1 Swiss-Judgment-Prediction: A Multilingual Legal Judgment Prediction Benchmark In many jurisdictions, the excessive workload of courts leads to high delays. Suitable predictive AI models can assist legal professionals in their work, and thus enhance and speed up the process. So far, Legal Judgment Prediction (LJP) datasets have been released in English, French, and Chinese. We publicly release a multilingual (German, French, and Italian), diachronic (2000-2020) corpus of 85K cases from the Federal Supreme Court of Switzerland (FSCS). We evaluate state-of-the-art BERT-based methods including two variants of BERT that overcome the BERT input (text) length limitation (up to 512 tokens). Hierarchical BERT has the best performance (approx. 68-70% Macro-F1-Score in German and French). Furthermore, we study how several factors (canton of origin, year of publication, text length, legal area) affect performance. We release both the benchmark dataset and our code to accelerate future research and ensure reproducibility. 3 authors · Oct 2, 2021
- Neural Legal Judgment Prediction in English Legal judgment prediction is the task of automatically predicting the outcome of a court case, given a text describing the case's facts. Previous work on using neural models for this task has focused on Chinese; only feature-based models (e.g., using bags of words and topics) have been considered in English. We release a new English legal judgment prediction dataset, containing cases from the European Court of Human Rights. We evaluate a broad variety of neural models on the new dataset, establishing strong baselines that surpass previous feature-based models in three tasks: (1) binary violation classification; (2) multi-label classification; (3) case importance prediction. We also explore if models are biased towards demographic information via data anonymization. As a side-product, we propose a hierarchical version of BERT, which bypasses BERT's length limitation. 3 authors · Jun 5, 2019
- Pretrained Language Models for Sequential Sentence Classification As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts. 5 authors · Sep 9, 2019
- Simulating User Satisfaction for the Evaluation of Task-oriented Dialogue Systems Evaluation is crucial in the development process of task-oriented dialogue systems. As an evaluation method, user simulation allows us to tackle issues such as scalability and cost-efficiency, making it a viable choice for large-scale automatic evaluation. To help build a human-like user simulator that can measure the quality of a dialogue, we propose the following task: simulating user satisfaction for the evaluation of task-oriented dialogue systems. The purpose of the task is to increase the evaluation power of user simulations and to make the simulation more human-like. To overcome a lack of annotated data, we propose a user satisfaction annotation dataset, USS, that includes 6,800 dialogues sampled from multiple domains, spanning real-world e-commerce dialogues, task-oriented dialogues constructed through Wizard-of-Oz experiments, and movie recommendation dialogues. All user utterances in those dialogues, as well as the dialogues themselves, have been labeled based on a 5-level satisfaction scale. We also share three baseline methods for user satisfaction prediction and action prediction tasks. Experiments conducted on the USS dataset suggest that distributed representations outperform feature-based methods. A model based on hierarchical GRUs achieves the best performance in in-domain user satisfaction prediction, while a BERT-based model has better cross-domain generalization ability. 7 authors · May 8, 2021
1 Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling We identify and overcome two key obstacles in extending the success of BERT-style pre-training, or the masked image modeling, to convolutional networks (convnets): (i) convolution operation cannot handle irregular, random-masked input images; (ii) the single-scale nature of BERT pre-training is inconsistent with convnet's hierarchical structure. For (i), we treat unmasked pixels as sparse voxels of 3D point clouds and use sparse convolution to encode. This is the first use of sparse convolution for 2D masked modeling. For (ii), we develop a hierarchical decoder to reconstruct images from multi-scale encoded features. Our method called Sparse masKed modeling (SparK) is general: it can be used directly on any convolutional model without backbone modifications. We validate it on both classical (ResNet) and modern (ConvNeXt) models: on three downstream tasks, it surpasses both state-of-the-art contrastive learning and transformer-based masked modeling by similarly large margins (around +1.0%). Improvements on object detection and instance segmentation are more substantial (up to +3.5%), verifying the strong transferability of features learned. We also find its favorable scaling behavior by observing more gains on larger models. All this evidence reveals a promising future of generative pre-training on convnets. Codes and models are released at https://github.com/keyu-tian/SparK. 6 authors · Jan 9, 2023
- Increasing The Performance of Cognitively Inspired Data-Efficient Language Models via Implicit Structure Building In this paper, we describe our submission to the BabyLM Challenge 2023 shared task on data-efficient language model (LM) pretraining (Warstadt et al., 2023). We train transformer-based masked language models that incorporate unsupervised predictions about hierarchical sentence structure into the model architecture. Concretely, we use the Structformer architecture (Shen et al., 2021) and variants thereof. StructFormer models have been shown to perform well on unsupervised syntactic induction based on limited pretraining data, and to yield performance improvements over a vanilla transformer architecture (Shen et al., 2021). Evaluation of our models on 39 tasks provided by the BabyLM challenge shows promising improvements of models that integrate a hierarchical bias into the architecture at some particular tasks, even though they fail to consistently outperform the RoBERTa baseline model provided by the shared task organizers on all tasks. 3 authors · Oct 31, 2023
- Ultra-High Dimensional Sparse Representations with Binarization for Efficient Text Retrieval The semantic matching capabilities of neural information retrieval can ameliorate synonymy and polysemy problems of symbolic approaches. However, neural models' dense representations are more suitable for re-ranking, due to their inefficiency. Sparse representations, either in symbolic or latent form, are more efficient with an inverted index. Taking the merits of the sparse and dense representations, we propose an ultra-high dimensional (UHD) representation scheme equipped with directly controllable sparsity. UHD's large capacity and minimal noise and interference among the dimensions allow for binarized representations, which are highly efficient for storage and search. Also proposed is a bucketing method, where the embeddings from multiple layers of BERT are selected/merged to represent diverse linguistic aspects. We test our models with MS MARCO and TREC CAR, showing that our models outperforms other sparse models 7 authors · Apr 14, 2021
- DocBERT: BERT for Document Classification We present, to our knowledge, the first application of BERT to document classification. A few characteristics of the task might lead one to think that BERT is not the most appropriate model: syntactic structures matter less for content categories, documents can often be longer than typical BERT input, and documents often have multiple labels. Nevertheless, we show that a straightforward classification model using BERT is able to achieve the state of the art across four popular datasets. To address the computational expense associated with BERT inference, we distill knowledge from BERT-large to small bidirectional LSTMs, reaching BERT-base parity on multiple datasets using 30x fewer parameters. The primary contribution of our paper is improved baselines that can provide the foundation for future work. 4 authors · Apr 17, 2019
- Hierarchical Transformers for Long Document Classification BERT, which stands for Bidirectional Encoder Representations from Transformers, is a recently introduced language representation model based upon the transfer learning paradigm. We extend its fine-tuning procedure to address one of its major limitations - applicability to inputs longer than a few hundred words, such as transcripts of human call conversations. Our method is conceptually simple. We segment the input into smaller chunks and feed each of them into the base model. Then, we propagate each output through a single recurrent layer, or another transformer, followed by a softmax activation. We obtain the final classification decision after the last segment has been consumed. We show that both BERT extensions are quick to fine-tune and converge after as little as 1 epoch of training on a small, domain-specific data set. We successfully apply them in three different tasks involving customer call satisfaction prediction and topic classification, and obtain a significant improvement over the baseline models in two of them. 5 authors · Oct 23, 2019
11 Mogo: RQ Hierarchical Causal Transformer for High-Quality 3D Human Motion Generation In the field of text-to-motion generation, Bert-type Masked Models (MoMask, MMM) currently produce higher-quality outputs compared to GPT-type autoregressive models (T2M-GPT). However, these Bert-type models often lack the streaming output capability required for applications in video game and multimedia environments, a feature inherent to GPT-type models. Additionally, they demonstrate weaker performance in out-of-distribution generation. To surpass the quality of BERT-type models while leveraging a GPT-type structure, without adding extra refinement models that complicate scaling data, we propose a novel architecture, Mogo (Motion Only Generate Once), which generates high-quality lifelike 3D human motions by training a single transformer model. Mogo consists of only two main components: 1) RVQ-VAE, a hierarchical residual vector quantization variational autoencoder, which discretizes continuous motion sequences with high precision; 2) Hierarchical Causal Transformer, responsible for generating the base motion sequences in an autoregressive manner while simultaneously inferring residuals across different layers. Experimental results demonstrate that Mogo can generate continuous and cyclic motion sequences up to 260 frames (13 seconds), surpassing the 196 frames (10 seconds) length limitation of existing datasets like HumanML3D. On the HumanML3D test set, Mogo achieves a FID score of 0.079, outperforming both the GPT-type model T2M-GPT (FID = 0.116), AttT2M (FID = 0.112) and the BERT-type model MMM (FID = 0.080). Furthermore, our model achieves the best quantitative performance in out-of-distribution generation. 1 authors · Dec 5, 2024 2
- Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical Encoder for Long-Form Document Matching Many natural language processing and information retrieval problems can be formalized as the task of semantic matching. Existing work in this area has been largely focused on matching between short texts (e.g., question answering), or between a short and a long text (e.g., ad-hoc retrieval). Semantic matching between long-form documents, which has many important applications like news recommendation, related article recommendation and document clustering, is relatively less explored and needs more research effort. In recent years, self-attention based models like Transformers and BERT have achieved state-of-the-art performance in the task of text matching. These models, however, are still limited to short text like a few sentences or one paragraph due to the quadratic computational complexity of self-attention with respect to input text length. In this paper, we address the issue by proposing the Siamese Multi-depth Transformer-based Hierarchical (SMITH) Encoder for long-form document matching. Our model contains several innovations to adapt self-attention models for longer text input. In order to better capture sentence level semantic relations within a document, we pre-train the model with a novel masked sentence block language modeling task in addition to the masked word language modeling task used by BERT. Our experimental results on several benchmark datasets for long-form document matching show that our proposed SMITH model outperforms the previous state-of-the-art models including hierarchical attention, multi-depth attention-based hierarchical recurrent neural network, and BERT. Comparing to BERT based baselines, our model is able to increase maximum input text length from 512 to 2048. We will open source a Wikipedia based benchmark dataset, code and a pre-trained checkpoint to accelerate future research on long-form document matching. 5 authors · Apr 26, 2020
- TopoLedgerBERT: Topological Learning of Ledger Description Embeddings using Siamese BERT-Networks This paper addresses a long-standing problem in the field of accounting: mapping company-specific ledger accounts to a standardized chart of accounts. We propose a novel solution, TopoLedgerBERT, a unique sentence embedding method devised specifically for ledger account mapping. This model integrates hierarchical information from the charts of accounts into the sentence embedding process, aiming to accurately capture both the semantic similarity and the hierarchical structure of the ledger accounts. In addition, we introduce a data augmentation strategy that enriches the training data and, as a result, increases the performance of our proposed model. Compared to benchmark methods, TopoLedgerBERT demonstrates superior performance in terms of accuracy and mean reciprocal rank. 3 authors · Apr 19, 2024
- K-12BERT: BERT for K-12 education Online education platforms are powered by various NLP pipelines, which utilize models like BERT to aid in content curation. Since the inception of the pre-trained language models like BERT, there have also been many efforts toward adapting these pre-trained models to specific domains. However, there has not been a model specifically adapted for the education domain (particularly K-12) across subjects to the best of our knowledge. In this work, we propose to train a language model on a corpus of data curated by us across multiple subjects from various sources for K-12 education. We also evaluate our model, K12-BERT, on downstream tasks like hierarchical taxonomy tagging. 6 authors · May 24, 2022
- Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection Generating explanations for neural networks has become crucial for their applications in real-world with respect to reliability and trustworthiness. In natural language processing, existing methods usually provide important features which are words or phrases selected from an input text as an explanation, but ignore the interactions between them. It poses challenges for humans to interpret an explanation and connect it to model prediction. In this work, we build hierarchical explanations by detecting feature interactions. Such explanations visualize how words and phrases are combined at different levels of the hierarchy, which can help users understand the decision-making of black-box models. The proposed method is evaluated with three neural text classifiers (LSTM, CNN, and BERT) on two benchmark datasets, via both automatic and human evaluations. Experiments show the effectiveness of the proposed method in providing explanations that are both faithful to models and interpretable to humans. 3 authors · Apr 4, 2020
- DM$^2$S$^2$: Deep Multi-Modal Sequence Sets with Hierarchical Modality Attention There is increasing interest in the use of multimodal data in various web applications, such as digital advertising and e-commerce. Typical methods for extracting important information from multimodal data rely on a mid-fusion architecture that combines the feature representations from multiple encoders. However, as the number of modalities increases, several potential problems with the mid-fusion model structure arise, such as an increase in the dimensionality of the concatenated multimodal features and missing modalities. To address these problems, we propose a new concept that considers multimodal inputs as a set of sequences, namely, deep multimodal sequence sets (DM^2S^2). Our set-aware concept consists of three components that capture the relationships among multiple modalities: (a) a BERT-based encoder to handle the inter- and intra-order of elements in the sequences, (b) intra-modality residual attention (IntraMRA) to capture the importance of the elements in a modality, and (c) inter-modality residual attention (InterMRA) to enhance the importance of elements with modality-level granularity further. Our concept exhibits performance that is comparable to or better than the previous set-aware models. Furthermore, we demonstrate that the visualization of the learned InterMRA and IntraMRA weights can provide an interpretation of the prediction results. 4 authors · Sep 7, 2022
- Enhancing LLM's Cognition via Structurization When reading long-form text, human cognition is complex and structurized. While large language models (LLMs) process input contexts through a causal and sequential perspective, this approach can potentially limit their ability to handle intricate and complex inputs effectively. To enhance LLM's cognition capability, this paper presents a novel concept of context structurization. Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements. By doing so, LLMs can better grasp intricate and extended contexts through precise attention and information-seeking along the organized structures. Extensive evaluations are conducted across various model architectures and sizes (including a series of auto-regressive LLMs as well as BERT-like masking models) on a diverse set of NLP tasks (e.g., context-based question-answering, exhaustive hallucination evaluation, and passage-level dense retrieval). Empirical results show consistent and significant performance gains afforded by a single-round structurization. In particular, we boost the open-sourced LLaMA2-70B model to achieve comparable performance against GPT-3.5-Turbo as the hallucination evaluator. Besides, we show the feasibility of distilling advanced LLMs' language processing abilities to a smaller yet effective StruXGPT-7B to execute structurization, addressing the practicality of our approach. Code is available at https://github.com/alibaba/struxgpt. 9 authors · Jul 23, 2024
- Passage Re-ranking with BERT Recently, neural models pretrained on a language modeling task, such as ELMo (Peters et al., 2017), OpenAI GPT (Radford et al., 2018), and BERT (Devlin et al., 2018), have achieved impressive results on various natural language processing tasks such as question-answering and natural language inference. In this paper, we describe a simple re-implementation of BERT for query-based passage re-ranking. Our system is the state of the art on the TREC-CAR dataset and the top entry in the leaderboard of the MS MARCO passage retrieval task, outperforming the previous state of the art by 27% (relative) in MRR@10. The code to reproduce our results is available at https://github.com/nyu-dl/dl4marco-bert 2 authors · Jan 13, 2019
- HHH: An Online Medical Chatbot System based on Knowledge Graph and Hierarchical Bi-Directional Attention This paper proposes a chatbot framework that adopts a hybrid model which consists of a knowledge graph and a text similarity model. Based on this chatbot framework, we build HHH, an online question-and-answer (QA) Healthcare Helper system for answering complex medical questions. HHH maintains a knowledge graph constructed from medical data collected from the Internet. HHH also implements a novel text representation and similarity deep learning model, Hierarchical BiLSTM Attention Model (HBAM), to find the most similar question from a large QA dataset. We compare HBAM with other state-of-the-art language models such as bidirectional encoder representation from transformers (BERT) and Manhattan LSTM Model (MaLSTM). We train and test the models with a subset of the Quora duplicate questions dataset in the medical area. The experimental results show that our model is able to achieve a superior performance than these existing methods. 3 authors · Feb 8, 2020
1 Global and Local Entailment Learning for Natural World Imagery Learning the hierarchical structure of data in vision-language models is a significant challenge. Previous works have attempted to address this challenge by employing entailment learning. However, these approaches fail to model the transitive nature of entailment explicitly, which establishes the relationship between order and semantics within a representation space. In this work, we introduce Radial Cross-Modal Embeddings (RCME), a framework that enables the explicit modeling of transitivity-enforced entailment. Our proposed framework optimizes for the partial order of concepts within vision-language models. By leveraging our framework, we develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life. Our experiments on hierarchical species classification and hierarchical retrieval tasks demonstrate the enhanced performance of our models compared to the existing state-of-the-art models. Our code and models are open-sourced at https://vishu26.github.io/RCME/index.html. 5 authors · Jun 26 1
- Multi-Stage Document Ranking with BERT The advent of deep neural networks pre-trained via language modeling tasks has spurred a number of successful applications in natural language processing. This work explores one such popular model, BERT, in the context of document ranking. We propose two variants, called monoBERT and duoBERT, that formulate the ranking problem as pointwise and pairwise classification, respectively. These two models are arranged in a multi-stage ranking architecture to form an end-to-end search system. One major advantage of this design is the ability to trade off quality against latency by controlling the admission of candidates into each pipeline stage, and by doing so, we are able to find operating points that offer a good balance between these two competing metrics. On two large-scale datasets, MS MARCO and TREC CAR, experiments show that our model produces results that are either at or comparable to the state of the art. Ablation studies show the contributions of each component and characterize the latency/quality tradeoff space. 4 authors · Oct 31, 2019
- Language Models as Hierarchy Encoders Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by re-training on hyperbolic cluster and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained and fine-tuned LMs, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform both pre-trained and fine-tuned LMs in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders. 4 authors · Jan 20, 2024
