Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePictures Of MIDI: Controlled Music Generation via Graphical Prompts for Image-Based Diffusion Inpainting
Recent years have witnessed significant progress in generative models for music, featuring diverse architectures that balance output quality, diversity, speed, and user control. This study explores a user-friendly graphical interface enabling the drawing of masked regions for inpainting by an Hourglass Diffusion Transformer (HDiT) model trained on MIDI piano roll images. To enhance note generation in specified areas, masked regions can be "repainted" with extra noise. The non-latent HDiTs linear scaling with pixel count allows efficient generation in pixel space, providing intuitive and interpretable controls such as masking throughout the network and removing the need to operate in compressed latent spaces such as those provided by pretrained autoencoders. We demonstrate that, in addition to inpainting of melodies, accompaniment, and continuations, the use of repainting can help increase note density yielding musical structures closely matching user specifications such as rising, falling, or diverging melody and/or accompaniment, even when these lie outside the typical training data distribution. We achieve performance on par with prior results while operating at longer context windows, with no autoencoder, and can enable complex geometries for inpainting masks, increasing the options for machine-assisted composers to control the generated music.
DiC: Rethinking Conv3x3 Designs in Diffusion Models
Diffusion models have shown exceptional performance in visual generation tasks. Recently, these models have shifted from traditional U-Shaped CNN-Attention hybrid structures to fully transformer-based isotropic architectures. While these transformers exhibit strong scalability and performance, their reliance on complicated self-attention operation results in slow inference speeds. Contrary to these works, we rethink one of the simplest yet fastest module in deep learning, 3x3 Convolution, to construct a scaled-up purely convolutional diffusion model. We first discover that an Encoder-Decoder Hourglass design outperforms scalable isotropic architectures for Conv3x3, but still under-performing our expectation. Further improving the architecture, we introduce sparse skip connections to reduce redundancy and improve scalability. Based on the architecture, we introduce conditioning improvements including stage-specific embeddings, mid-block condition injection, and conditional gating. These improvements lead to our proposed Diffusion CNN (DiC), which serves as a swift yet competitive diffusion architecture baseline. Experiments on various scales and settings show that DiC surpasses existing diffusion transformers by considerable margins in terms of performance while keeping a good speed advantage. Project page: https://github.com/YuchuanTian/DiC
Hierarchical Transformers Are More Efficient Language Models
Transformer models yield impressive results on many NLP and sequence modeling tasks. Remarkably, Transformers can handle long sequences which allows them to produce long coherent outputs: full paragraphs produced by GPT-3 or well-structured images produced by DALL-E. These large language models are impressive but also very inefficient and costly, which limits their applications and accessibility. We postulate that having an explicit hierarchical architecture is the key to Transformers that efficiently handle long sequences. To verify this claim, we first study different ways to downsample and upsample activations in Transformers so as to make them hierarchical. We use the best performing upsampling and downsampling layers to create Hourglass - a hierarchical Transformer language model. Hourglass improves upon the Transformer baseline given the same amount of computation and can yield the same results as Transformers more efficiently. In particular, Hourglass sets new state-of-the-art for Transformer models on the ImageNet32 generation task and improves language modeling efficiency on the widely studied enwik8 benchmark.
