithms K-means clustering, OPTICS, and Gaussian mixture model clustering (GMM) applied to statistical features extracted from the time and frequency domains of vibration data sets. Furthermore, we investigate the influence of feature combinations, feature selection using principal component analysis (PCA), and the specified number of clusters on the performance of the clustering algorithms. We conducted this comparison in terms of a grid search using three different benchmark data sets. Our work showed that averaging (Mean, Median) and variance-based features (Standard Deviation, Interquartile Range) performed significantly better than shape-based features (Skewness, Kurtosis). In addition, K-means outperformed GMM slightly for these data sets, whereas OPTICS performed significantly worse. We were also able to show that feature combinations as well as PCA feature selection did not result in any significant performance improvements. With an increase in the specified number of clusters, clustering algorithms performed better, although there were some specific algorithmic restrictions.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Martingale Posterior Neural Processes
A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.
Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions
We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small L^2 error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in epsilon-accuracy can be done in tilde Oleft(d log (1/delta){epsilon}right) steps: 1) the variance-delta Gaussian perturbation of any data distribution; 2) data distributions with 1/delta-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.
Linear statistics for Coulomb gases: higher order cumulants
We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.
Optimized Minimal 4D Gaussian Splatting
4D Gaussian Splatting has emerged as a new paradigm for dynamic scene representation, enabling real-time rendering of scenes with complex motions. However, it faces a major challenge of storage overhead, as millions of Gaussians are required for high-fidelity reconstruction. While several studies have attempted to alleviate this memory burden, they still face limitations in compression ratio or visual quality. In this work, we present OMG4 (Optimized Minimal 4D Gaussian Splatting), a framework that constructs a compact set of salient Gaussians capable of faithfully representing 4D Gaussian models. Our method progressively prunes Gaussians in three stages: (1) Gaussian Sampling to identify primitives critical to reconstruction fidelity, (2) Gaussian Pruning to remove redundancies, and (3) Gaussian Merging to fuse primitives with similar characteristics. In addition, we integrate implicit appearance compression and generalize Sub-Vector Quantization (SVQ) to 4D representations, further reducing storage while preserving quality. Extensive experiments on standard benchmark datasets demonstrate that OMG4 significantly outperforms recent state-of-the-art methods, reducing model sizes by over 60% while maintaining reconstruction quality. These results position OMG4 as a significant step forward in compact 4D scene representation, opening new possibilities for a wide range of applications. Our source code is available at https://minshirley.github.io/OMG4/.
A Channel-Based Perspective on Conjugate Priors
A desired closure property in Bayesian probability is that an updated posterior distribution be in the same class of distributions --- say Gaussians --- as the prior distribution. When the updating takes place via a statistical model, one calls the class of prior distributions the `conjugate priors' of the model. This paper gives (1) an abstract formulation of this notion of conjugate prior, using channels, in a graphical language, (2) a simple abstract proof that such conjugate priors yield Bayesian inversions, and (3) a logical description of conjugate priors that highlights the required closure of the priors under updating. The theory is illustrated with several standard examples, also covering multiple updating.
Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators
A collection of robust Mahalanobis distances for multivariate outlier detection is proposed, based on the notion of shrinkage. Robust intensity and scaling factors are optimally estimated to define the shrinkage. Some properties are investigated, such as affine equivariance and breakdown value. The performance of the proposal is illustrated through the comparison to other techniques from the literature, in a simulation study and with a real dataset. The behavior when the underlying distribution is heavy-tailed or skewed, shows the appropriateness of the method when we deviate from the common assumption of normality. The resulting high correct detection rates and low false detection rates in the vast majority of cases, as well as the significantly smaller computation time shows the advantages of our proposal.
An OFDM Signal Identification Method for Wireless Communications Systems
Distinction of OFDM signals from single carrier signals is highly important for adaptive receiver algorithms and signal identification applications. OFDM signals exhibit Gaussian characteristics in time domain and fourth order cumulants of Gaussian distributed signals vanish in contrary to the cumulants of other signals. Thus fourth order cumulants can be utilized for OFDM signal identification. In this paper, first, formulations of the estimates of the fourth order cumulants for OFDM signals are provided. Then it is shown these estimates are affected significantly from the wireless channel impairments, frequency offset, phase offset and sampling mismatch. To overcome these problems, a general chi-square constant false alarm rate Gaussianity test which employs estimates of cumulants and their covariances is adapted to the specific case of wireless OFDM signals. Estimation of the covariance matrix of the fourth order cumulants are greatly simplified peculiar to the OFDM signals. A measurement setup is developed to analyze the performance of the identification method and for comparison purposes. A parametric measurement analysis is provided depending on modulation order, signal to noise ratio, number of symbols, and degree of freedom of the underlying test. The proposed method outperforms statistical tests which are based on fixed thresholds or empirical values, while a priori information requirement and complexity of the proposed method are lower than the coherent identification techniques.