- Hierarchical Neural Networks for Sequential Sentence Classification in Medical Scientific Abstracts Prevalent models based on artificial neural network (ANN) for sentence classification often classify sentences in isolation without considering the context in which sentences appear. This hampers the traditional sentence classification approaches to the problem of sequential sentence classification, where structured prediction is needed for better overall classification performance. In this work, we present a hierarchical sequential labeling network to make use of the contextual information within surrounding sentences to help classify the current sentence. Our model outperforms the state-of-the-art results by 2%-3% on two benchmarking datasets for sequential sentence classification in medical scientific abstracts. 2 authors · Aug 19, 2018
- LEGAL-BERT: The Muppets straight out of Law School BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications. 5 authors · Oct 6, 2020
1 From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model's robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift. 5 authors · May 23, 2023
- Read, Highlight and Summarize: A Hierarchical Neural Semantic Encoder-based Approach Traditional sequence-to-sequence (seq2seq) models and other variations of the attention-mechanism such as hierarchical attention have been applied to the text summarization problem. Though there is a hierarchy in the way humans use language by forming paragraphs from sentences and sentences from words, hierarchical models have usually not worked that much better than their traditional seq2seq counterparts. This effect is mainly because either the hierarchical attention mechanisms are too sparse using hard attention or noisy using soft attention. In this paper, we propose a method based on extracting the highlights of a document; a key concept that is conveyed in a few sentences. In a typical text summarization dataset consisting of documents that are 800 tokens in length (average), capturing long-term dependencies is very important, e.g., the last sentence can be grouped with the first sentence of a document to form a summary. LSTMs (Long Short-Term Memory) proved useful for machine translation. However, they often fail to capture long-term dependencies while modeling long sequences. To address these issues, we have adapted Neural Semantic Encoders (NSE) to text summarization, a class of memory-augmented neural networks by improving its functionalities and proposed a novel hierarchical NSE that outperforms similar previous models significantly. The quality of summarization was improved by augmenting linguistic factors, namely lemma, and Part-of-Speech (PoS) tags, to each word in the dataset for improved vocabulary coverage and generalization. The hierarchical NSE model on factored dataset outperformed the state-of-the-art by nearly 4 ROUGE points. We further designed and used the first GPU-based self-critical Reinforcement Learning model. 3 authors · Oct 7, 2019
- Simple BERT Models for Relation Extraction and Semantic Role Labeling We present simple BERT-based models for relation extraction and semantic role labeling. In recent years, state-of-the-art performance has been achieved using neural models by incorporating lexical and syntactic features such as part-of-speech tags and dependency trees. In this paper, extensive experiments on datasets for these two tasks show that without using any external features, a simple BERT-based model can achieve state-of-the-art performance. To our knowledge, we are the first to successfully apply BERT in this manner. Our models provide strong baselines for future research. 2 authors · Apr 10, 2019
- Grokking of Hierarchical Structure in Vanilla Transformers For humans, language production and comprehension is sensitive to the hierarchical structure of sentences. In natural language processing, past work has questioned how effectively neural sequence models like transformers capture this hierarchical structure when generalizing to structurally novel inputs. We show that transformer language models can learn to generalize hierarchically after training for extremely long periods -- far beyond the point when in-domain accuracy has saturated. We call this phenomenon structural grokking. On multiple datasets, structural grokking exhibits inverted U-shaped scaling in model depth: intermediate-depth models generalize better than both very deep and very shallow transformers. When analyzing the relationship between model-internal properties and grokking, we find that optimal depth for grokking can be identified using the tree-structuredness metric of murty2023projections. Overall, our work provides strong evidence that, with extended training, vanilla transformers discover and use hierarchical structure. 4 authors · May 30, 2023
- CoRT: Complementary Rankings from Transformers Many recent approaches towards neural information retrieval mitigate their computational costs by using a multi-stage ranking pipeline. In the first stage, a number of potentially relevant candidates are retrieved using an efficient retrieval model such as BM25. Although BM25 has proven decent performance as a first-stage ranker, it tends to miss relevant passages. In this context we propose CoRT, a simple neural first-stage ranking model that leverages contextual representations from pretrained language models such as BERT to complement term-based ranking functions while causing no significant delay at query time. Using the MS MARCO dataset, we show that CoRT significantly increases the candidate recall by complementing BM25 with missing candidates. Consequently, we find subsequent re-rankers achieve superior results with less candidates. We further demonstrate that passage retrieval using CoRT can be realized with surprisingly low latencies. 2 authors · Oct 20, 2020
2 Hierarchical Autoregressive Transformers: Combining Byte-~and Word-Level Processing for Robust, Adaptable Language Models Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains. 4 authors · Jan 17 3
- Revisiting Hierarchical Text Classification: Inference and Metrics Hierarchical text classification (HTC) is the task of assigning labels to a text within a structured space organized as a hierarchy. Recent works treat HTC as a conventional multilabel classification problem, therefore evaluating it as such. We instead propose to evaluate models based on specifically designed hierarchical metrics and we demonstrate the intricacy of metric choice and prediction inference method. We introduce a new challenging dataset and we evaluate fairly, recent sophisticated models, comparing them with a range of simple but strong baselines, including a new theoretically motivated loss. Finally, we show that those baselines are very often competitive with the latest models. This highlights the importance of carefully considering the evaluation methodology when proposing new methods for HTC. Code implementation and dataset are available at https://github.com/RomanPlaud/revisitingHTC. 4 authors · Oct 2, 2024
- UIUC_BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP Contributions We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences in a paper, we used a BERT-based classifier with positional features (Subtask 1). A BERT-CRF model was used to recognize and characterize relevant phrases in contribution sentences (Subtask 2). We categorized the triples into several types based on whether and how their elements were expressed in text, and addressed each type using separate BERT-based classifiers as well as rules (Subtask 3). Our system was officially ranked second in Phase 1 evaluation and first in both parts of Phase 2 evaluation. After fixing a submission error in Pharse 1, our approach yields the best results overall. In this paper, in addition to a system description, we also provide further analysis of our results, highlighting its strengths and limitations. We make our code publicly available at https://github.com/Liu-Hy/nlp-contrib-graph. 3 authors · May 12, 2021
- HDT: Hierarchical Document Transformer In this paper, we propose the Hierarchical Document Transformer (HDT), a novel sparse Transformer architecture tailored for structured hierarchical documents. Such documents are extremely important in numerous domains, including science, law or medicine. However, most existing solutions are inefficient and fail to make use of the structure inherent to documents. HDT exploits document structure by introducing auxiliary anchor tokens and redesigning the attention mechanism into a sparse multi-level hierarchy. This approach facilitates information exchange between tokens at different levels while maintaining sparsity, thereby enhancing computational and memory efficiency while exploiting the document structure as an inductive bias. We address the technical challenge of implementing HDT's sample-dependent hierarchical attention pattern by developing a novel sparse attention kernel that considers the hierarchical structure of documents. As demonstrated by our experiments, utilizing structural information present in documents leads to faster convergence, higher sample efficiency and better performance on downstream tasks. 5 authors · Jul 11, 2024
- Convolutional Neural Network Architectures for Matching Natural Language Sentences Semantic matching is of central importance to many natural language tasks bordes2014semantic,RetrievalQA. A successful matching algorithm needs to adequately model the internal structures of language objects and the interaction between them. As a step toward this goal, we propose convolutional neural network models for matching two sentences, by adapting the convolutional strategy in vision and speech. The proposed models not only nicely represent the hierarchical structures of sentences with their layer-by-layer composition and pooling, but also capture the rich matching patterns at different levels. Our models are rather generic, requiring no prior knowledge on language, and can hence be applied to matching tasks of different nature and in different languages. The empirical study on a variety of matching tasks demonstrates the efficacy of the proposed model on a variety of matching tasks and its superiority to competitor models. 4 authors · Mar 11, 2015
1 Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area. 7 authors · Feb 18, 2024
- CEDR: Contextualized Embeddings for Document Ranking Although considerable attention has been given to neural ranking architectures recently, far less attention has been paid to the term representations that are used as input to these models. In this work, we investigate how two pretrained contextualized language models (ELMo and BERT) can be utilized for ad-hoc document ranking. Through experiments on TREC benchmarks, we find that several existing neural ranking architectures can benefit from the additional context provided by contextualized language models. Furthermore, we propose a joint approach that incorporates BERT's classification vector into existing neural models and show that it outperforms state-of-the-art ad-hoc ranking baselines. We call this joint approach CEDR (Contextualized Embeddings for Document Ranking). We also address practical challenges in using these models for ranking, including the maximum input length imposed by BERT and runtime performance impacts of contextualized language models. 4 authors · Apr 15, 2019
- DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps In this paper, we present DendroMap, a novel approach to interactively exploring large-scale image datasets for machine learning (ML). ML practitioners often explore image datasets by generating a grid of images or projecting high-dimensional representations of images into 2-D using dimensionality reduction techniques (e.g., t-SNE). However, neither approach effectively scales to large datasets because images are ineffectively organized and interactions are insufficiently supported. To address these challenges, we develop DendroMap by adapting Treemaps, a well-known visualization technique. DendroMap effectively organizes images by extracting hierarchical cluster structures from high-dimensional representations of images. It enables users to make sense of the overall distributions of datasets and interactively zoom into specific areas of interests at multiple levels of abstraction. Our case studies with widely-used image datasets for deep learning demonstrate that users can discover insights about datasets and trained models by examining the diversity of images, identifying underperforming subgroups, and analyzing classification errors. We conducted a user study that evaluates the effectiveness of DendroMap in grouping and searching tasks by comparing it with a gridified version of t-SNE and found that participants preferred DendroMap. DendroMap is available at https://div-lab.github.io/dendromap/. 7 authors · May 13, 2022
- SimpleClick: Interactive Image Segmentation with Simple Vision Transformers Click-based interactive image segmentation aims at extracting objects with a limited user clicking. A hierarchical backbone is the de-facto architecture for current methods. Recently, the plain, non-hierarchical Vision Transformer (ViT) has emerged as a competitive backbone for dense prediction tasks. This design allows the original ViT to be a foundation model that can be finetuned for downstream tasks without redesigning a hierarchical backbone for pretraining. Although this design is simple and has been proven effective, it has not yet been explored for interactive image segmentation. To fill this gap, we propose SimpleClick, the first interactive segmentation method that leverages a plain backbone. Based on the plain backbone, we introduce a symmetric patch embedding layer that encodes clicks into the backbone with minor modifications to the backbone itself. With the plain backbone pretrained as a masked autoencoder (MAE), SimpleClick achieves state-of-the-art performance. Remarkably, our method achieves 4.15 NoC@90 on SBD, improving 21.8% over the previous best result. Extensive evaluation on medical images demonstrates the generalizability of our method. We further develop an extremely tiny ViT backbone for SimpleClick and provide a detailed computational analysis, highlighting its suitability as a practical annotation tool. 4 authors · Oct 20, 2022 1
- ReVisionLLM: Recursive Vision-Language Model for Temporal Grounding in Hour-Long Videos Large language models (LLMs) excel at retrieving information from lengthy text, but their vision-language counterparts (VLMs) face difficulties with hour-long videos, especially for temporal grounding. Specifically, these VLMs are constrained by frame limitations, often losing essential temporal details needed for accurate event localization in extended video content. We propose ReVisionLLM, a recursive vision-language model designed to locate events in hour-long videos. Inspired by human search strategies, our model initially targets broad segments of interest, progressively revising its focus to pinpoint exact temporal boundaries. Our model can seamlessly handle videos of vastly different lengths, from minutes to hours. We also introduce a hierarchical training strategy that starts with short clips to capture distinct events and progressively extends to longer videos. To our knowledge, ReVisionLLM is the first VLM capable of temporal grounding in hour-long videos, outperforming previous state-of-the-art methods across multiple datasets by a significant margin (+2.6% [email protected] on MAD). The code is available at https://github.com/Tanveer81/ReVisionLLM. 5 authors · Nov 22, 2024
1 Understanding the Behaviors of BERT in Ranking This paper studies the performances and behaviors of BERT in ranking tasks. We explore several different ways to leverage the pre-trained BERT and fine-tune it on two ranking tasks: MS MARCO passage reranking and TREC Web Track ad hoc document ranking. Experimental results on MS MARCO demonstrate the strong effectiveness of BERT in question-answering focused passage ranking tasks, as well as the fact that BERT is a strong interaction-based seq2seq matching model. Experimental results on TREC show the gaps between the BERT pre-trained on surrounding contexts and the needs of ad hoc document ranking. Analyses illustrate how BERT allocates its attentions between query-document tokens in its Transformer layers, how it prefers semantic matches between paraphrase tokens, and how that differs with the soft match patterns learned by a click-trained neural ranker. 4 authors · Apr 16, 2019
26 Video ReCap: Recursive Captioning of Hour-Long Videos Most video captioning models are designed to process short video clips of few seconds and output text describing low-level visual concepts (e.g., objects, scenes, atomic actions). However, most real-world videos last for minutes or hours and have a complex hierarchical structure spanning different temporal granularities. We propose Video ReCap, a recursive video captioning model that can process video inputs of dramatically different lengths (from 1 second to 2 hours) and output video captions at multiple hierarchy levels. The recursive video-language architecture exploits the synergy between different video hierarchies and can process hour-long videos efficiently. We utilize a curriculum learning training scheme to learn the hierarchical structure of videos, starting from clip-level captions describing atomic actions, then focusing on segment-level descriptions, and concluding with generating summaries for hour-long videos. Furthermore, we introduce Ego4D-HCap dataset by augmenting Ego4D with 8,267 manually collected long-range video summaries. Our recursive model can flexibly generate captions at different hierarchy levels while also being useful for other complex video understanding tasks, such as VideoQA on EgoSchema. Data, code, and models are available at: https://sites.google.com/view/vidrecap 6 authors · Feb 20, 2024 5
- U-Shape Mamba: State Space Model for faster diffusion Diffusion models have become the most popular approach for high-quality image generation, but their high computational cost still remains a significant challenge. To address this problem, we propose U-Shape Mamba (USM), a novel diffusion model that leverages Mamba-based layers within a U-Net-like hierarchical structure. By progressively reducing sequence length in the encoder and restoring it in the decoder through Mamba blocks, USM significantly lowers computational overhead while maintaining strong generative capabilities. Experimental results against Zigma, which is currently the most efficient Mamba-based diffusion model, demonstrate that USM achieves one-third the GFlops, requires less memory and is faster, while outperforming Zigma in image quality. Frechet Inception Distance (FID) is improved by 15.3, 0.84 and 2.7 points on AFHQ, CelebAHQ and COCO datasets, respectively. These findings highlight USM as a highly efficient and scalable solution for diffusion-based generative models, making high-quality image synthesis more accessible to the research community while reducing computational costs. 6 authors · Apr 18
- Sentence Embeddings in NLI with Iterative Refinement Encoders Sentence-level representations are necessary for various NLP tasks. Recurrent neural networks have proven to be very effective in learning distributed representations and can be trained efficiently on natural language inference tasks. We build on top of one such model and propose a hierarchy of BiLSTM and max pooling layers that implements an iterative refinement strategy and yields state of the art results on the SciTail dataset as well as strong results for SNLI and MultiNLI. We can show that the sentence embeddings learned in this way can be utilized in a wide variety of transfer learning tasks, outperforming InferSent on 7 out of 10 and SkipThought on 8 out of 9 SentEval sentence embedding evaluation tasks. Furthermore, our model beats the InferSent model in 8 out of 10 recently published SentEval probing tasks designed to evaluate sentence embeddings' ability to capture some of the important linguistic properties of sentences. 3 authors · Aug 27, 2018
- BERMo: What can BERT learn from ELMo? We propose BERMo, an architectural modification to BERT, which makes predictions based on a hierarchy of surface, syntactic and semantic language features. We use linear combination scheme proposed in Embeddings from Language Models (ELMo) to combine the scaled internal representations from different network depths. Our approach has two-fold benefits: (1) improved gradient flow for the downstream task as every layer has a direct connection to the gradients of the loss function and (2) increased representative power as the model no longer needs to copy the features learned in the shallower layer which are necessary for the downstream task. Further, our model has a negligible parameter overhead as there is a single scalar parameter associated with each layer in the network. Experiments on the probing task from SentEval dataset show that our model performs up to 4.65% better in accuracy than the baseline with an average improvement of 2.67% on the semantic tasks. When subject to compression techniques, we find that our model enables stable pruning for compressing small datasets like SST-2, where the BERT model commonly diverges. We observe that our approach converges 1.67times and 1.15times faster than the baseline on MNLI and QQP tasks from GLUE dataset. Moreover, our results show that our approach can obtain better parameter efficiency for penalty based pruning approaches on QQP task. 2 authors · Oct 18, 2021
- Domain-Hierarchy Adaptation via Chain of Iterative Reasoning for Few-shot Hierarchical Text Classification Recently, various pre-trained language models (PLMs) have been proposed to prove their impressive performances on a wide range of few-shot tasks. However, limited by the unstructured prior knowledge in PLMs, it is difficult to maintain consistent performance on complex structured scenarios, such as hierarchical text classification (HTC), especially when the downstream data is extremely scarce. The main challenge is how to transfer the unstructured semantic space in PLMs to the downstream domain hierarchy. Unlike previous work on HTC which directly performs multi-label classification or uses graph neural network (GNN) to inject label hierarchy, in this work, we study the HTC problem under a few-shot setting to adapt knowledge in PLMs from an unstructured manner to the downstream hierarchy. Technically, we design a simple yet effective method named Hierarchical Iterative Conditional Random Field (HierICRF) to search the most domain-challenging directions and exquisitely crafts domain-hierarchy adaptation as a hierarchical iterative language modeling problem, and then it encourages the model to make hierarchical consistency self-correction during the inference, thereby achieving knowledge transfer with hierarchical consistency preservation. We perform HierICRF on various architectures, and extensive experiments on two popular HTC datasets demonstrate that prompt with HierICRF significantly boosts the few-shot HTC performance with an average Micro-F1 by 28.80% to 1.50% and Macro-F1 by 36.29% to 1.5% over the previous state-of-the-art (SOTA) baselines under few-shot settings, while remaining SOTA hierarchical consistency performance. 7 authors · Jul 11, 2024