VDT: General-purpose Video Diffusion Transformers via Mask Modeling
This work introduces Video Diffusion Transformer (VDT), which pioneers the use of transformers in diffusion-based video generation. It features transformer blocks with modularized temporal and spatial attention modules to leverage the rich spatial-temporal representation inherited in transformers. We also propose a unified spatial-temporal mask modeling mechanism, seamlessly integrated with the model, to cater to diverse video generation scenarios. VDT offers several appealing benefits. 1) It excels at capturing temporal dependencies to produce temporally consistent video frames and even simulate the physics and dynamics of 3D objects over time. 2) It facilitates flexible conditioning information, \eg, simple concatenation in the token space, effectively unifying different token lengths and modalities. 3) Pairing with our proposed spatial-temporal mask modeling mechanism, it becomes a general-purpose video diffuser for harnessing a range of tasks, including unconditional generation, video prediction, interpolation, animation, and completion, etc. Extensive experiments on these tasks spanning various scenarios, including autonomous driving, natural weather, human action, and physics-based simulation, demonstrate the effectiveness of VDT. Additionally, we present comprehensive studies on how \model handles conditioning information with the mask modeling mechanism, which we believe will benefit future research and advance the field. Project page: https:VDT-2023.github.io
DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation
Recent Diffusion Transformers (e.g., DiT) have demonstrated their powerful effectiveness in generating high-quality 2D images. However, it is still being determined whether the Transformer architecture performs equally well in 3D shape generation, as previous 3D diffusion methods mostly adopted the U-Net architecture. To bridge this gap, we propose a novel Diffusion Transformer for 3D shape generation, namely DiT-3D, which can directly operate the denoising process on voxelized point clouds using plain Transformers. Compared to existing U-Net approaches, our DiT-3D is more scalable in model size and produces much higher quality generations. Specifically, the DiT-3D adopts the design philosophy of DiT but modifies it by incorporating 3D positional and patch embeddings to adaptively aggregate input from voxelized point clouds. To reduce the computational cost of self-attention in 3D shape generation, we incorporate 3D window attention into Transformer blocks, as the increased 3D token length resulting from the additional dimension of voxels can lead to high computation. Finally, linear and devoxelization layers are used to predict the denoised point clouds. In addition, our transformer architecture supports efficient fine-tuning from 2D to 3D, where the pre-trained DiT-2D checkpoint on ImageNet can significantly improve DiT-3D on ShapeNet. Experimental results on the ShapeNet dataset demonstrate that the proposed DiT-3D achieves state-of-the-art performance in high-fidelity and diverse 3D point cloud generation. In particular, our DiT-3D decreases the 1-Nearest Neighbor Accuracy of the state-of-the-art method by 4.59 and increases the Coverage metric by 3.51 when evaluated on Chamfer Distance.
SRDiffusion: Accelerate Video Diffusion Inference via Sketching-Rendering Cooperation
Leveraging the diffusion transformer (DiT) architecture, models like Sora, CogVideoX and Wan have achieved remarkable progress in text-to-video, image-to-video, and video editing tasks. Despite these advances, diffusion-based video generation remains computationally intensive, especially for high-resolution, long-duration videos. Prior work accelerates its inference by skipping computation, usually at the cost of severe quality degradation. In this paper, we propose SRDiffusion, a novel framework that leverages collaboration between large and small models to reduce inference cost. The large model handles high-noise steps to ensure semantic and motion fidelity (Sketching), while the smaller model refines visual details in low-noise steps (Rendering). Experimental results demonstrate that our method outperforms existing approaches, over 3times speedup for Wan with nearly no quality loss for VBench, and 2times speedup for CogVideoX. Our method is introduced as a new direction orthogonal to existing acceleration strategies, offering a practical solution for scalable video generation.
Rethinking the shape convention of an MLP
Multi-layer perceptrons (MLPs) conventionally follow a narrow-wide-narrow design where skip connections operate at the input/output dimensions while processing occurs in expanded hidden spaces. We challenge this convention by proposing wide-narrow-wide (Hourglass) MLP blocks where skip connections operate at expanded dimensions while residual computation flows through narrow bottlenecks. This inversion leverages higher-dimensional spaces for incremental refinement while maintaining computational efficiency through parameter-matched designs. Implementing Hourglass MLPs requires an initial projection to lift input signals to expanded dimensions. We propose that this projection can remain fixed at random initialization throughout training, enabling efficient training and inference implementations. We evaluate both architectures on generative tasks over popular image datasets, characterizing performance-parameter Pareto frontiers through systematic architectural search. Results show that Hourglass architectures consistently achieve superior Pareto frontiers compared to conventional designs. As parameter budgets increase, optimal Hourglass configurations favor deeper networks with wider skip connections and narrower bottlenecks-a scaling pattern distinct from conventional MLPs. Our findings suggest reconsidering skip connection placement in modern architectures, with potential applications extending to Transformers and other residual networks.