- Simple Applications of BERT for Ad Hoc Document Retrieval Following recent successes in applying BERT to question answering, we explore simple applications to ad hoc document retrieval. This required confronting the challenge posed by documents that are typically longer than the length of input BERT was designed to handle. We address this issue by applying inference on sentences individually, and then aggregating sentence scores to produce document scores. Experiments on TREC microblog and newswire test collections show that our approach is simple yet effective, as we report the highest average precision on these datasets by neural approaches that we are aware of. 3 authors · Mar 26, 2019
- Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks Contextualized representations from a pre-trained language model are central to achieve a high performance on downstream NLP task. The pre-trained BERT and A Lite BERT (ALBERT) models can be fine-tuned to give state-ofthe-art results in sentence-pair regressions such as semantic textual similarity (STS) and natural language inference (NLI). Although BERT-based models yield the [CLS] token vector as a reasonable sentence embedding, the search for an optimal sentence embedding scheme remains an active research area in computational linguistics. This paper explores on sentence embedding models for BERT and ALBERT. In particular, we take a modified BERT network with siamese and triplet network structures called Sentence-BERT (SBERT) and replace BERT with ALBERT to create Sentence-ALBERT (SALBERT). We also experiment with an outer CNN sentence-embedding network for SBERT and SALBERT. We evaluate performances of all sentence-embedding models considered using the STS and NLI datasets. The empirical results indicate that our CNN architecture improves ALBERT models substantially more than BERT models for STS benchmark. Despite significantly fewer model parameters, ALBERT sentence embedding is highly competitive to BERT in downstream NLP evaluations. 4 authors · Jan 26, 2021
- Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers Historical languages present unique challenges to the NLP community, with one prominent hurdle being the limited resources available in their closed corpora. This work describes our submission to the constrained subtask of the SIGTYP 2024 shared task, focusing on PoS tagging, morphological tagging, and lemmatization for 13 historical languages. For PoS and morphological tagging we adapt a hierarchical tokenization method from Sun et al. (2023) and combine it with the advantages of the DeBERTa-V3 architecture, enabling our models to efficiently learn from every character in the training data. We also demonstrate the effectiveness of character-level T5 models on the lemmatization task. Pre-trained from scratch with limited data, our models achieved first place in the constrained subtask, nearly reaching the performance levels of the unconstrained task's winner. Our code is available at https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers 2 authors · May 30, 2024
23 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement). 4 authors · Oct 10, 2018 2
- Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification Due to the complex label hierarchy and intensive labeling cost in practice, the hierarchical text classification (HTC) suffers a poor performance especially when low-resource or few-shot settings are considered. Recently, there is a growing trend of applying prompts on pre-trained language models (PLMs), which has exhibited effectiveness in the few-shot flat text classification tasks. However, limited work has studied the paradigm of prompt-based learning in the HTC problem when the training data is extremely scarce. In this work, we define a path-based few-shot setting and establish a strict path-based evaluation metric to further explore few-shot HTC tasks. To address the issue, we propose the hierarchical verbalizer ("HierVerb"), a multi-verbalizer framework treating HTC as a single- or multi-label classification problem at multiple layers and learning vectors as verbalizers constrained by hierarchical structure and hierarchical contrastive learning. In this manner, HierVerb fuses label hierarchy knowledge into verbalizers and remarkably outperforms those who inject hierarchy through graph encoders, maximizing the benefits of PLMs. Extensive experiments on three popular HTC datasets under the few-shot settings demonstrate that prompt with HierVerb significantly boosts the HTC performance, meanwhile indicating an elegant way to bridge the gap between the large pre-trained model and downstream hierarchical classification tasks. Our code and few-shot dataset are publicly available at https://github.com/1KE-JI/HierVerb. 4 authors · May 26, 2023
8 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art performance on sentence-pair regression tasks like semantic textual similarity (STS). However, it requires that both sentences are fed into the network, which causes a massive computational overhead: Finding the most similar pair in a collection of 10,000 sentences requires about 50 million inference computations (~65 hours) with BERT. The construction of BERT makes it unsuitable for semantic similarity search as well as for unsupervised tasks like clustering. In this publication, we present Sentence-BERT (SBERT), a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. This reduces the effort for finding the most similar pair from 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while maintaining the accuracy from BERT. We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning tasks, where it outperforms other state-of-the-art sentence embeddings methods. 2 authors · Aug 27, 2019
- Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations Prior work on pretrained sentence embeddings and benchmarks focus on the capabilities of stand-alone sentences. We propose DiscoEval, a test suite of tasks to evaluate whether sentence representations include broader context information. We also propose a variety of training objectives that makes use of natural annotations from Wikipedia to build sentence encoders capable of modeling discourse. We benchmark sentence encoders pretrained with our proposed training objectives, as well as other popular pretrained sentence encoders on DiscoEval and other sentence evaluation tasks. Empirically, we show that these training objectives help to encode different aspects of information in document structures. Moreover, BERT and ELMo demonstrate strong performances over DiscoEval with individual hidden layers showing different characteristics. 3 authors · Aug 31, 2019
- Learning Trajectory-Word Alignments for Video-Language Tasks In a video, an object usually appears as the trajectory, i.e., it spans over a few spatial but longer temporal patches, that contains abundant spatiotemporal contexts. However, modern Video-Language BERTs (VDL-BERTs) neglect this trajectory characteristic that they usually follow image-language BERTs (IL-BERTs) to deploy the patch-to-word (P2W) attention that may over-exploit trivial spatial contexts and neglect significant temporal contexts. To amend this, we propose a novel TW-BERT to learn Trajectory-Word alignment by a newly designed trajectory-to-word (T2W) attention for solving video-language tasks. Moreover, previous VDL-BERTs usually uniformly sample a few frames into the model while different trajectories have diverse graininess, i.e., some trajectories span longer frames and some span shorter, and using a few frames will lose certain useful temporal contexts. However, simply sampling more frames will also make pre-training infeasible due to the largely increased training burdens. To alleviate the problem, during the fine-tuning stage, we insert a novel Hierarchical Frame-Selector (HFS) module into the video encoder. HFS gradually selects the suitable frames conditioned on the text context for the later cross-modal encoder to learn better trajectory-word alignments. By the proposed T2W attention and HFS, our TW-BERT achieves SOTA performances on text-to-video retrieval tasks, and comparable performances on video question-answering tasks with some VDL-BERTs trained on much more data. The code will be available in the supplementary material. 10 authors · Jan 5, 2023
- Universal Text Representation from BERT: An Empirical Study We present a systematic investigation of layer-wise BERT activations for general-purpose text representations to understand what linguistic information they capture and how transferable they are across different tasks. Sentence-level embeddings are evaluated against two state-of-the-art models on downstream and probing tasks from SentEval, while passage-level embeddings are evaluated on four question-answering (QA) datasets under a learning-to-rank problem setting. Embeddings from the pre-trained BERT model perform poorly in semantic similarity and sentence surface information probing tasks. Fine-tuning BERT on natural language inference data greatly improves the quality of the embeddings. Combining embeddings from different BERT layers can further boost performance. BERT embeddings outperform BM25 baseline significantly on factoid QA datasets at the passage level, but fail to perform better than BM25 on non-factoid datasets. For all QA datasets, there is a gap between embedding-based method and in-domain fine-tuned BERT (we report new state-of-the-art results on two datasets), which suggests deep interactions between question and answer pairs are critical for those hard tasks. 5 authors · Oct 17, 2019
- Hierarchical Modular Network for Video Captioning Video captioning aims to generate natural language descriptions according to the content, where representation learning plays a crucial role. Existing methods are mainly developed within the supervised learning framework via word-by-word comparison of the generated caption against the ground-truth text without fully exploiting linguistic semantics. In this work, we propose a hierarchical modular network to bridge video representations and linguistic semantics from three levels before generating captions. In particular, the hierarchy is composed of: (I) Entity level, which highlights objects that are most likely to be mentioned in captions. (II) Predicate level, which learns the actions conditioned on highlighted objects and is supervised by the predicate in captions. (III) Sentence level, which learns the global semantic representation and is supervised by the whole caption. Each level is implemented by one module. Extensive experimental results show that the proposed method performs favorably against the state-of-the-art models on the two widely-used benchmarks: MSVD 104.0% and MSR-VTT 51.5% in CIDEr score. 6 authors · Nov 24, 2021
- Coreferential Reasoning Learning for Language Representation Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most existing language representation models cannot explicitly handle coreference, which is essential to the coherent understanding of the whole discourse. To address this issue, we present CorefBERT, a novel language representation model that can capture the coreferential relations in context. The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks that require coreferential reasoning, while maintaining comparable performance to previous models on other common NLP tasks. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/CorefBERT. 7 authors · Apr 14, 2020
- StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding Recently, the pre-trained language model, BERT (and its robustly optimized version RoBERTa), has attracted a lot of attention in natural language understanding (NLU), and achieved state-of-the-art accuracy in various NLU tasks, such as sentiment classification, natural language inference, semantic textual similarity and question answering. Inspired by the linearization exploration work of Elman [8], we extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. As a result, the new model is adapted to different levels of language understanding required by downstream tasks. The StructBERT with structural pre-training gives surprisingly good empirical results on a variety of downstream tasks, including pushing the state-of-the-art on the GLUE benchmark to 89.0 (outperforming all published models), the F1 score on SQuAD v1.1 question answering to 93.0, the accuracy on SNLI to 91.7. 8 authors · Aug 13, 2019
- Masking meets Supervision: A Strong Learning Alliance Pre-training with random masked inputs has emerged as a novel trend in self-supervised training. However, supervised learning still faces a challenge in adopting masking augmentations, primarily due to unstable training. In this paper, we propose a novel way to involve masking augmentations dubbed Masked Sub-branch (MaskSub). MaskSub consists of the main-branch and sub-branch, the latter being a part of the former. The main-branch undergoes conventional training recipes, while the sub-branch merits intensive masking augmentations, during training. MaskSub tackles the challenge by mitigating adverse effects through a relaxed loss function similar to a self-distillation loss. Our analysis shows that MaskSub improves performance, with the training loss converging faster than in standard training, which suggests our method stabilizes the training process. We further validate MaskSub across diverse training scenarios and models, including DeiT-III training, MAE finetuning, CLIP finetuning, BERT training, and hierarchical architectures (ResNet and Swin Transformer). Our results show that MaskSub consistently achieves impressive performance gains across all the cases. MaskSub provides a practical and effective solution for introducing additional regularization under various training recipes. Code available at https://github.com/naver-ai/augsub NAVER AI Lab · Jun 20, 2023
- Dialogue Act Sequence Labeling using Hierarchical encoder with CRF Dialogue Act recognition associate dialogue acts (i.e., semantic labels) to utterances in a conversation. The problem of associating semantic labels to utterances can be treated as a sequence labeling problem. In this work, we build a hierarchical recurrent neural network using bidirectional LSTM as a base unit and the conditional random field (CRF) as the top layer to classify each utterance into its corresponding dialogue act. The hierarchical network learns representations at multiple levels, i.e., word level, utterance level, and conversation level. The conversation level representations are input to the CRF layer, which takes into account not only all previous utterances but also their dialogue acts, thus modeling the dependency among both, labels and utterances, an important consideration of natural dialogue. We validate our approach on two different benchmark data sets, Switchboard and Meeting Recorder Dialogue Act, and show performance improvement over the state-of-the-art methods by 2.2% and 4.1% absolute points, respectively. It is worth noting that the inter-annotator agreement on Switchboard data set is 84%, and our method is able to achieve the accuracy of about 79% despite being trained on the noisy data. 5 authors · Sep 13, 2017
- Linguistic Profiling of a Neural Language Model In this paper we investigate the linguistic knowledge learned by a Neural Language Model (NLM) before and after a fine-tuning process and how this knowledge affects its predictions during several classification problems. We use a wide set of probing tasks, each of which corresponds to a distinct sentence-level feature extracted from different levels of linguistic annotation. We show that BERT is able to encode a wide range of linguistic characteristics, but it tends to lose this information when trained on specific downstream tasks. We also find that BERT's capacity to encode different kind of linguistic properties has a positive influence on its predictions: the more it stores readable linguistic information of a sentence, the higher will be its capacity of predicting the expected label assigned to that sentence. 4 authors · Oct 5, 2020
- Bertinho: Galician BERT Representations This paper presents a monolingual BERT model for Galician. We follow the recent trend that shows that it is feasible to build robust monolingual BERT models even for relatively low-resource languages, while performing better than the well-known official multilingual BERT (mBERT). More particularly, we release two monolingual Galician BERT models, built using 6 and 12 transformer layers, respectively; trained with limited resources (~45 million tokens on a single GPU of 24GB). We then provide an exhaustive evaluation on a number of tasks such as POS-tagging, dependency parsing and named entity recognition. For this purpose, all these tasks are cast in a pure sequence labeling setup in order to run BERT without the need to include any additional layers on top of it (we only use an output classification layer to map the contextualized representations into the predicted label). The experiments show that our models, especially the 12-layer one, outperform the results of mBERT in most tasks. 3 authors · Mar 25, 2021
- Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding Recent state-of-the-art natural language understanding models, such as BERT and XLNet, score a pair of sentences (A and B) using multiple cross-attention operations - a process in which each word in sentence A attends to all words in sentence B and vice versa. As a result, computing the similarity between a query sentence and a set of candidate sentences, requires the propagation of all query-candidate sentence-pairs throughout a stack of cross-attention layers. This exhaustive process becomes computationally prohibitive when the number of candidate sentences is large. In contrast, sentence embedding techniques learn a sentence-to-vector mapping and compute the similarity between the sentence vectors via simple elementary operations. In this paper, we introduce Distilled Sentence Embedding (DSE) - a model that is based on knowledge distillation from cross-attentive models, focusing on sentence-pair tasks. The outline of DSE is as follows: Given a cross-attentive teacher model (e.g. a fine-tuned BERT), we train a sentence embedding based student model to reconstruct the sentence-pair scores obtained by the teacher model. We empirically demonstrate the effectiveness of DSE on five GLUE sentence-pair tasks. DSE significantly outperforms several ELMO variants and other sentence embedding methods, while accelerating computation of the query-candidate sentence-pairs similarities by several orders of magnitude, with an average relative degradation of 4.6% compared to BERT. Furthermore, we show that DSE produces sentence embeddings that reach state-of-the-art performance on universal sentence representation benchmarks. Our code is made publicly available at https://github.com/microsoft/Distilled-Sentence-Embedding. 6 authors · Aug 14, 2019
3 BERT Rediscovers the Classical NLP Pipeline Pre-trained text encoders have rapidly advanced the state of the art on many NLP tasks. We focus on one such model, BERT, and aim to quantify where linguistic information is captured within the network. We find that the model represents the steps of the traditional NLP pipeline in an interpretable and localizable way, and that the regions responsible for each step appear in the expected sequence: POS tagging, parsing, NER, semantic roles, then coreference. Qualitative analysis reveals that the model can and often does adjust this pipeline dynamically, revising lower-level decisions on the basis of disambiguating information from higher-level representations. 3 authors · May 15, 2019
- Structural Text Segmentation of Legal Documents The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange 4 authors · Dec 7, 2020
- Whatcha lookin' at? DeepLIFTing BERT's Attention in Question Answering There has been great success recently in tackling challenging NLP tasks by neural networks which have been pre-trained and fine-tuned on large amounts of task data. In this paper, we investigate one such model, BERT for question-answering, with the aim to analyze why it is able to achieve significantly better results than other models. We run DeepLIFT on the model predictions and test the outcomes to monitor shift in the attention values for input. We also cluster the results to analyze any possible patterns similar to human reasoning depending on the kind of input paragraph and question the model is trying to answer. 2 authors · Oct 14, 2019
- Text Summarization with Pretrained Encoders Bidirectional Encoder Representations from Transformers (BERT) represents the latest incarnation of pretrained language models which have recently advanced a wide range of natural language processing tasks. In this paper, we showcase how BERT can be usefully applied in text summarization and propose a general framework for both extractive and abstractive models. We introduce a novel document-level encoder based on BERT which is able to express the semantics of a document and obtain representations for its sentences. Our extractive model is built on top of this encoder by stacking several inter-sentence Transformer layers. For abstractive summarization, we propose a new fine-tuning schedule which adopts different optimizers for the encoder and the decoder as a means of alleviating the mismatch between the two (the former is pretrained while the latter is not). We also demonstrate that a two-staged fine-tuning approach can further boost the quality of the generated summaries. Experiments on three datasets show that our model achieves state-of-the-art results across the board in both extractive and abstractive settings. Our code is available at https://github.com/nlpyang/PreSumm 2 authors · Aug 22, 2019
- Hierarchical Text Classification Using Black Box Large Language Models Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost. 2 authors · Aug 6
- L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi Sentence representation from vanilla BERT models does not work well on sentence similarity tasks. Sentence-BERT models specifically trained on STS or NLI datasets are shown to provide state-of-the-art performance. However, building these models for low-resource languages is not straightforward due to the lack of these specialized datasets. This work focuses on two low-resource Indian languages, Hindi and Marathi. We train sentence-BERT models for these languages using synthetic NLI and STS datasets prepared using machine translation. We show that the strategy of NLI pre-training followed by STSb fine-tuning is effective in generating high-performance sentence-similarity models for Hindi and Marathi. The vanilla BERT models trained using this simple strategy outperform the multilingual LaBSE trained using a complex training strategy. These models are evaluated on downstream text classification and similarity tasks. We evaluate these models on real text classification datasets to show embeddings obtained from synthetic data training are generalizable to real datasets as well and thus represent an effective training strategy for low-resource languages. We also provide a comparative analysis of sentence embeddings from fast text models, multilingual BERT models (mBERT, IndicBERT, xlm-RoBERTa, MuRIL), multilingual sentence embedding models (LASER, LaBSE), and monolingual BERT models based on L3Cube-MahaBERT and HindBERT. We release L3Cube-MahaSBERT and HindSBERT, the state-of-the-art sentence-BERT models for Marathi and Hindi respectively. Our work also serves as a guide to building low-resource sentence embedding models. 5 authors · Nov 21, 2022