The Ingredients for Robotic Diffusion Transformers
In recent years roboticists have achieved remarkable progress in solving increasingly general tasks on dexterous robotic hardware by leveraging high capacity Transformer network architectures and generative diffusion models. Unfortunately, combining these two orthogonal improvements has proven surprisingly difficult, since there is no clear and well-understood process for making important design choices. In this paper, we identify, study and improve key architectural design decisions for high-capacity diffusion transformer policies. The resulting models can efficiently solve diverse tasks on multiple robot embodiments, without the excruciating pain of per-setup hyper-parameter tuning. By combining the results of our investigation with our improved model components, we are able to present a novel architecture, named \method, that significantly outperforms the state of the art in solving long-horizon (1500+ time-steps) dexterous tasks on a bi-manual ALOHA robot. In addition, we find that our policies show improved scaling performance when trained on 10 hours of highly multi-modal, language annotated ALOHA demonstration data. We hope this work will open the door for future robot learning techniques that leverage the efficiency of generative diffusion modeling with the scalability of large scale transformer architectures. Code, robot dataset, and videos are available at: https://dit-policy.github.io
DyDiT++: Dynamic Diffusion Transformers for Efficient Visual Generation
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the static inference paradigm, which inevitably introduces redundant computation in certain diffusion timesteps and spatial regions. To overcome this inefficiency, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions. Specifically, we introduce a Timestep-wise Dynamic Width (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a Spatial-wise Dynamic Token (SDT) strategy to avoid redundant computation at unnecessary spatial locations. TDW and SDT can be seamlessly integrated into DiT and significantly accelerates the generation process. Building on these designs, we further enhance DyDiT in three key aspects. First, DyDiT is integrated seamlessly with flow matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT.
Playmate2: Training-Free Multi-Character Audio-Driven Animation via Diffusion Transformer with Reward Feedback
Recent advances in diffusion models have significantly improved audio-driven human video generation, surpassing traditional methods in both quality and controllability. However, existing approaches still face challenges in lip-sync accuracy, temporal coherence for long video generation, and multi-character animation. In this work, we propose a diffusion transformer (DiT)-based framework for generating lifelike talking videos of arbitrary length, and introduce a training-free method for multi-character audio-driven animation. First, we employ a LoRA-based training strategy combined with a position shift inference approach, which enables efficient long video generation while preserving the capabilities of the foundation model. Moreover, we combine partial parameter updates with reward feedback to enhance both lip synchronization and natural body motion. Finally, we propose a training-free approach, Mask Classifier-Free Guidance (Mask-CFG), for multi-character animation, which requires no specialized datasets or model modifications and supports audio-driven animation for three or more characters. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches, achieving high-quality, temporally coherent, and multi-character audio-driven video generation in a simple, efficient, and cost-effective manner.
Autoregressive Generation of Static and Growing Trees
We propose a transformer architecture and training strategy for tree generation. The architecture processes data at multiple resolutions and has an hourglass shape, with middle layers processing fewer tokens than outer layers. Similar to convolutional networks, we introduce longer range skip connections to completent this multi-resolution approach. The key advantage of this architecture is the faster processing speed and lower memory consumption. We are therefore able to process more complex trees than would be possible with a vanilla transformer architecture. Furthermore, we extend this approach to perform image-to-tree and point-cloud-to-tree conditional generation and to simulate the tree growth processes, generating 4D trees. Empirical results validate our approach in terms of speed, memory consumption, and generation quality.
Lumina-T2X: Transforming Text into Any Modality, Resolution, and Duration via Flow-based Large Diffusion Transformers
Sora unveils the potential of scaling Diffusion Transformer for generating photorealistic images and videos at arbitrary resolutions, aspect ratios, and durations, yet it still lacks sufficient implementation details. In this technical report, we introduce the Lumina-T2X family - a series of Flow-based Large Diffusion Transformers (Flag-DiT) equipped with zero-initialized attention, as a unified framework designed to transform noise into images, videos, multi-view 3D objects, and audio clips conditioned on text instructions. By tokenizing the latent spatial-temporal space and incorporating learnable placeholders such as [nextline] and [nextframe] tokens, Lumina-T2X seamlessly unifies the representations of different modalities across various spatial-temporal resolutions. This unified approach enables training within a single framework for different modalities and allows for flexible generation of multimodal data at any resolution, aspect ratio, and length during inference. Advanced techniques like RoPE, RMSNorm, and flow matching enhance the stability, flexibility, and scalability of Flag-DiT, enabling models of Lumina-T2X to scale up to 7 billion parameters and extend the context window to 128K tokens. This is particularly beneficial for creating ultra-high-definition images with our Lumina-T2I model and long 720p videos with our Lumina-T2V model. Remarkably, Lumina-T2I, powered by a 5-billion-parameter Flag-DiT, requires only 35% of the training computational costs of a 600-million-parameter naive DiT. Our further comprehensive analysis underscores Lumina-T2X's preliminary capability in resolution extrapolation, high-resolution editing, generating consistent 3D views, and synthesizing videos with seamless transitions. We expect that the open-sourcing of Lumina-T2X will further foster creativity, transparency, and diversity in the generative AI community.