- Distilling Task-Specific Knowledge from BERT into Simple Neural Networks In the natural language processing literature, neural networks are becoming increasingly deeper and complex. The recent poster child of this trend is the deep language representation model, which includes BERT, ELMo, and GPT. These developments have led to the conviction that previous-generation, shallower neural networks for language understanding are obsolete. In this paper, however, we demonstrate that rudimentary, lightweight neural networks can still be made competitive without architecture changes, external training data, or additional input features. We propose to distill knowledge from BERT, a state-of-the-art language representation model, into a single-layer BiLSTM, as well as its siamese counterpart for sentence-pair tasks. Across multiple datasets in paraphrasing, natural language inference, and sentiment classification, we achieve comparable results with ELMo, while using roughly 100 times fewer parameters and 15 times less inference time. 6 authors · Mar 28, 2019
- Understanding BERT Rankers Under Distillation Deep language models such as BERT pre-trained on large corpus have given a huge performance boost to the state-of-the-art information retrieval ranking systems. Knowledge embedded in such models allows them to pick up complex matching signals between passages and queries. However, the high computation cost during inference limits their deployment in real-world search scenarios. In this paper, we study if and how the knowledge for search within BERT can be transferred to a smaller ranker through distillation. Our experiments demonstrate that it is crucial to use a proper distillation procedure, which produces up to nine times speedup while preserving the state-of-the-art performance. 3 authors · Jul 21, 2020
- NextLevelBERT: Investigating Masked Language Modeling with Higher-Level Representations for Long Documents While (large) language models have significantly improved over the last years, they still struggle to sensibly process long sequences found, e.g., in books, due to the quadratic scaling of the underlying attention mechanism. To address this, we propose NextLevelBERT, a Masked Language Model operating not on tokens, but on higher-level semantic representations in the form of text embeddings. We pretrain NextLevelBERT to predict the vector representation of entire masked text chunks and evaluate the effectiveness of the resulting document vectors on three task types: 1) Semantic Textual Similarity via zero-shot document embeddings, 2) Long document classification, 3) Multiple-choice question answering. We find that next level Masked Language Modeling is an effective technique to tackle long-document use cases and can outperform much larger embedding models as long as the required level of detail is not too high. We make model and code available. 4 authors · Feb 27, 2024
- ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE. 7 authors · Oct 22, 2020
- Banyan: Improved Representation Learning with Explicit Structure We present Banyan, a model that efficiently learns semantic representations by leveraging explicit hierarchical structure. While transformers excel at scale, they struggle in low-resource settings. Conversely recent structured models have shown promise as efficient learners, but lack performance. Banyan bridges this gap with two key innovations: an entangled hierarchical tree structure and diagonalized message passing, enabling it to outperform larger transformer models with just 14 non-embedding parameters. It excels in low-resource settings, offering a viable alternative for under-represented languages and highlighting its potential for efficient, interpretable NLP in resource-constrained environments. 2 authors · Jul 25, 2024 2
1 Hubness Reduction Improves Sentence-BERT Semantic Spaces Semantic representations of text, i.e. representations of natural language which capture meaning by geometry, are essential for areas such as information retrieval and document grouping. High-dimensional trained dense vectors have received much attention in recent years as such representations. We investigate the structure of semantic spaces that arise from embeddings made with Sentence-BERT and find that the representations suffer from a well-known problem in high dimensions called hubness. Hubness results in asymmetric neighborhood relations, such that some texts (the hubs) are neighbours of many other texts while most texts (so-called anti-hubs), are neighbours of few or no other texts. We quantify the semantic quality of the embeddings using hubness scores and error rate of a neighbourhood based classifier. We find that when hubness is high, we can reduce error rate and hubness using hubness reduction methods. We identify a combination of two methods as resulting in the best reduction. For example, on one of the tested pretrained models, this combined method can reduce hubness by about 75% and error rate by about 9%. Thus, we argue that mitigating hubness in the embedding space provides better semantic representations of text. 2 authors · Nov 30, 2023
- Multi-Scale Self-Attention for Text Classification In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguistic perspective and the analysis of pre-trained Transformer (BERT) on a huge corpus, we further design a strategy to control the scale distribution for each layer. Results of three different kinds of tasks (21 datasets) show our Multi-Scale Transformer outperforms the standard Transformer consistently and significantly on small and moderate size datasets. 5 authors · Dec 1, 2019
2 Retrieval-Augmented Generation with Hierarchical Knowledge Graph-based Retrieval-Augmented Generation (RAG) methods have significantly enhanced the performance of large language models (LLMs) in domain-specific tasks. However, existing RAG methods do not adequately utilize the naturally inherent hierarchical knowledge in human cognition, which limits the capabilities of RAG systems. In this paper, we introduce a new RAG approach, called HiRAG, which utilizes hierarchical knowledge to enhance the semantic understanding and structure capturing capabilities of RAG systems in the indexing and retrieval processes. Our extensive experiments demonstrate that HiRAG achieves significant performance improvements over the state-of-the-art baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/HiRAG{https://github.com/hhy-huang/HiRAG}. 8 authors · Mar 13
- Emergent Visual-Semantic Hierarchies in Image-Text Representations While recent vision-and-language models (VLMs) like CLIP are a powerful tool for analyzing text and images in a shared semantic space, they do not explicitly model the hierarchical nature of the set of texts which may describe an image. Conversely, existing multimodal hierarchical representation learning methods require costly training from scratch, failing to leverage the knowledge encoded by state-of-the-art multimodal foundation models. In this work, we study the knowledge of existing foundation models, finding that they exhibit emergent understanding of visual-semantic hierarchies despite not being directly trained for this purpose. We propose the Radial Embedding (RE) framework for probing and optimizing hierarchical understanding, and contribute the HierarCaps dataset, a benchmark facilitating the study of hierarchical knowledge in image--text representations, constructed automatically via large language models. Our results show that foundation VLMs exhibit zero-shot hierarchical understanding, surpassing the performance of prior models explicitly designed for this purpose. Furthermore, we show that foundation models may be better aligned to hierarchical reasoning via a text-only fine-tuning phase, while retaining pretraining knowledge. 2 authors · Jul 11, 2024
- Playing with Words at the National Library of Sweden -- Making a Swedish BERT This paper introduces the Swedish BERT ("KB-BERT") developed by the KBLab for data-driven research at the National Library of Sweden (KB). Building on recent efforts to create transformer-based BERT models for languages other than English, we explain how we used KB's collections to create and train a new language-specific BERT model for Swedish. We also present the results of our model in comparison with existing models - chiefly that produced by the Swedish Public Employment Service, Arbetsf\"ormedlingen, and Google's multilingual M-BERT - where we demonstrate that KB-BERT outperforms these in a range of NLP tasks from named entity recognition (NER) to part-of-speech tagging (POS). Our discussion highlights the difficulties that continue to exist given the lack of training data and testbeds for smaller languages like Swedish. We release our model for further exploration and research here: https://github.com/Kungbib/swedish-bert-models . 3 authors · Jul 3, 2020
- gaBERT -- an Irish Language Model The BERT family of neural language models have become highly popular due to their ability to provide sequences of text with rich context-sensitive token encodings which are able to generalise well to many NLP tasks. We introduce gaBERT, a monolingual BERT model for the Irish language. We compare our gaBERT model to multilingual BERT and the monolingual Irish WikiBERT, and we show that gaBERT provides better representations for a downstream parsing task. We also show how different filtering criteria, vocabulary size and the choice of subword tokenisation model affect downstream performance. We compare the results of fine-tuning a gaBERT model with an mBERT model for the task of identifying verbal multiword expressions, and show that the fine-tuned gaBERT model also performs better at this task. We release gaBERT and related code to the community. 8 authors · Jul 27, 2021
- Landmark Attention: Random-Access Infinite Context Length for Transformers While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4. 2 authors · May 25, 2023 1
- Acquiring Bidirectionality via Large and Small Language Models Using token representation from bidirectional language models (LMs) such as BERT is still a widely used approach for token-classification tasks. Even though there exist much larger unidirectional LMs such as Llama-2, they are rarely used to replace the token representation of bidirectional LMs. In this work, we hypothesize that their lack of bidirectionality is keeping them behind. To that end, we propose to newly train a small backward LM and concatenate its representations to those of existing LM for downstream tasks. Through experiments in named entity recognition, we demonstrate that introducing backward model improves the benchmark performance more than 10 points. Furthermore, we show that the proposed method is especially effective for rare domains and in few-shot learning settings. 3 authors · Aug 18, 2024
- HDLTex: Hierarchical Deep Learning for Text Classification The continually increasing number of documents produced each year necessitates ever improving information processing methods for searching, retrieving, and organizing text. Central to these information processing methods is document classification, which has become an important application for supervised learning. Recently the performance of these traditional classifiers has degraded as the number of documents has increased. This is because along with this growth in the number of documents has come an increase in the number of categories. This paper approaches this problem differently from current document classification methods that view the problem as multi-class classification. Instead we perform hierarchical classification using an approach we call Hierarchical Deep Learning for Text classification (HDLTex). HDLTex employs stacks of deep learning architectures to provide specialized understanding at each level of the document hierarchy. 6 authors · Sep 24, 2017
- Hierarchical Pre-training for Sequence Labelling in Spoken Dialog Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning. 5 authors · Sep 23, 2020
- Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities. 4 authors · Dec 3, 2021
- The Role of Complex NLP in Transformers for Text Ranking? Even though term-based methods such as BM25 provide strong baselines in ranking, under certain conditions they are dominated by large pre-trained masked language models (MLMs) such as BERT. To date, the source of their effectiveness remains unclear. Is it their ability to truly understand the meaning through modeling syntactic aspects? We answer this by manipulating the input order and position information in a way that destroys the natural sequence order of query and passage and shows that the model still achieves comparable performance. Overall, our results highlight that syntactic aspects do not play a critical role in the effectiveness of re-ranking with BERT. We point to other mechanisms such as query-passage cross-attention and richer embeddings that capture word meanings based on aggregated context regardless of the word order for being the main attributions for its superior performance. 2 authors · Jul 6, 2022
- A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks Much effort has been devoted to evaluate whether multi-task learning can be leveraged to learn rich representations that can be used in various Natural Language Processing (NLP) down-stream applications. However, there is still a lack of understanding of the settings in which multi-task learning has a significant effect. In this work, we introduce a hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks. The model is trained in a hierarchical fashion to introduce an inductive bias by supervising a set of low level tasks at the bottom layers of the model and more complex tasks at the top layers of the model. This model achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers. The hierarchical training supervision induces a set of shared semantic representations at lower layers of the model. We show that as we move from the bottom to the top layers of the model, the hidden states of the layers tend to represent more complex semantic information. 3 authors · Nov 14, 2018
- NeoDictaBERT: Pushing the Frontier of BERT models for Hebrew Since their initial release, BERT models have demonstrated exceptional performance on a variety of tasks, despite their relatively small size (BERT-base has ~100M parameters). Nevertheless, the architectural choices used in these models are outdated compared to newer transformer-based models such as Llama3 and Qwen3. In recent months, several architectures have been proposed to close this gap. ModernBERT and NeoBERT both show strong improvements on English benchmarks and significantly extend the supported context window. Following their successes, we introduce NeoDictaBERT and NeoDictaBERT-bilingual: BERT-style models trained using the same architecture as NeoBERT, with a dedicated focus on Hebrew texts. These models outperform existing ones on almost all Hebrew benchmarks and provide a strong foundation for downstream tasks. Notably, the NeoDictaBERT-bilingual model shows strong results on retrieval tasks, outperforming other multilingual models of similar size. In this paper, we describe the training process and report results across various benchmarks. We release the models to the community as part of our goal to advance research and development in Hebrew NLP. 3 authors · Oct 23
- Efficient Retrieval Augmented Generation from Unstructured Knowledge for Task-Oriented Dialog This paper summarizes our work on the first track of the ninth Dialog System Technology Challenge (DSTC 9), "Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access". The goal of the task is to generate responses to user turns in a task-oriented dialog that require knowledge from unstructured documents. The task is divided into three subtasks: detection, selection and generation. In order to be compute efficient, we formulate the selection problem in terms of hierarchical classification steps. We achieve our best results with this model. Alternatively, we employ siamese sequence embedding models, referred to as Dense Knowledge Retrieval, to retrieve relevant documents. This method further reduces the computation time by a factor of more than 100x at the cost of degradation in R@1 of 5-6% compared to the first model. Then for either approach, we use Retrieval Augmented Generation to generate responses based on multiple selected snippets and we show how the method can be used to fine-tune trained embeddings. 4 authors · Feb 8, 2021
- Coverage-based Example Selection for In-Context Learning In-context learning (ICL), the ability of large language models to perform novel tasks by conditioning on a prompt with a few task examples, requires these examples to be informative about the test instance. The standard approach of independently ranking and selecting the most similar examples selects redundant examples while omitting important information. In this work, we show that BERTScore-Recall (BSR) selects better examples that demonstrate more of the salient aspects, e.g. reasoning patterns, of the test input. We further extend BSR and many standard metrics to easily optimizable set-level metrics, giving still better coverage of those salient aspects. On 15 datasets spanning 6 tasks and with 7 diverse LLMs, we show that (1) BSR is the superior metric for in-context example selection across the board, and (2) for compositional tasks, set selection using Set-BSR outperforms independent ranking by up to 17 points on average and, despite being training-free, surpasses methods that leverage task or LLM-specific training. 3 authors · May 24, 2023
- Attentive Deep Neural Networks for Legal Document Retrieval Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task. 6 authors · Dec 12, 2022
2 Parameter-Efficient Tuning with Special Token Adaptation Parameter-efficient tuning aims at updating only a small subset of parameters when adapting a pretrained model to downstream tasks. In this work, we introduce PASTA, in which we only modify the special token representations (e.g., [SEP] and [CLS] in BERT) before the self-attention module at each layer in Transformer-based models. PASTA achieves comparable performance to full finetuning in natural language understanding tasks including text classification and NER with up to only 0.029% of total parameters trained. Our work not only provides a simple yet effective way of parameter-efficient tuning, which has a wide range of practical applications when deploying finetuned models for multiple tasks, but also demonstrates the pivotal role of special tokens in pretrained language models 4 authors · Oct 9, 2022
- Self-Guided Contrastive Learning for BERT Sentence Representations Although BERT and its variants have reshaped the NLP landscape, it still remains unclear how best to derive sentence embeddings from such pre-trained Transformers. In this work, we propose a contrastive learning method that utilizes self-guidance for improving the quality of BERT sentence representations. Our method fine-tunes BERT in a self-supervised fashion, does not rely on data augmentation, and enables the usual [CLS] token embeddings to function as sentence vectors. Moreover, we redesign the contrastive learning objective (NT-Xent) and apply it to sentence representation learning. We demonstrate with extensive experiments that our approach is more effective than competitive baselines on diverse sentence-related tasks. We also show it is efficient at inference and robust to domain shifts. 3 authors · Jun 3, 2021
- Dialogue Act Classification with Context-Aware Self-Attention Recent work in Dialogue Act classification has treated the task as a sequence labeling problem using hierarchical deep neural networks. We build on this prior work by leveraging the effectiveness of a context-aware self-attention mechanism coupled with a hierarchical recurrent neural network. We conduct extensive evaluations on standard Dialogue Act classification datasets and show significant improvement over state-of-the-art results on the Switchboard Dialogue Act (SwDA) Corpus. We also investigate the impact of different utterance-level representation learning methods and show that our method is effective at capturing utterance-level semantic text representations while maintaining high accuracy. 2 authors · Apr 4, 2019
1 CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters Due to the compelling improvements brought by BERT, many recent representation models adopted the Transformer architecture as their main building block, consequently inheriting the wordpiece tokenization system despite it not being intrinsically linked to the notion of Transformers. While this system is thought to achieve a good balance between the flexibility of characters and the efficiency of full words, using predefined wordpiece vocabularies from the general domain is not always suitable, especially when building models for specialized domains (e.g., the medical domain). Moreover, adopting a wordpiece tokenization shifts the focus from the word level to the subword level, making the models conceptually more complex and arguably less convenient in practice. For these reasons, we propose CharacterBERT, a new variant of BERT that drops the wordpiece system altogether and uses a Character-CNN module instead to represent entire words by consulting their characters. We show that this new model improves the performance of BERT on a variety of medical domain tasks while at the same time producing robust, word-level and open-vocabulary representations. 6 authors · Oct 20, 2020
3 Rethinking Negative Instances for Generative Named Entity Recognition Large Language Models (LLMs) have demonstrated impressive capabilities for generalizing in unseen tasks. In the Named Entity Recognition (NER) task, recent advancements have seen the remarkable improvement of LLMs in a broad range of entity domains via instruction tuning, by adopting entity-centric schema. In this work, we explore the potential enhancement of the existing methods by incorporating negative instances into training. Our experiments reveal that negative instances contribute to remarkable improvements by (1) introducing contextual information, and (2) clearly delineating label boundaries. Furthermore, we introduce a novel and efficient algorithm named Hierarchical Matching, which is tailored to transform unstructured predictions into structured entities. By integrating these components, we present GNER, a Generative NER system that shows improved zero-shot performance across unseen entity domains. Our comprehensive evaluation illustrates our system's superiority, surpassing state-of-the-art (SoTA) methods by 11 F_1 score in zero-shot evaluation. 6 authors · Feb 26, 2024