Minute-Long Videos with Dual Parallelisms
Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos. To address this, we propose a novel distributed inference strategy, termed DualParal. The core idea is that, instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs. However, a naive implementation of this division faces a key limitation: since diffusion models require synchronized noise levels across frames, this implementation leads to the serialization of original parallelisms. We leverage a block-wise denoising scheme to handle this. Namely, we process a sequence of frame blocks through the pipeline with progressively decreasing noise levels. Each GPU handles a specific block and layer subset while passing previous results to the next GPU, enabling asynchronous computation and communication. To further optimize performance, we incorporate two key enhancements. Firstly, a feature cache is implemented on each GPU to store and reuse features from the prior block as context, minimizing inter-GPU communication and redundant computation. Secondly, we employ a coordinated noise initialization strategy, ensuring globally consistent temporal dynamics by sharing initial noise patterns across GPUs without extra resource costs. Together, these enable fast, artifact-free, and infinitely long video generation. Applied to the latest diffusion transformer video generator, our method efficiently produces 1,025-frame videos with up to 6.54times lower latency and 1.48times lower memory cost on 8timesRTX 4090 GPUs.
Effortless Efficiency: Low-Cost Pruning of Diffusion Models
Diffusion models have achieved impressive advancements in various vision tasks. However, these gains often rely on increasing model size, which escalates computational complexity and memory demands, complicating deployment, raising inference costs, and causing environmental impact. While some studies have explored pruning techniques to improve the memory efficiency of diffusion models, most existing methods require extensive retraining to retain the model performance. Retraining a modern large diffusion model is extremely costly and resource-intensive, which limits the practicality of these methods. In this work, we achieve low-cost diffusion pruning without retraining by proposing a model-agnostic structural pruning framework for diffusion models that learns a differentiable mask to sparsify the model. To ensure effective pruning that preserves the quality of the final denoised latent, we design a novel end-to-end pruning objective that spans the entire diffusion process. As end-to-end pruning is memory-intensive, we further propose time step gradient checkpointing, a technique that significantly reduces memory usage during optimization, enabling end-to-end pruning within a limited memory budget. Results on state-of-the-art U-Net diffusion models SDXL and diffusion transformers (FLUX) demonstrate that our method can effectively prune up to 20% parameters with minimal perceptible performance degradation, and notably, without the need for model retraining. We also showcase that our method can still prune on top of time step distilled diffusion models.
Upsample What Matters: Region-Adaptive Latent Sampling for Accelerated Diffusion Transformers
Diffusion transformers have emerged as an alternative to U-net-based diffusion models for high-fidelity image and video generation, offering superior scalability. However, their heavy computation remains a major obstacle to real-world deployment. Existing acceleration methods primarily exploit the temporal dimension such as reusing cached features across diffusion timesteps. Here, we propose Region-Adaptive Latent Upsampling (RALU), a training-free framework that accelerates inference along spatial dimension. RALU performs mixed-resolution sampling across three stages: 1) low-resolution denoising latent diffusion to efficiently capture global semantic structure, 2) region-adaptive upsampling on specific regions prone to artifacts at full-resolution, and 3) all latent upsampling at full-resolution for detail refinement. To stabilize generations across resolution transitions, we leverage noise-timestep rescheduling to adapt the noise level across varying resolutions. Our method significantly reduces computation while preserving image quality by achieving up to 7.0times speed-up on FLUX and 3.0times on Stable Diffusion 3 with minimal degradation. Furthermore, RALU is complementary to existing temporal accelerations such as caching methods, thus can be seamlessly integrated to further reduce inference latency without compromising generation quality.
DreamActor-M1: Holistic, Expressive and Robust Human Image Animation with Hybrid Guidance
While recent image-based human animation methods achieve realistic body and facial motion synthesis, critical gaps remain in fine-grained holistic controllability, multi-scale adaptability, and long-term temporal coherence, which leads to their lower expressiveness and robustness. We propose a diffusion transformer (DiT) based framework, DreamActor-M1, with hybrid guidance to overcome these limitations. For motion guidance, our hybrid control signals that integrate implicit facial representations, 3D head spheres, and 3D body skeletons achieve robust control of facial expressions and body movements, while producing expressive and identity-preserving animations. For scale adaptation, to handle various body poses and image scales ranging from portraits to full-body views, we employ a progressive training strategy using data with varying resolutions and scales. For appearance guidance, we integrate motion patterns from sequential frames with complementary visual references, ensuring long-term temporal coherence for unseen regions during complex movements. Experiments demonstrate that our method outperforms the state-of-the-art works, delivering expressive results for portraits, upper-body, and full-body generation with robust long-term consistency. Project Page: https://grisoon.github.io/DreamActor-M1/.
DiffusionAtlas: High-Fidelity Consistent Diffusion Video Editing
We present a diffusion-based video editing framework, namely DiffusionAtlas, which can achieve both frame consistency and high fidelity in editing video object appearance. Despite the success in image editing, diffusion models still encounter significant hindrances when it comes to video editing due to the challenge of maintaining spatiotemporal consistency in the object's appearance across frames. On the other hand, atlas-based techniques allow propagating edits on the layered representations consistently back to frames. However, they often struggle to create editing effects that adhere correctly to the user-provided textual or visual conditions due to the limitation of editing the texture atlas on a fixed UV mapping field. Our method leverages a visual-textual diffusion model to edit objects directly on the diffusion atlases, ensuring coherent object identity across frames. We design a loss term with atlas-based constraints and build a pretrained text-driven diffusion model as pixel-wise guidance for refining shape distortions and correcting texture deviations. Qualitative and quantitative experiments show that our method outperforms state-of-the-art methods in achieving consistent high-fidelity video-object editing.
Real-time Inference and Extrapolation via a Diffusion-inspired Temporal Transformer Operator (DiTTO)
Extrapolation remains a grand challenge in deep neural networks across all application domains. We propose an operator learning method to solve time-dependent partial differential equations (PDEs) continuously and with extrapolation in time without any temporal discretization. The proposed method, named Diffusion-inspired Temporal Transformer Operator (DiTTO), is inspired by latent diffusion models and their conditioning mechanism, which we use to incorporate the temporal evolution of the PDE, in combination with elements from the transformer architecture to improve its capabilities. Upon training, DiTTO can make inferences in real-time. We demonstrate its extrapolation capability on a climate problem by estimating the temperature around the globe for several years, and also in modeling hypersonic flows around a double-cone. We propose different training strategies involving temporal-bundling and sub-sampling and demonstrate performance improvements for several benchmarks, performing extrapolation for long time intervals as well as zero-shot super-resolution in time.
Diffusion-TS: Interpretable Diffusion for General Time Series Generation
Denoising diffusion probabilistic models (DDPMs) are becoming the leading paradigm for generative models. It has recently shown breakthroughs in audio synthesis, time series imputation and forecasting. In this paper, we propose Diffusion-TS, a novel diffusion-based framework that generates multivariate time series samples of high quality by using an encoder-decoder transformer with disentangled temporal representations, in which the decomposition technique guides Diffusion-TS to capture the semantic meaning of time series while transformers mine detailed sequential information from the noisy model input. Different from existing diffusion-based approaches, we train the model to directly reconstruct the sample instead of the noise in each diffusion step, combining a Fourier-based loss term. Diffusion-TS is expected to generate time series satisfying both interpretablity and realness. In addition, it is shown that the proposed Diffusion-TS can be easily extended to conditional generation tasks, such as forecasting and imputation, without any model changes. This also motivates us to further explore the performance of Diffusion-TS under irregular settings. Finally, through qualitative and quantitative experiments, results show that Diffusion-TS achieves the state-of-the-art results on various realistic analyses of time series.
Non-autoregressive Conditional Diffusion Models for Time Series Prediction
Recently, denoising diffusion models have led to significant breakthroughs in the generation of images, audio and text. However, it is still an open question on how to adapt their strong modeling ability to model time series. In this paper, we propose TimeDiff, a non-autoregressive diffusion model that achieves high-quality time series prediction with the introduction of two novel conditioning mechanisms: future mixup and autoregressive initialization. Similar to teacher forcing, future mixup allows parts of the ground-truth future predictions for conditioning, while autoregressive initialization helps better initialize the model with basic time series patterns such as short-term trends. Extensive experiments are performed on nine real-world datasets. Results show that TimeDiff consistently outperforms existing time series diffusion models, and also achieves the best overall performance across a variety of the existing strong baselines (including transformers and FiLM).