7 Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection The rise of language models such as BERT allows for high-quality text paraphrasing. This is a problem to academic integrity, as it is difficult to differentiate between original and machine-generated content. We propose a benchmark consisting of paraphrased articles using recent language models relying on the Transformer architecture. Our contribution fosters future research of paraphrase detection systems as it offers a large collection of aligned original and paraphrased documents, a study regarding its structure, classification experiments with state-of-the-art systems, and we make our findings publicly available. 4 authors · Mar 23, 2021
- llm-jp-modernbert: A ModernBERT Model Trained on a Large-Scale Japanese Corpus with Long Context Length Encoder-only transformer models like BERT are widely adopted as a pre-trained backbone for tasks like sentence classification and retrieval. However, pretraining of encoder models with large-scale corpora and long contexts has been relatively underexplored compared to decoder-only transformers. In this work, we present llm-jp-modernbert, a ModernBERT model trained on a publicly available, massive Japanese corpus with a context length of 8192 tokens. While our model does not surpass existing baselines on downstream tasks, it achieves good results on fill-mask test evaluations. We also analyze the effect of context length expansion through pseudo-perplexity experiments. Furthermore, we investigate sentence embeddings in detail, analyzing their transitions during training and comparing them with those from other existing models, confirming similar trends with models sharing the same architecture. To support reproducibility and foster the development of long-context BERT, we release our model, along with the training and evaluation code. 3 authors · Apr 21
- B-PROP: Bootstrapped Pre-training with Representative Words Prediction for Ad-hoc Retrieval Pre-training and fine-tuning have achieved remarkable success in many downstream natural language processing (NLP) tasks. Recently, pre-training methods tailored for information retrieval (IR) have also been explored, and the latest success is the PROP method which has reached new SOTA on a variety of ad-hoc retrieval benchmarks. The basic idea of PROP is to construct the representative words prediction (ROP) task for pre-training inspired by the query likelihood model. Despite its exciting performance, the effectiveness of PROP might be bounded by the classical unigram language model adopted in the ROP task construction process. To tackle this problem, we propose a bootstrapped pre-training method (namely B-PROP) based on BERT for ad-hoc retrieval. The key idea is to use the powerful contextual language model BERT to replace the classical unigram language model for the ROP task construction, and re-train BERT itself towards the tailored objective for IR. Specifically, we introduce a novel contrastive method, inspired by the divergence-from-randomness idea, to leverage BERT's self-attention mechanism to sample representative words from the document. By further fine-tuning on downstream ad-hoc retrieval tasks, our method achieves significant improvements over baselines without pre-training or with other pre-training methods, and further pushes forward the SOTA on a variety of ad-hoc retrieval tasks. 6 authors · Apr 20, 2021
1 BERTweet: A pre-trained language model for English Tweets We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al., 2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks: Part-of-speech tagging, Named-entity recognition and text classification. We release BERTweet under the MIT License to facilitate future research and applications on Tweet data. Our BERTweet is available at https://github.com/VinAIResearch/BERTweet 3 authors · May 20, 2020 1
25 Dynamic Chunking for End-to-End Hierarchical Sequence Modeling Despite incredible progress in language models (LMs) in recent years, largely resulting from moving away from specialized models designed for specific tasks to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a dynamic chunking mechanism which automatically learns content -- and context -- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit hierarchical network (H-Net) allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching a token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net's improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4x improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data. 3 authors · Jul 10 4
- Czert -- Czech BERT-like Model for Language Representation This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models that include Czech data. We outperform the multilingual models on 9 out of 11 datasets. In addition, we establish the new state-of-the-art results on nine datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community. 6 authors · Mar 24, 2021
- Pretrained Transformers for Text Ranking: BERT and Beyond The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading. 3 authors · Oct 13, 2020
4 ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT Recent progress in Natural Language Understanding (NLU) is driving fast-paced advances in Information Retrieval (IR), largely owed to fine-tuning deep language models (LMs) for document ranking. While remarkably effective, the ranking models based on these LMs increase computational cost by orders of magnitude over prior approaches, particularly as they must feed each query-document pair through a massive neural network to compute a single relevance score. To tackle this, we present ColBERT, a novel ranking model that adapts deep LMs (in particular, BERT) for efficient retrieval. ColBERT introduces a late interaction architecture that independently encodes the query and the document using BERT and then employs a cheap yet powerful interaction step that models their fine-grained similarity. By delaying and yet retaining this fine-granular interaction, ColBERT can leverage the expressiveness of deep LMs while simultaneously gaining the ability to pre-compute document representations offline, considerably speeding up query processing. Beyond reducing the cost of re-ranking the documents retrieved by a traditional model, ColBERT's pruning-friendly interaction mechanism enables leveraging vector-similarity indexes for end-to-end retrieval directly from a large document collection. We extensively evaluate ColBERT using two recent passage search datasets. Results show that ColBERT's effectiveness is competitive with existing BERT-based models (and outperforms every non-BERT baseline), while executing two orders-of-magnitude faster and requiring four orders-of-magnitude fewer FLOPs per query. 2 authors · Apr 27, 2020
2 ALBERT: A Lite BERT for Self-supervised Learning of Language Representations Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations and longer training times. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and \squad benchmarks while having fewer parameters compared to BERT-large. The code and the pretrained models are available at https://github.com/google-research/ALBERT. 6 authors · Sep 26, 2019
2 Retrieving Texts based on Abstract Descriptions In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model. 5 authors · May 21, 2023
- IXA/Cogcomp at SemEval-2023 Task 2: Context-enriched Multilingual Named Entity Recognition using Knowledge Bases Named Entity Recognition (NER) is a core natural language processing task in which pre-trained language models have shown remarkable performance. However, standard benchmarks like CoNLL 2003 do not address many of the challenges that deployed NER systems face, such as having to classify emerging or complex entities in a fine-grained way. In this paper we present a novel NER cascade approach comprising three steps: first, identifying candidate entities in the input sentence; second, linking the each candidate to an existing knowledge base; third, predicting the fine-grained category for each entity candidate. We empirically demonstrate the significance of external knowledge bases in accurately classifying fine-grained and emerging entities. Our system exhibits robust performance in the MultiCoNER2 shared task, even in the low-resource language setting where we leverage knowledge bases of high-resource languages. 5 authors · Apr 20, 2023
- SemEval-2017 Task 4: Sentiment Analysis in Twitter using BERT This paper uses the BERT model, which is a transformer-based architecture, to solve task 4A, English Language, Sentiment Analysis in Twitter of SemEval2017. BERT is a very powerful large language model for classification tasks when the amount of training data is small. For this experiment, we have used the BERT(BASE) model, which has 12 hidden layers. This model provides better accuracy, precision, recall, and f1 score than the Naive Bayes baseline model. It performs better in binary classification subtasks than the multi-class classification subtasks. We also considered all kinds of ethical issues during this experiment, as Twitter data contains personal and sensible information. The dataset and code used in our experiment can be found in this GitHub repository. 2 authors · Jan 15, 2024
- PatentBERT: Patent Classification with Fine-Tuning a pre-trained BERT Model In this work we focus on fine-tuning a pre-trained BERT model and applying it to patent classification. When applied to large datasets of over two millions patents, our approach outperforms the state of the art by an approach using CNN with word embeddings. In addition, we focus on patent claims without other parts in patent documents. Our contributions include: (1) a new state-of-the-art method based on pre-trained BERT model and fine-tuning for patent classification, (2) a large dataset USPTO-3M at the CPC subclass level with SQL statements that can be used by future researchers, (3) showing that patent claims alone are sufficient for classification task, in contrast to conventional wisdom. 2 authors · May 14, 2019
- A Probabilistic Generative Grammar for Semantic Parsing Domain-general semantic parsing is a long-standing goal in natural language processing, where the semantic parser is capable of robustly parsing sentences from domains outside of which it was trained. Current approaches largely rely on additional supervision from new domains in order to generalize to those domains. We present a generative model of natural language utterances and logical forms and demonstrate its application to semantic parsing. Our approach relies on domain-independent supervision to generalize to new domains. We derive and implement efficient algorithms for training, parsing, and sentence generation. The work relies on a novel application of hierarchical Dirichlet processes (HDPs) for structured prediction, which we also present in this manuscript. This manuscript is an excerpt of chapter 4 from the Ph.D. thesis of Saparov (2022), where the model plays a central role in a larger natural language understanding system. This manuscript provides a new simplified and more complete presentation of the work first introduced in Saparov, Saraswat, and Mitchell (2017). The description and proofs of correctness of the training algorithm, parsing algorithm, and sentence generation algorithm are much simplified in this new presentation. We also describe the novel application of hierarchical Dirichlet processes for structured prediction. In addition, we extend the earlier work with a new model of word morphology, which utilizes the comprehensive morphological data from Wiktionary. 1 authors · Jun 20, 2016
4 Fine-Tuning LLaMA for Multi-Stage Text Retrieval The effectiveness of multi-stage text retrieval has been solidly demonstrated since before the era of pre-trained language models. However, most existing studies utilize models that predate recent advances in large language models (LLMs). This study seeks to explore potential improvements that state-of-the-art LLMs can bring. We conduct a comprehensive study, fine-tuning the latest LLaMA model both as a dense retriever (RepLLaMA) and as a pointwise reranker (RankLLaMA) for both passage retrieval and document retrieval using the MS MARCO datasets. Our findings demonstrate that the effectiveness of large language models indeed surpasses that of smaller models. Additionally, since LLMs can inherently handle longer contexts, they can represent entire documents holistically, obviating the need for traditional segmenting and pooling strategies. Furthermore, evaluations on BEIR demonstrate that our RepLLaMA-RankLLaMA pipeline exhibits strong zero-shot effectiveness. Model checkpoints from this study are available on HuggingFace. 5 authors · Oct 12, 2023
46 RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval Retrieval-augmented language models can better adapt to changes in world state and incorporate long-tail knowledge. However, most existing methods retrieve only short contiguous chunks from a retrieval corpus, limiting holistic understanding of the overall document context. We introduce the novel approach of recursively embedding, clustering, and summarizing chunks of text, constructing a tree with differing levels of summarization from the bottom up. At inference time, our RAPTOR model retrieves from this tree, integrating information across lengthy documents at different levels of abstraction. Controlled experiments show that retrieval with recursive summaries offers significant improvements over traditional retrieval-augmented LMs on several tasks. On question-answering tasks that involve complex, multi-step reasoning, we show state-of-the-art results; for example, by coupling RAPTOR retrieval with the use of GPT-4, we can improve the best performance on the QuALITY benchmark by 20% in absolute accuracy. 6 authors · Jan 31, 2024 3
- DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew We present DictaBERT, a new state-of-the-art pre-trained BERT model for modern Hebrew, outperforming existing models on most benchmarks. Additionally, we release two fine-tuned versions of the model, designed to perform two specific foundational tasks in the analysis of Hebrew texts: prefix segmentation and morphological tagging. These fine-tuned models allow any developer to perform prefix segmentation and morphological tagging of a Hebrew sentence with a single call to a HuggingFace model, without the need to integrate any additional libraries or code. In this paper we describe the details of the training as well and the results on the different benchmarks. We release the models to the community, along with sample code demonstrating their use. We release these models as part of our goal to help further research and development in Hebrew NLP. 3 authors · Aug 31, 2023
1 Deep contextualized word representations We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals. 7 authors · Feb 14, 2018
1 Attention Is (not) All You Need for Commonsense Reasoning The recently introduced BERT model exhibits strong performance on several language understanding benchmarks. In this paper, we describe a simple re-implementation of BERT for commonsense reasoning. We show that the attentions produced by BERT can be directly utilized for tasks such as the Pronoun Disambiguation Problem and Winograd Schema Challenge. Our proposed attention-guided commonsense reasoning method is conceptually simple yet empirically powerful. Experimental analysis on multiple datasets demonstrates that our proposed system performs remarkably well on all cases while outperforming the previously reported state of the art by a margin. While results suggest that BERT seems to implicitly learn to establish complex relationships between entities, solving commonsense reasoning tasks might require more than unsupervised models learned from huge text corpora. 2 authors · May 31, 2019
- Simplified TinyBERT: Knowledge Distillation for Document Retrieval Despite the effectiveness of utilizing the BERT model for document ranking, the high computational cost of such approaches limits their uses. To this end, this paper first empirically investigates the effectiveness of two knowledge distillation models on the document ranking task. In addition, on top of the recently proposed TinyBERT model, two simplifications are proposed. Evaluations on two different and widely-used benchmarks demonstrate that Simplified TinyBERT with the proposed simplifications not only boosts TinyBERT, but also significantly outperforms BERT-Base when providing 15times speedup. 5 authors · Sep 16, 2020
- Linguistic Structure Induction from Language Models Linear sequences of words are implicitly represented in our brains by hierarchical structures that organize the composition of words in sentences. Linguists formalize different frameworks to model this hierarchy; two of the most common syntactic frameworks are Constituency and Dependency. Constituency represents sentences as nested groups of phrases, while dependency represents a sentence by assigning relations between its words. Recently, the pursuit of intelligent machines has produced Language Models (LMs) capable of solving many language tasks with a human-level performance. Many studies now question whether LMs implicitly represent syntactic hierarchies. This thesis focuses on producing constituency and dependency structures from LMs in an unsupervised setting. I review the critical methods in this field and highlight a line of work that utilizes a numerical representation for binary constituency trees (Syntactic Distance). I present a detailed study on StructFormer (SF) (Shen et al., 2021), which retrofits a transformer encoder architecture with a parser network to produce constituency and dependency structures. I present six experiments to analyze and address this field's challenges; experiments include investigating the effect of repositioning the parser network within the SF architecture, evaluating subword-based induced trees, and benchmarking the models developed in the thesis experiments on linguistic tasks. Models benchmarking is performed by participating in the BabyLM challenge, published at CoNLL 2023 (Momen et al., 2023). The results of this thesis encourage further development in the direction of retrofitting transformer-based models to induce syntactic structures, supported by the acceptable performance of SF in different experimental settings and the observed limitations that require innovative solutions to advance the state of syntactic structure induction. 1 authors · Mar 11, 2024
- How Language-Neutral is Multilingual BERT? Multilingual BERT (mBERT) provides sentence representations for 104 languages, which are useful for many multi-lingual tasks. Previous work probed the cross-linguality of mBERT using zero-shot transfer learning on morphological and syntactic tasks. We instead focus on the semantic properties of mBERT. We show that mBERT representations can be split into a language-specific component and a language-neutral component, and that the language-neutral component is sufficiently general in terms of modeling semantics to allow high-accuracy word-alignment and sentence retrieval but is not yet good enough for the more difficult task of MT quality estimation. Our work presents interesting challenges which must be solved to build better language-neutral representations, particularly for tasks requiring linguistic transfer of semantics. 3 authors · Nov 8, 2019
- What Does BERT Look At? An Analysis of BERT's Attention Large pre-trained neural networks such as BERT have had great recent success in NLP, motivating a growing body of research investigating what aspects of language they are able to learn from unlabeled data. Most recent analysis has focused on model outputs (e.g., language model surprisal) or internal vector representations (e.g., probing classifiers). Complementary to these works, we propose methods for analyzing the attention mechanisms of pre-trained models and apply them to BERT. BERT's attention heads exhibit patterns such as attending to delimiter tokens, specific positional offsets, or broadly attending over the whole sentence, with heads in the same layer often exhibiting similar behaviors. We further show that certain attention heads correspond well to linguistic notions of syntax and coreference. For example, we find heads that attend to the direct objects of verbs, determiners of nouns, objects of prepositions, and coreferent mentions with remarkably high accuracy. Lastly, we propose an attention-based probing classifier and use it to further demonstrate that substantial syntactic information is captured in BERT's attention. 4 authors · Jun 10, 2019 1
- RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses Recently, substantial progress has been made in text ranking based on pretrained language models such as BERT. However, there are limited studies on how to leverage more powerful sequence-to-sequence models such as T5. Existing attempts usually formulate text ranking as classification and rely on postprocessing to obtain a ranked list. In this paper, we propose RankT5 and study two T5-based ranking model structures, an encoder-decoder and an encoder-only one, so that they not only can directly output ranking scores for each query-document pair, but also can be fine-tuned with "pairwise" or "listwise" ranking losses to optimize ranking performances. Our experiments show that the proposed models with ranking losses can achieve substantial ranking performance gains on different public text ranking data sets. Moreover, when fine-tuned with listwise ranking losses, the ranking model appears to have better zero-shot ranking performance on out-of-domain data sets compared to the model fine-tuned with classification losses. 9 authors · Oct 12, 2022
- Hyperbolic Image-Text Representations Visual and linguistic concepts naturally organize themselves in a hierarchy, where a textual concept ``dog'' entails all images that contain dogs. Despite being intuitive, current large-scale vision and language models such as CLIP do not explicitly capture such hierarchy. We propose MERU, a contrastive model that yields hyperbolic representations of images and text. Hyperbolic spaces have suitable geometric properties to embed tree-like data, so MERU can better capture the underlying hierarchy in image-text data. Our results show that MERU learns a highly interpretable representation space while being competitive with CLIP's performance on multi-modal tasks like image classification and image-text retrieval. 5 authors · Apr 18, 2023
- Deeper Text Understanding for IR with Contextual Neural Language Modeling Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited. 2 authors · May 22, 2019
- L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy. 5 authors · Apr 22, 2023
- Pre-training Transformer Models with Sentence-Level Objectives for Answer Sentence Selection An important task for designing QA systems is answer sentence selection (AS2): selecting the sentence containing (or constituting) the answer to a question from a set of retrieved relevant documents. In this paper, we propose three novel sentence-level transformer pre-training objectives that incorporate paragraph-level semantics within and across documents, to improve the performance of transformers for AS2, and mitigate the requirement of large labeled datasets. Specifically, the model is tasked to predict whether: (i) two sentences are extracted from the same paragraph, (ii) a given sentence is extracted from a given paragraph, and (iii) two paragraphs are extracted from the same document. Our experiments on three public and one industrial AS2 datasets demonstrate the empirical superiority of our pre-trained transformers over baseline models such as RoBERTa and ELECTRA for AS2. 4 authors · May 20, 2022