From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99times on FLUX and 5.00times on HunyuanVideo without additional training. On DiT, it achieves 3.41 lower FID compared with previous SOTA at 4.53times acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer
AV-DiT: Efficient Audio-Visual Diffusion Transformer for Joint Audio and Video Generation
Recent Diffusion Transformers (DiTs) have shown impressive capabilities in generating high-quality single-modality content, including images, videos, and audio. However, it is still under-explored whether the transformer-based diffuser can efficiently denoise the Gaussian noises towards superb multimodal content creation. To bridge this gap, we introduce AV-DiT, a novel and efficient audio-visual diffusion transformer designed to generate high-quality, realistic videos with both visual and audio tracks. To minimize model complexity and computational costs, AV-DiT utilizes a shared DiT backbone pre-trained on image-only data, with only lightweight, newly inserted adapters being trainable. This shared backbone facilitates both audio and video generation. Specifically, the video branch incorporates a trainable temporal attention layer into a frozen pre-trained DiT block for temporal consistency. Additionally, a small number of trainable parameters adapt the image-based DiT block for audio generation. An extra shared DiT block, equipped with lightweight parameters, facilitates feature interaction between audio and visual modalities, ensuring alignment. Extensive experiments on the AIST++ and Landscape datasets demonstrate that AV-DiT achieves state-of-the-art performance in joint audio-visual generation with significantly fewer tunable parameters. Furthermore, our results highlight that a single shared image generative backbone with modality-specific adaptations is sufficient for constructing a joint audio-video generator. Our source code and pre-trained models will be released.
LiteAttention: A Temporal Sparse Attention for Diffusion Transformers
Diffusion Transformers, particularly for video generation, achieve remarkable quality but suffer from quadratic attention complexity, leading to prohibitive latency. Existing acceleration methods face a fundamental trade-off: dynamically estimating sparse attention patterns at each denoising step incurs high computational overhead and estimation errors, while static sparsity patterns remain fixed and often suboptimal throughout denoising. We identify a key structural property of diffusion attention, namely, its sparsity patterns exhibit strong temporal coherence across denoising steps. Tiles deemed non-essential at step t typically remain so at step t+δ. Leveraging this observation, we introduce LiteAttention, a method that exploits temporal coherence to enable evolutionary computation skips across the denoising sequence. By marking non-essential tiles early and propagating skip decisions forward, LiteAttention eliminates redundant attention computations without repeated profiling overheads, combining the adaptivity of dynamic methods with the efficiency of static ones. We implement a highly optimized LiteAttention kernel on top of FlashAttention and demonstrate substantial speedups on production video diffusion models, with no degradation in quality. The code and implementation details will be publicly released.
All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
Diffusion models are the standard toolkit for generative modelling of 3D atomic systems. However, for different types of atomic systems - such as molecules and materials - the generative processes are usually highly specific to the target system despite the underlying physics being the same. We introduce the All-atom Diffusion Transformer (ADiT), a unified latent diffusion framework for jointly generating both periodic materials and non-periodic molecular systems using the same model: (1) An autoencoder maps a unified, all-atom representations of molecules and materials to a shared latent embedding space; and (2) A diffusion model is trained to generate new latent embeddings that the autoencoder can decode to sample new molecules or materials. Experiments on QM9 and MP20 datasets demonstrate that jointly trained ADiT generates realistic and valid molecules as well as materials, exceeding state-of-the-art results from molecule and crystal-specific models. ADiT uses standard Transformers for both the autoencoder and diffusion model, resulting in significant speedups during training and inference compared to equivariant diffusion models. Scaling ADiT up to half a billion parameters predictably improves performance, representing a step towards broadly generalizable foundation models for generative chemistry. Open source code: https://github.com/facebookresearch/all-atom-diffusion-transformer
DiT4Edit: Diffusion Transformer for Image Editing
Despite recent advances in UNet-based image editing, methods for shape-aware object editing in high-resolution images are still lacking. Compared to UNet, Diffusion Transformers (DiT) demonstrate superior capabilities to effectively capture the long-range dependencies among patches, leading to higher-quality image generation. In this paper, we propose DiT4Edit, the first Diffusion Transformer-based image editing framework. Specifically, DiT4Edit uses the DPM-Solver inversion algorithm to obtain the inverted latents, reducing the number of steps compared to the DDIM inversion algorithm commonly used in UNet-based frameworks. Additionally, we design unified attention control and patches merging, tailored for transformer computation streams. This integration allows our framework to generate higher-quality edited images faster. Our design leverages the advantages of DiT, enabling it to surpass UNet structures in image editing, especially in high-resolution and arbitrary-size images. Extensive experiments demonstrate the strong performance of DiT4Edit across various editing scenarios, highlighting the potential of Diffusion Transformers in supporting image editing.