3 The Geometry of Categorical and Hierarchical Concepts in Large Language Models Understanding how semantic meaning is encoded in the representation spaces of large language models is a fundamental problem in interpretability. In this paper, we study the two foundational questions in this area. First, how are categorical concepts, such as {'mammal', 'bird', 'reptile', 'fish'}, represented? Second, how are hierarchical relations between concepts encoded? For example, how is the fact that 'dog' is a kind of 'mammal' encoded? We show how to extend the linear representation hypothesis to answer these questions. We find a remarkably simple structure: simple categorical concepts are represented as simplices, hierarchically related concepts are orthogonal in a sense we make precise, and (in consequence) complex concepts are represented as polytopes constructed from direct sums of simplices, reflecting the hierarchical structure. We validate these theoretical results on the Gemma large language model, estimating representations for 957 hierarchically related concepts using data from WordNet. 4 authors · Jun 3, 2024
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness We introduce "pointer-guided segment ordering" (SO), a novel pre-training technique aimed at enhancing the contextual understanding of paragraph-level text representations in large language models. Our methodology leverages a self-attention-driven pointer network to restore the original sequence of shuffled text segments, addressing the challenge of capturing the structural coherence and contextual dependencies within documents. This pre-training approach is complemented by a fine-tuning methodology that incorporates dynamic sampling, augmenting the diversity of training instances and improving sample efficiency for various downstream applications. We evaluate our method on a diverse set of datasets, demonstrating its efficacy in tasks requiring sequential text classification across scientific literature and financial reporting domains. Our experiments show that pointer-guided pre-training significantly enhances the model's ability to understand complex document structures, leading to state-of-the-art performance in downstream classification tasks. 4 authors · Jun 6, 2024 2
- Keyphrase Extraction from Scholarly Articles as Sequence Labeling using Contextualized Embeddings In this paper, we formulate keyphrase extraction from scholarly articles as a sequence labeling task solved using a BiLSTM-CRF, where the words in the input text are represented using deep contextualized embeddings. We evaluate the proposed architecture using both contextualized and fixed word embedding models on three different benchmark datasets (Inspec, SemEval 2010, SemEval 2017) and compare with existing popular unsupervised and supervised techniques. Our results quantify the benefits of (a) using contextualized embeddings (e.g. BERT) over fixed word embeddings (e.g. Glove); (b) using a BiLSTM-CRF architecture with contextualized word embeddings over fine-tuning the contextualized word embedding model directly, and (c) using genre-specific contextualized embeddings (SciBERT). Through error analysis, we also provide some insights into why particular models work better than others. Lastly, we present a case study where we analyze different self-attention layers of the two best models (BERT and SciBERT) to better understand the predictions made by each for the task of keyphrase extraction. 10 authors · Oct 19, 2019
- VGCN-BERT: Augmenting BERT with Graph Embedding for Text Classification Much progress has been made recently on text classification with methods based on neural networks. In particular, models using attention mechanism such as BERT have shown to have the capability of capturing the contextual information within a sentence or document. However, their ability of capturing the global information about the vocabulary of a language is more limited. This latter is the strength of Graph Convolutional Networks (GCN). In this paper, we propose VGCN-BERT model which combines the capability of BERT with a Vocabulary Graph Convolutional Network (VGCN). Local information and global information interact through different layers of BERT, allowing them to influence mutually and to build together a final representation for classification. In our experiments on several text classification datasets, our approach outperforms BERT and GCN alone, and achieve higher effectiveness than that reported in previous studies. 3 authors · Apr 12, 2020
- LLM-augmented Preference Learning from Natural Language Finding preferences expressed in natural language is an important but challenging task. State-of-the-art(SotA) methods leverage transformer-based models such as BERT, RoBERTa, etc. and graph neural architectures such as graph attention networks. Since Large Language Models (LLMs) are equipped to deal with larger context lengths and have much larger model sizes than the transformer-based model, we investigate their ability to classify comparative text directly. This work aims to serve as a first step towards using LLMs for the CPC task. We design and conduct a set of experiments that format the classification task into an input prompt for the LLM and a methodology to get a fixed-format response that can be automatically evaluated. Comparing performances with existing methods, we see that pre-trained LLMs are able to outperform the previous SotA models with no fine-tuning involved. Our results show that the LLMs can consistently outperform the SotA when the target text is large -- i.e. composed of multiple sentences --, and are still comparable to the SotA performance in shorter text. We also find that few-shot learning yields better performance than zero-shot learning. 7 authors · Oct 12, 2023
- Evaluation of sentence embeddings in downstream and linguistic probing tasks Despite the fast developmental pace of new sentence embedding methods, it is still challenging to find comprehensive evaluations of these different techniques. In the past years, we saw significant improvements in the field of sentence embeddings and especially towards the development of universal sentence encoders that could provide inductive transfer to a wide variety of downstream tasks. In this work, we perform a comprehensive evaluation of recent methods using a wide variety of downstream and linguistic feature probing tasks. We show that a simple approach using bag-of-words with a recently introduced language model for deep context-dependent word embeddings proved to yield better results in many tasks when compared to sentence encoders trained on entailment datasets. We also show, however, that we are still far away from a universal encoder that can perform consistently across several downstream tasks. 3 authors · Jun 16, 2018
- PARADE: Passage Representation Aggregation for Document Reranking Pretrained transformer models, such as BERT and T5, have shown to be highly effective at ad-hoc passage and document ranking. Due to inherent sequence length limits of these models, they need to be run over a document's passages, rather than processing the entire document sequence at once. Although several approaches for aggregating passage-level signals have been proposed, there has yet to be an extensive comparison of these techniques. In this work, we explore strategies for aggregating relevance signals from a document's passages into a final ranking score. We find that passage representation aggregation techniques can significantly improve over techniques proposed in prior work, such as taking the maximum passage score. We call this new approach PARADE. In particular, PARADE can significantly improve results on collections with broad information needs where relevance signals can be spread throughout the document (such as TREC Robust04 and GOV2). Meanwhile, less complex aggregation techniques may work better on collections with an information need that can often be pinpointed to a single passage (such as TREC DL and TREC Genomics). We also conduct efficiency analyses, and highlight several strategies for improving transformer-based aggregation. 5 authors · Aug 20, 2020
- Hierarchical Pretraining for Biomedical Term Embeddings Electronic health records (EHR) contain narrative notes that provide extensive details on the medical condition and management of patients. Natural language processing (NLP) of clinical notes can use observed frequencies of clinical terms as predictive features for downstream applications such as clinical decision making and patient trajectory prediction. However, due to the vast number of highly similar and related clinical concepts, a more effective modeling strategy is to represent clinical terms as semantic embeddings via representation learning and use the low dimensional embeddings as feature vectors for predictive modeling. To achieve efficient representation, fine-tuning pretrained language models with biomedical knowledge graphs may generate better embeddings for biomedical terms than those from standard language models alone. These embeddings can effectively discriminate synonymous pairs of from those that are unrelated. However, they often fail to capture different degrees of similarity or relatedness for concepts that are hierarchical in nature. To overcome this limitation, we propose HiPrBERT, a novel biomedical term representation model trained on additionally complied data that contains hierarchical structures for various biomedical terms. We modify an existing contrastive loss function to extract information from these hierarchies. Our numerical experiments demonstrate that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications 6 authors · Jul 1, 2023
2 ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs' powerful generative abilities for learning passage embeddings. To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile. 4 authors · Aug 6, 2024
2 HMT: Hierarchical Memory Transformer for Long Context Language Processing Transformer-based large language models (LLM) have been widely used in language processing applications. However, most of them restrict the context window that permits the model to attend to every token in the inputs. Previous works in recurrent models can memorize past tokens to enable unlimited context and maintain effectiveness. However, they have "flat" memory architectures, which have limitations in selecting and filtering information. Since humans are good at learning and self-adjustment, we speculate that imitating brain memory hierarchy is beneficial for model memorization. We propose the Hierarchical Memory Transformer (HMT), a novel framework that enables and improves models' long-context processing ability by imitating human memorization behavior. Leveraging memory-augmented segment-level recurrence, we organize the memory hierarchy by preserving tokens from early input token segments, passing memory embeddings along the sequence, and recalling relevant information from history. Evaluating general language modeling (Wikitext-103, PG-19) and question-answering tasks (PubMedQA), we show that HMT steadily improves the long-context processing ability of context-constrained and long-context models. With an additional 0.5% - 2% of parameters, HMT can easily plug in and augment future LLMs to handle long context effectively. Our code is open-sourced on Github: https://github.com/OswaldHe/HMT-pytorch. 5 authors · May 9, 2024
- Distilling Dense Representations for Ranking using Tightly-Coupled Teachers We present an approach to ranking with dense representations that applies knowledge distillation to improve the recently proposed late-interaction ColBERT model. Specifically, we distill the knowledge from ColBERT's expressive MaxSim operator for computing relevance scores into a simple dot product, thus enabling single-step ANN search. Our key insight is that during distillation, tight coupling between the teacher model and the student model enables more flexible distillation strategies and yields better learned representations. We empirically show that our approach improves query latency and greatly reduces the onerous storage requirements of ColBERT, while only making modest sacrifices in terms of effectiveness. By combining our dense representations with sparse representations derived from document expansion, we are able to approach the effectiveness of a standard cross-encoder reranker using BERT that is orders of magnitude slower. 3 authors · Oct 21, 2020
- Revisiting Transformer-based Models for Long Document Classification The recent literature in text classification is biased towards short text sequences (e.g., sentences or paragraphs). In real-world applications, multi-page multi-paragraph documents are common and they cannot be efficiently encoded by vanilla Transformer-based models. We compare different Transformer-based Long Document Classification (TrLDC) approaches that aim to mitigate the computational overhead of vanilla transformers to encode much longer text, namely sparse attention and hierarchical encoding methods. We examine several aspects of sparse attention (e.g., size of local attention window, use of global attention) and hierarchical (e.g., document splitting strategy) transformers on four document classification datasets covering different domains. We observe a clear benefit from being able to process longer text, and, based on our results, we derive practical advice of applying Transformer-based models on long document classification tasks. 4 authors · Apr 13, 2022
- Some Like It Small: Czech Semantic Embedding Models for Industry Applications This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance. 4 authors · Nov 23, 2023
- Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion BERT-based information retrieval models are expensive, in both time (query latency) and computational resources (energy, hardware cost), making many of these models impractical especially under resource constraints. The reliance on a query encoder that only performs tokenization and on the pre-processing of passage representations at indexing, has allowed the recently proposed TILDE method to overcome the high query latency issue typical of BERT-based models. This however is at the expense of a lower effectiveness compared to other BERT-based re-rankers and dense retrievers. In addition, the original TILDE method is characterised by indexes with a very high memory footprint, as it expands each passage into the size of the BERT vocabulary. In this paper, we propose TILDEv2, a new model that stems from the original TILDE but that addresses its limitations. TILDEv2 relies on contextualized exact term matching with expanded passages. This requires to only store in the index the score of tokens that appear in the expanded passages (rather than all the vocabulary), thus producing indexes that are 99% smaller than those of TILDE. This matching mechanism also improves ranking effectiveness by 24%, without adding to the query latency. This makes TILDEv2 the state-of-the-art passage re-ranking method for CPU-only environments, capable of maintaining query latency below 100ms on commodity hardware. 2 authors · Aug 19, 2021
1 Low Rank Factorization for Compact Multi-Head Self-Attention Effective representation learning from text has been an active area of research in the fields of NLP and text mining. Attention mechanisms have been at the forefront in order to learn contextual sentence representations. Current state-of-the-art approaches for many NLP tasks use large pre-trained language models such as BERT, XLNet and so on for learning representations. These models are based on the Transformer architecture that involves recurrent blocks of computation consisting of multi-head self-attention and feedforward networks. One of the major bottlenecks largely contributing to the computational complexity of the Transformer models is the self-attention layer, that is both computationally expensive and parameter intensive. In this work, we introduce a novel multi-head self-attention mechanism operating on GRUs that is shown to be computationally cheaper and more parameter efficient than self-attention mechanism proposed in Transformers for text classification tasks. The efficiency of our approach mainly stems from two optimizations; 1) we use low-rank matrix factorization of the affinity matrix to efficiently get multiple attention distributions instead of having separate parameters for each head 2) attention scores are obtained by querying a global context vector instead of densely querying all the words in the sentence. We evaluate the performance of the proposed model on tasks such as sentiment analysis from movie reviews, predicting business ratings from reviews and classifying news articles into topics. We find that the proposed approach matches or outperforms a series of strong baselines and is more parameter efficient than comparable multi-head approaches. We also perform qualitative analyses to verify that the proposed approach is interpretable and captures context-dependent word importance. 3 authors · Nov 26, 2019
- JuriBERT: A Masked-Language Model Adaptation for French Legal Text Language models have proven to be very useful when adapted to specific domains. Nonetheless, little research has been done on the adaptation of domain-specific BERT models in the French language. In this paper, we focus on creating a language model adapted to French legal text with the goal of helping law professionals. We conclude that some specific tasks do not benefit from generic language models pre-trained on large amounts of data. We explore the use of smaller architectures in domain-specific sub-languages and their benefits for French legal text. We prove that domain-specific pre-trained models can perform better than their equivalent generalised ones in the legal domain. Finally, we release JuriBERT, a new set of BERT models adapted to the French legal domain. 5 authors · Oct 4, 2021
- HILGEN: Hierarchically-Informed Data Generation for Biomedical NER Using Knowledgebases and Large Language Models We present HILGEN, a Hierarchically-Informed Data Generation approach that combines domain knowledge from the Unified Medical Language System (UMLS) with synthetic data generated by large language models (LLMs), specifically GPT-3.5. Our approach leverages UMLS's hierarchical structure to expand training data with related concepts, while incorporating contextual information from LLMs through targeted prompts aimed at automatically generating synthetic examples for sparsely occurring named entities. The performance of the HILGEN approach was evaluated across four biomedical NER datasets (MIMIC III, BC5CDR, NCBI-Disease, and Med-Mentions) using BERT-Large and DANN (Data Augmentation with Nearest Neighbor Classifier) models, applying various data generation strategies, including UMLS, GPT-3.5, and their best ensemble. For the BERT-Large model, incorporating UMLS led to an average F1 score improvement of 40.36%, while using GPT-3.5 resulted in a comparable average increase of 40.52%. The Best-Ensemble approach using BERT-Large achieved the highest improvement, with an average increase of 42.29%. DANN model's F1 score improved by 22.74% on average using the UMLS-only approach. The GPT-3.5-based method resulted in a 21.53% increase, and the Best-Ensemble DANN model showed a more notable improvement, with an average increase of 25.03%. Our proposed HILGEN approach improves NER performance in few-shot settings without requiring additional manually annotated data. Our experiments demonstrate that an effective strategy for optimizing biomedical NER is to combine biomedical knowledge curated in the past, such as the UMLS, and generative LLMs to create synthetic training instances. Our future research will focus on exploring additional innovative synthetic data generation strategies for further improving NER performance. 6 authors · Mar 6
- NSP-BERT: A Prompt-based Few-Shot Learner Through an Original Pre-training Task--Next Sentence Prediction Using prompts to utilize language models to perform various downstream tasks, also known as prompt-based learning or prompt-learning, has lately gained significant success in comparison to the pre-train and fine-tune paradigm. Nonetheless, virtually all prompt-based methods are token-level, meaning they all utilize GPT's left-to-right language model or BERT's masked language model to perform cloze-style tasks. In this paper, we attempt to accomplish several NLP tasks in the zero-shot scenario using a BERT original pre-training task abandoned by RoBERTa and other models--Next Sentence Prediction (NSP). Unlike token-level techniques, our sentence-level prompt-based method NSP-BERT does not need to fix the length of the prompt or the position to be predicted, allowing it to handle tasks such as entity linking with ease. Based on the characteristics of NSP-BERT, we offer several quick building templates for various downstream tasks. We suggest a two-stage prompt method for word sense disambiguation tasks in particular. Our strategies for mapping the labels significantly enhance the model's performance on sentence pair tasks. On the FewCLUE benchmark, our NSP-BERT outperforms other zero-shot methods on most of these tasks and comes close to the few-shot methods. 4 authors · Sep 8, 2021
- BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents Key information extraction (KIE) from document images requires understanding the contextual and spatial semantics of texts in two-dimensional (2D) space. Many recent studies try to solve the task by developing pre-trained language models focusing on combining visual features from document images with texts and their layout. On the other hand, this paper tackles the problem by going back to the basic: effective combination of text and layout. Specifically, we propose a pre-trained language model, named BROS (BERT Relying On Spatiality), that encodes relative positions of texts in 2D space and learns from unlabeled documents with area-masking strategy. With this optimized training scheme for understanding texts in 2D space, BROS shows comparable or better performance compared to previous methods on four KIE benchmarks (FUNSD, SROIE*, CORD, and SciTSR) without relying on visual features. This paper also reveals two real-world challenges in KIE tasks-(1) minimizing the error from incorrect text ordering and (2) efficient learning from fewer downstream examples-and demonstrates the superiority of BROS over previous methods. Code is available at https://github.com/clovaai/bros. 6 authors · Aug 10, 2021
- Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration Phrase representations derived from BERT often do not exhibit complex phrasal compositionality, as the model relies instead on lexical similarity to determine semantic relatedness. In this paper, we propose a contrastive fine-tuning objective that enables BERT to produce more powerful phrase embeddings. Our approach (Phrase-BERT) relies on a dataset of diverse phrasal paraphrases, which is automatically generated using a paraphrase generation model, as well as a large-scale dataset of phrases in context mined from the Books3 corpus. Phrase-BERT outperforms baselines across a variety of phrase-level similarity tasks, while also demonstrating increased lexical diversity between nearest neighbors in the vector space. Finally, as a case study, we show that Phrase-BERT embeddings can be easily integrated with a simple autoencoder to build a phrase-based neural topic model that interprets topics as mixtures of words and phrases by performing a nearest neighbor search in the embedding space. Crowdsourced evaluations demonstrate that this phrase-based topic model produces more coherent and meaningful topics than baseline word and phrase-level topic models, further validating the utility of Phrase-BERT. 3 authors · Sep 13, 2021
- From Text Segmentation to Smart Chaptering: A Novel Benchmark for Structuring Video Transcriptions Text segmentation is a fundamental task in natural language processing, where documents are split into contiguous sections. However, prior research in this area has been constrained by limited datasets, which are either small in scale, synthesized, or only contain well-structured documents. In this paper, we address these limitations by introducing a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse. As part of this work, we introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines. Lastly, we expand the notion of text segmentation to a more practical "smart chaptering" task that involves the segmentation of unstructured content, the generation of meaningful segment titles, and a potential real-time application of the models. 2 authors · Feb 27, 2024
- Dealing with Typos for BERT-based Passage Retrieval and Ranking Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effectively model the semantic matching between queries and passages, also in presence of keyword mismatch, i.e. passages that are relevant to a query but do not contain important query keywords. In this paper we consider the Dense Retriever (DR), a passage retrieval method, and the BERT re-ranker, a popular passage re-ranking method. In this context, we formally investigate how these models respond and adapt to a specific type of keyword mismatch -- that caused by keyword typos occurring in queries. Through empirical investigation, we find that typos can lead to a significant drop in retrieval and ranking effectiveness. We then propose a simple typos-aware training framework for DR and BERT re-ranker to address this issue. Our experimental results on the MS MARCO passage ranking dataset show that, with our proposed typos-aware training, DR and BERT re-ranker can become robust to typos in queries, resulting in significantly improved effectiveness compared to models trained without appropriately accounting for typos. 2 authors · Aug 27, 2021
- FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking. 10 authors · Aug 4
- LegalTurk Optimized BERT for Multi-Label Text Classification and NER The introduction of the Transformer neural network, along with techniques like self-supervised pre-training and transfer learning, has paved the way for advanced models like BERT. Despite BERT's impressive performance, opportunities for further enhancement exist. To our knowledge, most efforts are focusing on improving BERT's performance in English and in general domains, with no study specifically addressing the legal Turkish domain. Our study is primarily dedicated to enhancing the BERT model within the legal Turkish domain through modifications in the pre-training phase. In this work, we introduce our innovative modified pre-training approach by combining diverse masking strategies. In the fine-tuning task, we focus on two essential downstream tasks in the legal domain: name entity recognition and multi-label text classification. To evaluate our modified pre-training approach, we fine-tuned all customized models alongside the original BERT models to compare their performance. Our modified approach demonstrated significant improvements in both NER and multi-label text classification tasks compared to the original BERT model. Finally, to showcase the impact of our proposed models, we trained our best models with different corpus sizes and compared them with BERTurk models. The experimental results demonstrate that our innovative approach, despite being pre-trained on a smaller corpus, competes with BERTurk. 3 authors · Jun 30, 2024
1 Probing BERT for German Compound Semantics This paper investigates the extent to which pretrained German BERT encodes knowledge of noun compound semantics. We comprehensively vary combinations of target tokens, layers, and cased vs. uncased models, and evaluate them by predicting the compositionality of 868 gold standard compounds. Looking at representational patterns within the transformer architecture, we observe trends comparable to equivalent prior work on English, with compositionality information most easily recoverable in the early layers. However, our strongest results clearly lag behind those reported for English, suggesting an inherently more difficult task in German. This may be due to the higher productivity of compounding in German than in English and the associated increase in constituent-level ambiguity, including in our target compound set. 3 authors · May 20
1 How far is Language Model from 100% Few-shot Named Entity Recognition in Medical Domain Recent advancements in language models (LMs) have led to the emergence of powerful models such as Small LMs (e.g., T5) and Large LMs (e.g., GPT-4). These models have demonstrated exceptional capabilities across a wide range of tasks, such as name entity recognition (NER) in the general domain. (We define SLMs as pre-trained models with fewer parameters compared to models like GPT-3/3.5/4, such as T5, BERT, and others.) Nevertheless, their efficacy in the medical section remains uncertain and the performance of medical NER always needs high accuracy because of the particularity of the field. This paper aims to provide a thorough investigation to compare the performance of LMs in medical few-shot NER and answer How far is LMs from 100\% Few-shot NER in Medical Domain, and moreover to explore an effective entity recognizer to help improve the NER performance. Based on our extensive experiments conducted on 16 NER models spanning from 2018 to 2023, our findings clearly indicate that LLMs outperform SLMs in few-shot medical NER tasks, given the presence of suitable examples and appropriate logical frameworks. Despite the overall superiority of LLMs in few-shot medical NER tasks, it is important to note that they still encounter some challenges, such as misidentification, wrong template prediction, etc. Building on previous findings, we introduce a simple and effective method called RT (Retrieving and Thinking), which serves as retrievers, finding relevant examples, and as thinkers, employing a step-by-step reasoning process. Experimental results show that our proposed RT framework significantly outperforms the strong open baselines on the two open medical benchmark datasets 2 authors · Jun 30, 2023
- A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications. 6 authors · Jul 8, 2015
6 German Text Embedding Clustering Benchmark This work introduces a benchmark assessing the performance of clustering German text embeddings in different domains. This benchmark is driven by the increasing use of clustering neural text embeddings in tasks that require the grouping of texts (such as topic modeling) and the need for German resources in existing benchmarks. We provide an initial analysis for a range of pre-trained mono- and multilingual models evaluated on the outcome of different clustering algorithms. Results include strong performing mono- and multilingual models. Reducing the dimensions of embeddings can further improve clustering. Additionally, we conduct experiments with continued pre-training for German BERT models to estimate the benefits of this additional training. Our experiments suggest that significant performance improvements are possible for short text. All code and datasets are publicly available. 3 authors · Jan 5, 2024 2
- Improving BERT-based Query-by-Document Retrieval with Multi-Task Optimization Query-by-document (QBD) retrieval is an Information Retrieval task in which a seed document acts as the query and the goal is to retrieve related documents -- it is particular common in professional search tasks. In this work we improve the retrieval effectiveness of the BERT re-ranker, proposing an extension to its fine-tuning step to better exploit the context of queries. To this end, we use an additional document-level representation learning objective besides the ranking objective when fine-tuning the BERT re-ranker. Our experiments on two QBD retrieval benchmarks show that the proposed multi-task optimization significantly improves the ranking effectiveness without changing the BERT re-ranker or using additional training samples. In future work, the generalizability of our approach to other retrieval tasks should be further investigated. 3 authors · Feb 1, 2022
- FLERT: Document-Level Features for Named Entity Recognition Current state-of-the-art approaches for named entity recognition (NER) typically consider text at the sentence-level and thus do not model information that crosses sentence boundaries. However, the use of transformer-based models for NER offers natural options for capturing document-level features. In this paper, we perform a comparative evaluation of document-level features in the two standard NER architectures commonly considered in the literature, namely "fine-tuning" and "feature-based LSTM-CRF". We evaluate different hyperparameters for document-level features such as context window size and enforcing document-locality. We present experiments from which we derive recommendations for how to model document context and present new state-of-the-art scores on several CoNLL-03 benchmark datasets. Our approach is integrated into the Flair framework to facilitate reproduction of our experiments. 2 authors · Nov 13, 2020
- MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available. 3 authors · May 2, 2023 1
- Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations Recent research has adopted a new experimental field centered around the concept of text perturbations which has revealed that shuffled word order has little to no impact on the downstream performance of Transformer-based language models across many NLP tasks. These findings contradict the common understanding of how the models encode hierarchical and structural information and even question if the word order is modeled with position embeddings. To this end, this paper proposes nine probing datasets organized by the type of controllable text perturbation for three Indo-European languages with a varying degree of word order flexibility: English, Swedish and Russian. Based on the probing analysis of the M-BERT and M-BART models, we report that the syntactic sensitivity depends on the language and model pre-training objectives. We also find that the sensitivity grows across layers together with the increase of the perturbation granularity. Last but not least, we show that the models barely use the positional information to induce syntactic trees from their intermediate self-attention and contextualized representations. 3 authors · Sep 28, 2021
1 Benchmarking and Building Long-Context Retrieval Models with LoCo and M2-BERT Retrieval pipelines-an integral component of many machine learning systems-perform poorly in domains where documents are long (e.g., 10K tokens or more) and where identifying the relevant document requires synthesizing information across the entire text. Developing long-context retrieval encoders suitable for these domains raises three challenges: (1) how to evaluate long-context retrieval performance, (2) how to pretrain a base language model to represent both short contexts (corresponding to queries) and long contexts (corresponding to documents), and (3) how to fine-tune this model for retrieval under the batch size limitations imposed by GPU memory constraints. To address these challenges, we first introduce LoCoV1, a novel 12 task benchmark constructed to measure long-context retrieval where chunking is not possible or not effective. We next present the M2-BERT retrieval encoder, an 80M parameter state-space encoder model built from the Monarch Mixer architecture, capable of scaling to documents up to 32K tokens long. We describe a pretraining data mixture which allows this encoder to process both short and long context sequences, and a finetuning approach that adapts this base model to retrieval with only single-sample batches. Finally, we validate the M2-BERT retrieval encoder on LoCoV1, finding that it outperforms competitive Transformer-based models by at least 23.3 points, despite containing upwards of 90x fewer parameters. 5 authors · Feb 12, 2024
- Explicit Pairwise Word Interaction Modeling Improves Pretrained Transformers for English Semantic Similarity Tasks In English semantic similarity tasks, classic word embedding-based approaches explicitly model pairwise "interactions" between the word representations of a sentence pair. Transformer-based pretrained language models disregard this notion, instead modeling pairwise word interactions globally and implicitly through their self-attention mechanism. In this paper, we hypothesize that introducing an explicit, constrained pairwise word interaction mechanism to pretrained language models improves their effectiveness on semantic similarity tasks. We validate our hypothesis using BERT on four tasks in semantic textual similarity and answer sentence selection. We demonstrate consistent improvements in quality by adding an explicit pairwise word interaction module to BERT. 3 authors · Nov 7, 2019
- Learning to Rank Context for Named Entity Recognition Using a Synthetic Dataset While recent pre-trained transformer-based models can perform named entity recognition (NER) with great accuracy, their limited range remains an issue when applied to long documents such as whole novels. To alleviate this issue, a solution is to retrieve relevant context at the document level. Unfortunately, the lack of supervision for such a task means one has to settle for unsupervised approaches. Instead, we propose to generate a synthetic context retrieval training dataset using Alpaca, an instructiontuned large language model (LLM). Using this dataset, we train a neural context retriever based on a BERT model that is able to find relevant context for NER. We show that our method outperforms several retrieval baselines for the NER task on an English literary dataset composed of the first chapter of 40 books. 3 authors · Oct 16, 2023
1 Dynamic Injection of Entity Knowledge into Dense Retrievers Dense retrievers often struggle with queries involving less-frequent entities due to their limited entity knowledge. We propose the Knowledgeable Passage Retriever (KPR), a BERT-based retriever enhanced with a context-entity attention layer and dynamically updatable entity embeddings. This design enables KPR to incorporate external entity knowledge without retraining. Experiments on three datasets show that KPR consistently improves retrieval accuracy, achieving a substantial 12.6% gain on the EntityQuestions dataset over the model without KPR extensions. When built on the off-the-shelf bge-base retriever, KPR achieves state-of-the-art performance among similarly sized models on two datasets. Code and models will be released soon. 5 authors · Jul 5
- Global and Local Hierarchy-aware Contrastive Framework for Implicit Discourse Relation Recognition Due to the absence of explicit connectives, implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis. The critical step for IDRR is to learn high-quality discourse relation representations between two arguments. Recent methods tend to integrate the whole hierarchical information of senses into discourse relation representations for multi-level sense recognition. Nevertheless, they insufficiently incorporate the static hierarchical structure containing all senses (defined as global hierarchy), and ignore the hierarchical sense label sequence corresponding to each instance (defined as local hierarchy). For the purpose of sufficiently exploiting global and local hierarchies of senses to learn better discourse relation representations, we propose a novel GlObal and Local Hierarchy-aware Contrastive Framework (GOLF), to model two kinds of hierarchies with the aid of multi-task learning and contrastive learning. Experimental results on PDTB 2.0 and PDTB 3.0 datasets demonstrate that our method remarkably outperforms current state-of-the-art models at all hierarchical levels. Our code is publicly available at https://github.com/YJiangcm/GOLF_for_IDRR 3 authors · Nov 24, 2022
- Hierarchical Indexing for Retrieval-Augmented Opinion Summarization We propose a method for unsupervised abstractive opinion summarization, that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs). Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy. At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews. Then, we use a pretrained LLM to generate a readable summary that is grounded in these extracted evidential clusters. The modularity of our approach allows us to evaluate its efficacy at each stage. We show that HIRO learns an encoding space that is more semantically structured than prior work, and generates summaries that are more representative of the opinions in the input reviews. Human evaluation confirms that HIRO generates more coherent, detailed and accurate summaries that are significantly preferred by annotators compared to prior work. 3 authors · Mar 1, 2024
3 Scaling Transformer to 1M tokens and beyond with RMT This technical report presents the application of a recurrent memory to extend the context length of BERT, one of the most effective Transformer-based models in natural language processing. By leveraging the Recurrent Memory Transformer architecture, we have successfully increased the model's effective context length to an unprecedented two million tokens, while maintaining high memory retrieval accuracy. Our method allows for the storage and processing of both local and global information and enables information flow between segments of the input sequence through the use of recurrence. Our experiments demonstrate the effectiveness of our approach, which holds significant potential to enhance long-term dependency handling in natural language understanding and generation tasks as well as enable large-scale context processing for memory-intensive applications. 3 authors · Apr 19, 2023
- ToddlerBERTa: Exploiting BabyBERTa for Grammar Learning and Language Understanding We present ToddlerBERTa, a BabyBERTa-like language model, exploring its capabilities through five different models with varied hyperparameters. Evaluating on BLiMP, SuperGLUE, MSGS, and a Supplement benchmark from the BabyLM challenge, we find that smaller models can excel in specific tasks, while larger models perform well with substantial data. Despite training on a smaller dataset, ToddlerBERTa demonstrates commendable performance, rivalling the state-of-the-art RoBERTa-base. The model showcases robust language understanding, even with single-sentence pretraining, and competes with baselines that leverage broader contextual information. Our work provides insights into hyperparameter choices, and data utilization, contributing to the advancement of language models. 1 authors · Aug 30, 2023 2
- Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation Pretrained contextual and non-contextual subword embeddings have become available in over 250 languages, allowing massively multilingual NLP. However, while there is no dearth of pretrained embeddings, the distinct lack of systematic evaluations makes it difficult for practitioners to choose between them. In this work, we conduct an extensive evaluation comparing non-contextual subword embeddings, namely FastText and BPEmb, and a contextual representation method, namely BERT, on multilingual named entity recognition and part-of-speech tagging. We find that overall, a combination of BERT, BPEmb, and character representations works best across languages and tasks. A more detailed analysis reveals different strengths and weaknesses: Multilingual BERT performs well in medium- to high-resource languages, but is outperformed by non-contextual subword embeddings in a low-resource setting. 2 authors · Jun 4, 2019
- Span-based Joint Entity and Relation Extraction with Transformer Pre-training We introduce SpERT, an attention model for span-based joint entity and relation extraction. Our key contribution is a light-weight reasoning on BERT embeddings, which features entity recognition and filtering, as well as relation classification with a localized, marker-free context representation. The model is trained using strong within-sentence negative samples, which are efficiently extracted in a single BERT pass. These aspects facilitate a search over all spans in the sentence. In ablation studies, we demonstrate the benefits of pre-training, strong negative sampling and localized context. Our model outperforms prior work by up to 2.6% F1 score on several datasets for joint entity and relation extraction. 2 authors · Sep 17, 2019
- Portuguese Named Entity Recognition using BERT-CRF Recent advances in language representation using neural networks have made it viable to transfer the learned internal states of a trained model to downstream natural language processing tasks, such as named entity recognition (NER) and question answering. It has been shown that the leverage of pre-trained language models improves the overall performance on many tasks and is highly beneficial when labeled data is scarce. In this work, we train Portuguese BERT models and employ a BERT-CRF architecture to the NER task on the Portuguese language, combining the transfer capabilities of BERT with the structured predictions of CRF. We explore feature-based and fine-tuning training strategies for the BERT model. Our fine-tuning approach obtains new state-of-the-art results on the HAREM I dataset, improving the F1-score by 1 point on the selective scenario (5 NE classes) and by 4 points on the total scenario (10 NE classes). 3 authors · Sep 23, 2019
- Ditto: A Simple and Efficient Approach to Improve Sentence Embeddings Prior studies diagnose the anisotropy problem in sentence representations from pre-trained language models, e.g., BERT, without fine-tuning. Our analysis reveals that the sentence embeddings from BERT suffer from a bias towards uninformative words, limiting the performance in semantic textual similarity (STS) tasks. To address this bias, we propose a simple and efficient unsupervised approach, Diagonal Attention Pooling (Ditto), which weights words with model-based importance estimations and computes the weighted average of word representations from pre-trained models as sentence embeddings. Ditto can be easily applied to any pre-trained language model as a postprocessing operation. Compared to prior sentence embedding approaches, Ditto does not add parameters nor requires any learning. Empirical evaluations demonstrate that our proposed Ditto can alleviate the anisotropy problem and improve various pre-trained models on STS tasks. 9 authors · May 18, 2023