VACE: All-in-One Video Creation and Editing
Diffusion Transformer has demonstrated powerful capability and scalability in generating high-quality images and videos. Further pursuing the unification of generation and editing tasks has yielded significant progress in the domain of image content creation. However, due to the intrinsic demands for consistency across both temporal and spatial dynamics, achieving a unified approach for video synthesis remains challenging. We introduce VACE, which enables users to perform Video tasks within an All-in-one framework for Creation and Editing. These tasks include reference-to-video generation, video-to-video editing, and masked video-to-video editing. Specifically, we effectively integrate the requirements of various tasks by organizing video task inputs, such as editing, reference, and masking, into a unified interface referred to as the Video Condition Unit (VCU). Furthermore, by utilizing a Context Adapter structure, we inject different task concepts into the model using formalized representations of temporal and spatial dimensions, allowing it to handle arbitrary video synthesis tasks flexibly. Extensive experiments demonstrate that the unified model of VACE achieves performance on par with task-specific models across various subtasks. Simultaneously, it enables diverse applications through versatile task combinations. Project page: https://ali-vilab.github.io/VACE-Page/.
Tora: Trajectory-oriented Diffusion Transformer for Video Generation
Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable proficiency in producing high-quality video content. Nonetheless, the potential of transformer-based diffusion models for effectively generating videos with controllable motion remains an area of limited exploration. This paper introduces Tora, the first trajectory-oriented DiT framework that integrates textual, visual, and trajectory conditions concurrently for video generation. Specifically, Tora consists of a Trajectory Extractor~(TE), a Spatial-Temporal DiT, and a Motion-guidance Fuser~(MGF). The TE encodes arbitrary trajectories into hierarchical spacetime motion patches with a 3D video compression network. The MGF integrates the motion patches into the DiT blocks to generate consistent videos following trajectories. Our design aligns seamlessly with DiT's scalability, allowing precise control of video content's dynamics with diverse durations, aspect ratios, and resolutions. Extensive experiments demonstrate Tora's excellence in achieving high motion fidelity, while also meticulously simulating the movement of the physical world. Page can be found at https://ali-videoai.github.io/tora_video.
Self-Forcing++: Towards Minute-Scale High-Quality Video Generation
Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/
Compute Only 16 Tokens in One Timestep: Accelerating Diffusion Transformers with Cluster-Driven Feature Caching
Diffusion transformers have gained significant attention in recent years for their ability to generate high-quality images and videos, yet still suffer from a huge computational cost due to their iterative denoising process. Recently, feature caching has been introduced to accelerate diffusion transformers by caching the feature computation in previous timesteps and reusing it in the following timesteps, which leverage the temporal similarity of diffusion models while ignoring the similarity in the spatial dimension. In this paper, we introduce Cluster-Driven Feature Caching (ClusCa) as an orthogonal and complementary perspective for previous feature caching. Specifically, ClusCa performs spatial clustering on tokens in each timestep, computes only one token in each cluster and propagates their information to all the other tokens, which is able to reduce the number of tokens by over 90%. Extensive experiments on DiT, FLUX and HunyuanVideo demonstrate its effectiveness in both text-to-image and text-to-video generation. Besides, it can be directly applied to any diffusion transformer without requirements for training. For instance, ClusCa achieves 4.96x acceleration on FLUX with an ImageReward of 99.49%, surpassing the original model by 0.51%. The code is available at https://github.com/Shenyi-Z/Cache4Diffusion.
TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models usually suffer from sample inefficiency and high training costs. This issue is particularly pronounced in the standard diffusion transformer architecture due to its quadratic complexity relative to input length. Recent works have addressed this by reducing the number of tokens processed in the model, often through masking. In contrast, this work aims to improve the training efficiency of the diffusion backbone by using predefined routes that store this information until it is reintroduced to deeper layers of the model, rather than discarding these tokens entirely. Further, we combine multiple routes and introduce an adapted auxiliary loss that accounts for all applied routes. Our method is not limited to the common transformer-based model - it can also be applied to state-space models. Unlike most current approaches, TREAD achieves this without architectural modifications. Finally, we show that our method reduces the computational cost and simultaneously boosts model performance on the standard benchmark ImageNet-1K 256 x 256 in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 9.55x at 400K training iterations compared to DiT and 25.39x compared to the best benchmark performance of DiT at 7M training iterations.