- How to Fine-Tune BERT for Text Classification? Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets. 4 authors · May 14, 2019
- Scalable Zero-shot Entity Linking with Dense Entity Retrieval This paper introduces a conceptually simple, scalable, and highly effective BERT-based entity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algorithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross-encoder, that concatenates the mention and entity text. Experiments demonstrate that this approach is state of the art on recent zero-shot benchmarks (6 point absolute gains) and also on more established non-zero-shot evaluations (e.g. TACKBP-2010), despite its relative simplicity (e.g. no explicit entity embeddings or manually engineered mention tables). We also show that bi-encoder linking is very fast with nearest neighbour search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the accuracy gain from the more expensive cross-encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at https://github.com/facebookresearch/BLINK. 5 authors · Nov 9, 2019
- WangchanBERTa: Pretraining transformer-based Thai Language Models Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts. 4 authors · Jan 23, 2021
- Can Large Language Models Recall Reference Location Like Humans? When completing knowledge-intensive tasks, humans sometimes need not just an answer but also a corresponding reference passage for auxiliary reading. Previous methods required obtaining pre-segmented article chunks through additional retrieval models. This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models (LLMs) to independently recall reference passage from any starting position. We propose a two-stage framework that simulates the scenario of humans recalling easily forgotten references. Initially, the LLM is prompted to recall document title identifiers to obtain a coarse-grained document set. Then, based on the acquired coarse-grained document set, it recalls fine-grained passage. In the two-stage recall process, we use constrained decoding to ensure that content outside of the stored documents is not generated. To increase speed, we only recall a short prefix in the second stage, then locate its position to retrieve a complete passage. Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms, and the obtained reference significantly assist downstream tasks. 5 authors · Feb 26, 2024
- Blending Learning to Rank and Dense Representations for Efficient and Effective Cascades We investigate the exploitation of both lexical and neural relevance signals for ad-hoc passage retrieval. Our exploration involves a large-scale training dataset in which dense neural representations of MS-MARCO queries and passages are complemented and integrated with 253 hand-crafted lexical features extracted from the same corpus. Blending of the relevance signals from the two different groups of features is learned by a classical Learning-to-Rank (LTR) model based on a forest of decision trees. To evaluate our solution, we employ a pipelined architecture where a dense neural retriever serves as the first stage and performs a nearest-neighbor search over the neural representations of the documents. Our LTR model acts instead as the second stage that re-ranks the set of candidates retrieved by the first stage to enhance effectiveness. The results of reproducible experiments conducted with state-of-the-art dense retrievers on publicly available resources show that the proposed solution significantly enhances the end-to-end ranking performance while relatively minimally impacting efficiency. Specifically, we achieve a boost in nDCG@10 of up to 11% with an increase in average query latency of only 4.3%. This confirms the advantage of seamlessly combining two distinct families of signals that mutually contribute to retrieval effectiveness. 4 authors · Oct 18
- Aggretriever: A Simple Approach to Aggregate Textual Representations for Robust Dense Passage Retrieval Pre-trained language models have been successful in many knowledge-intensive NLP tasks. However, recent work has shown that models such as BERT are not ``structurally ready'' to aggregate textual information into a [CLS] vector for dense passage retrieval (DPR). This ``lack of readiness'' results from the gap between language model pre-training and DPR fine-tuning. Previous solutions call for computationally expensive techniques such as hard negative mining, cross-encoder distillation, and further pre-training to learn a robust DPR model. In this work, we instead propose to fully exploit knowledge in a pre-trained language model for DPR by aggregating the contextualized token embeddings into a dense vector, which we call agg*. By concatenating vectors from the [CLS] token and agg*, our Aggretriever model substantially improves the effectiveness of dense retrieval models on both in-domain and zero-shot evaluations without introducing substantial training overhead. Code is available at https://github.com/castorini/dhr 3 authors · Jul 31, 2022
- SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers The performance of Transformer models has been enhanced by increasing the number of parameters and the length of the processed text. Consequently, fine-tuning the entire model becomes a memory-intensive process. High-performance methods for parameter-efficient fine-tuning (PEFT) typically work with Attention blocks and often overlook MLP blocks, which contain about half of the model parameters. We propose a new selective PEFT method, namely SparseGrad, that performs well on MLP blocks. We transfer layer gradients to a space where only about 1\% of the layer's elements remain significant. By converting gradients into a sparse structure, we reduce the number of updated parameters. We apply SparseGrad to fine-tune BERT and RoBERTa for the NLU task and LLaMa-2 for the Question-Answering task. In these experiments, with identical memory requirements, our method outperforms LoRA and MeProp, robust popular state-of-the-art PEFT approaches. 6 authors · Oct 9, 2024
- Semantics-aware BERT for Language Understanding The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural language inference tasks. However, the existing language representation models including ELMo, GPT and BERT only exploit plain context-sensitive features such as character or word embeddings. They rarely consider incorporating structured semantic information which can provide rich semantics for language representation. To promote natural language understanding, we propose to incorporate explicit contextual semantics from pre-trained semantic role labeling, and introduce an improved language representation model, Semantics-aware BERT (SemBERT), which is capable of explicitly absorbing contextual semantics over a BERT backbone. SemBERT keeps the convenient usability of its BERT precursor in a light fine-tuning way without substantial task-specific modifications. Compared with BERT, semantics-aware BERT is as simple in concept but more powerful. It obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks. 7 authors · Sep 5, 2019
- BERTuit: Understanding Spanish language in Twitter through a native transformer The appearance of complex attention-based language models such as BERT, Roberta or GPT-3 has allowed to address highly complex tasks in a plethora of scenarios. However, when applied to specific domains, these models encounter considerable difficulties. This is the case of Social Networks such as Twitter, an ever-changing stream of information written with informal and complex language, where each message requires careful evaluation to be understood even by humans given the important role that context plays. Addressing tasks in this domain through Natural Language Processing involves severe challenges. When powerful state-of-the-art multilingual language models are applied to this scenario, language specific nuances use to get lost in translation. To face these challenges we present BERTuit, the larger transformer proposed so far for Spanish language, pre-trained on a massive dataset of 230M Spanish tweets using RoBERTa optimization. Our motivation is to provide a powerful resource to better understand Spanish Twitter and to be used on applications focused on this social network, with special emphasis on solutions devoted to tackle the spreading of misinformation in this platform. BERTuit is evaluated on several tasks and compared against M-BERT, XLM-RoBERTa and XLM-T, very competitive multilingual transformers. The utility of our approach is shown with applications, in this case: a zero-shot methodology to visualize groups of hoaxes and profiling authors spreading disinformation. Misinformation spreads wildly on platforms such as Twitter in languages other than English, meaning performance of transformers may suffer when transferred outside English speaking communities. 3 authors · Apr 7, 2022
- Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs Large language models (LLMs) have shown remarkable performance in various natural language processing tasks. However, a primary constraint they face is the context limit, i.e., the maximum number of tokens they can process. Previous works have explored architectural changes and modifications in positional encoding to relax the constraint, but they often require expensive training or do not address the computational demands of self-attention. In this paper, we present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations. HOMER uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks. Each chunk is then processed collectively, employing a hierarchical strategy that merges adjacent chunks at progressive transformer layers. A token reduction technique precedes each merging, ensuring memory usage efficiency. We also propose an optimized computational order reducing the memory requirement to logarithmically scale with respect to input length, making it especially favorable for environments with tight memory restrictions. Our experiments demonstrate the proposed method's superior performance and memory efficiency, enabling the broader use of LLMs in contexts requiring extended context. Code is available at https://github.com/alinlab/HOMER. 7 authors · Apr 16, 2024
1 A Study on Token Pruning for ColBERT The ColBERT model has recently been proposed as an effective BERT based ranker. By adopting a late interaction mechanism, a major advantage of ColBERT is that document representations can be precomputed in advance. However, the big downside of the model is the index size, which scales linearly with the number of tokens in the collection. In this paper, we study various designs for ColBERT models in order to attack this problem. While compression techniques have been explored to reduce the index size, in this paper we study token pruning techniques for ColBERT. We compare simple heuristics, as well as a single layer of attention mechanism to select the tokens to keep at indexing time. Our experiments show that ColBERT indexes can be pruned up to 30\% on the MS MARCO passage collection without a significant drop in performance. Finally, we experiment on MS MARCO documents, which reveal several challenges for such mechanism. 4 authors · Dec 13, 2021
- Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{\aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow. 4 authors · Apr 19, 2021
- DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference Large-scale pre-trained language models such as BERT have brought significant improvements to NLP applications. However, they are also notorious for being slow in inference, which makes them difficult to deploy in real-time applications. We propose a simple but effective method, DeeBERT, to accelerate BERT inference. Our approach allows samples to exit earlier without passing through the entire model. Experiments show that DeeBERT is able to save up to ~40% inference time with minimal degradation in model quality. Further analyses show different behaviors in the BERT transformer layers and also reveal their redundancy. Our work provides new ideas to efficiently apply deep transformer-based models to downstream tasks. Code is available at https://github.com/castorini/DeeBERT. 5 authors · Apr 27, 2020
- Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent ``exponential'' growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model's size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5. 5 authors · Mar 26, 2024
- Document Ranking with a Pretrained Sequence-to-Sequence Model This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words", and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the model's use of latent knowledge. 3 authors · Mar 14, 2020
1 VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area. 3 authors · Jul 31, 2023
- Fine-tune BERT for Extractive Summarization BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at https://github.com/nlpyang/BertSum 1 authors · Mar 25, 2019
- Introducing Three New Benchmark Datasets for Hierarchical Text Classification Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification. 3 authors · Nov 28, 2024
- Pay Attention when Required Transformer-based models consist of interleaved feed-forward blocks - that capture content meaning, and relatively more expensive self-attention blocks - that capture context meaning. In this paper, we explored trade-offs and ordering of the blocks to improve upon the current Transformer architecture and proposed PAR Transformer. It needs 35% lower compute time than Transformer-XL achieved by replacing ~63% of the self-attention blocks with feed-forward blocks, and retains the perplexity on WikiText-103 language modelling benchmark. We further validated our results on text8 and enwiki8 datasets, as well as on the BERT model. 3 authors · Sep 9, 2020
- Learning and Evaluating Contextual Embedding of Source Code Recent research has achieved impressive results on understanding and improving source code by building up on machine-learning techniques developed for natural languages. A significant advancement in natural-language understanding has come with the development of pre-trained contextual embeddings, such as BERT, which can be fine-tuned for downstream tasks with less labeled data and training budget, while achieving better accuracies. However, there is no attempt yet to obtain a high-quality contextual embedding of source code, and to evaluate it on multiple program-understanding tasks simultaneously; that is the gap that this paper aims to mitigate. Specifically, first, we curate a massive, deduplicated corpus of 7.4M Python files from GitHub, which we use to pre-train CuBERT, an open-sourced code-understanding BERT model; and, second, we create an open-sourced benchmark that comprises five classification tasks and one program-repair task, akin to code-understanding tasks proposed in the literature before. We fine-tune CuBERT on our benchmark tasks, and compare the resulting models to different variants of Word2Vec token embeddings, BiLSTM and Transformer models, as well as published state-of-the-art models, showing that CuBERT outperforms them all, even with shorter training, and with fewer labeled examples. Future work on source-code embedding can benefit from reusing our benchmark, and from comparing against CuBERT models as a strong baseline. 4 authors · Dec 21, 2019
- MaxPoolBERT: Enhancing BERT Classification via Layer- and Token-Wise Aggregation The [CLS] token in BERT is commonly used as a fixed-length representation for classification tasks, yet prior work has shown that both other tokens and intermediate layers encode valuable contextual information. In this work, we propose MaxPoolBERT, a lightweight extension to BERT that refines the [CLS] representation by aggregating information across layers and tokens. Specifically, we explore three modifications: (i) max-pooling the [CLS] token across multiple layers, (ii) enabling the [CLS] token to attend over the entire final layer using an additional multi-head attention (MHA) layer, and (iii) combining max-pooling across the full sequence with MHA. Our approach enhances BERT's classification accuracy (especially on low-resource tasks) without requiring pre-training or significantly increasing model size. Experiments on the GLUE benchmark show that MaxPoolBERT consistently achieves a better performance on the standard BERT-base model. 3 authors · May 21
3 Wave Network: An Ultra-Small Language Model We propose an innovative token representation and update method in a new ultra-small language model: the Wave network. Specifically, we use a complex vector to represent each token, encoding both global and local semantics of the input text. A complex vector consists of two components: a magnitude vector representing the global semantics of the input text, and a phase vector capturing the relationships between individual tokens and global semantics. Experiments on the AG News text classification task demonstrate that, when generating complex vectors from randomly initialized token embeddings, our single-layer Wave Network achieves 90.91\% accuracy with wave interference and 91.66\% with wave modulation -- outperforming a single Transformer layer using BERT pre-trained embeddings by 19.23\% and 19.98\%, respectively, and approaching the accuracy of the pre-trained and fine-tuned BERT base model (94.64\%). Additionally, compared to BERT base, the Wave Network reduces video memory usage and training time by 77.34\% and 85.62\% during wave modulation. In summary, we used a 2.4-million-parameter small language model to achieve accuracy comparable to a 100-million-parameter BERT model in text classification. 2 authors · Nov 4, 2024
- What Would Elsa Do? Freezing Layers During Transformer Fine-Tuning Pretrained transformer-based language models have achieved state of the art across countless tasks in natural language processing. These models are highly expressive, comprising at least a hundred million parameters and a dozen layers. Recent evidence suggests that only a few of the final layers need to be fine-tuned for high quality on downstream tasks. Naturally, a subsequent research question is, "how many of the last layers do we need to fine-tune?" In this paper, we precisely answer this question. We examine two recent pretrained language models, BERT and RoBERTa, across standard tasks in textual entailment, semantic similarity, sentiment analysis, and linguistic acceptability. We vary the number of final layers that are fine-tuned, then study the resulting change in task-specific effectiveness. We show that only a fourth of the final layers need to be fine-tuned to achieve 90% of the original quality. Surprisingly, we also find that fine-tuning all layers does not always help. 3 authors · Nov 8, 2019
- Walking Down the Memory Maze: Beyond Context Limit through Interactive Reading Large language models (LLMs) have advanced in large strides due to the effectiveness of the self-attention mechanism that processes and compares all tokens at once. However, this mechanism comes with a fundamental issue -- the predetermined context window is bound to be limited. Despite attempts to extend the context window through methods like extrapolating the positional embedding, using recurrence, or selectively retrieving essential parts of the long sequence, long-text understanding continues to be a challenge. We propose an alternative approach which instead treats the LLM as an interactive agent, allowing it to decide how to read the text via iterative prompting. We introduce MemWalker, a method that first processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information. On long-text question answering tasks our method outperforms baseline approaches that use long context windows, recurrence, and retrieval. We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query. 4 authors · Oct 8, 2023
- VL-BERT: Pre-training of Generic Visual-Linguistic Representations We introduce a new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT for short). VL-BERT adopts the simple yet powerful Transformer model as the backbone, and extends it to take both visual and linguistic embedded features as input. In it, each element of the input is either of a word from the input sentence, or a region-of-interest (RoI) from the input image. It is designed to fit for most of the visual-linguistic downstream tasks. To better exploit the generic representation, we pre-train VL-BERT on the massive-scale Conceptual Captions dataset, together with text-only corpus. Extensive empirical analysis demonstrates that the pre-training procedure can better align the visual-linguistic clues and benefit the downstream tasks, such as visual commonsense reasoning, visual question answering and referring expression comprehension. It is worth noting that VL-BERT achieved the first place of single model on the leaderboard of the VCR benchmark. Code is released at https://github.com/jackroos/VL-BERT. 7 authors · Aug 22, 2019
- Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field. 6 authors · Aug 22, 2024
- TWEETQA: A Social Media Focused Question Answering Dataset With social media becoming increasingly pop-ular on which lots of news and real-time eventsare reported, developing automated questionanswering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets haveconcentrated on question answering (QA) forformal text like news and Wikipedia, wepresent the first large-scale dataset for QA oversocial media data. To ensure that the tweetswe collected are useful, we only gather tweetsused by journalists to write news articles. Wethen ask human annotators to write questionsand answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answersare extractive, we allow the answers to be ab-stractive. We show that two recently proposedneural models that perform well on formaltexts are limited in their performance when ap-plied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind hu-man performance with a large margin. Our re-sults thus point to the need of improved QAsystems targeting social media text. 8 authors · Jul 14, 2019
- Resona: Improving Context Copying in Linear Recurrence Models with Retrieval Recent shifts in the space of large language model (LLM) research have shown an increasing focus on novel architectures to compete with prototypical Transformer-based models that have long dominated this space. Linear recurrent models have proven to be a viable competitor due to their computational efficiency. However, such models still demonstrate a sizable gap compared to Transformers in terms of in-context learning among other tasks that require recalling information from a context. In this work, we introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval. __Resona__~augments models with the ability to integrate retrieved information from the provided input context, enabling tailored behavior to diverse task requirements. Experiments on a variety of linear recurrent models demonstrate that __Resona__-augmented models observe significant performance gains on a variety of synthetic as well as real-world natural language tasks, highlighting its ability to act as a general purpose method to improve the in-context learning and language modeling abilities of linear recurrent LLMs. 8 authors · Mar 28