LTX-Video: Realtime Video Latent Diffusion
We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.
RelaCtrl: Relevance-Guided Efficient Control for Diffusion Transformers
The Diffusion Transformer plays a pivotal role in advancing text-to-image and text-to-video generation, owing primarily to its inherent scalability. However, existing controlled diffusion transformer methods incur significant parameter and computational overheads and suffer from inefficient resource allocation due to their failure to account for the varying relevance of control information across different transformer layers. To address this, we propose the Relevance-Guided Efficient Controllable Generation framework, RelaCtrl, enabling efficient and resource-optimized integration of control signals into the Diffusion Transformer. First, we evaluate the relevance of each layer in the Diffusion Transformer to the control information by assessing the "ControlNet Relevance Score"-i.e., the impact of skipping each control layer on both the quality of generation and the control effectiveness during inference. Based on the strength of the relevance, we then tailor the positioning, parameter scale, and modeling capacity of the control layers to reduce unnecessary parameters and redundant computations. Additionally, to further improve efficiency, we replace the self-attention and FFN in the commonly used copy block with the carefully designed Two-Dimensional Shuffle Mixer (TDSM), enabling efficient implementation of both the token mixer and channel mixer. Both qualitative and quantitative experimental results demonstrate that our approach achieves superior performance with only 15% of the parameters and computational complexity compared to PixArt-delta. More examples are available at https://relactrl.github.io/RelaCtrl/.
VORTA: Efficient Video Diffusion via Routing Sparse Attention
Video diffusion transformers have achieved remarkable progress in high-quality video generation, but remain computationally expensive due to the quadratic complexity of attention over high-dimensional video sequences. Recent acceleration methods enhance the efficiency by exploiting the local sparsity of attention scores; yet they often struggle with accelerating the long-range computation. To address this problem, we propose VORTA, an acceleration framework with two novel components: 1) a sparse attention mechanism that efficiently captures long-range dependencies, and 2) a routing strategy that adaptively replaces full 3D attention with specialized sparse attention variants. VORTA achieves an end-to-end speedup 1.76times without loss of quality on VBench. Furthermore, it can seamlessly integrate with various other acceleration methods, such as model caching and step distillation, reaching up to speedup 14.41times with negligible performance degradation. VORTA demonstrates its efficiency and enhances the practicality of video diffusion transformers in real-world settings. Codes and weights are available at https://github.com/wenhao728/VORTA.
StableAvatar: Infinite-Length Audio-Driven Avatar Video Generation
Current diffusion models for audio-driven avatar video generation struggle to synthesize long videos with natural audio synchronization and identity consistency. This paper presents StableAvatar, the first end-to-end video diffusion transformer that synthesizes infinite-length high-quality videos without post-processing. Conditioned on a reference image and audio, StableAvatar integrates tailored training and inference modules to enable infinite-length video generation. We observe that the main reason preventing existing models from generating long videos lies in their audio modeling. They typically rely on third-party off-the-shelf extractors to obtain audio embeddings, which are then directly injected into the diffusion model via cross-attention. Since current diffusion backbones lack any audio-related priors, this approach causes severe latent distribution error accumulation across video clips, leading the latent distribution of subsequent segments to drift away from the optimal distribution gradually. To address this, StableAvatar introduces a novel Time-step-aware Audio Adapter that prevents error accumulation via time-step-aware modulation. During inference, we propose a novel Audio Native Guidance Mechanism to further enhance the audio synchronization by leveraging the diffusion's own evolving joint audio-latent prediction as a dynamic guidance signal. To enhance the smoothness of the infinite-length videos, we introduce a Dynamic Weighted Sliding-window Strategy that fuses latent over time. Experiments on benchmarks show the effectiveness of StableAvatar both qualitatively and quantitatively.
Accelerating Diffusion Transformers with Token-wise Feature Caching
Diffusion transformers have shown significant effectiveness in both image and video synthesis at the expense of huge computation costs. To address this problem, feature caching methods have been introduced to accelerate diffusion transformers by caching the features in previous timesteps and reusing them in the following timesteps. However, previous caching methods ignore that different tokens exhibit different sensitivities to feature caching, and feature caching on some tokens may lead to 10times more destruction to the overall generation quality compared with other tokens. In this paper, we introduce token-wise feature caching, allowing us to adaptively select the most suitable tokens for caching, and further enable us to apply different caching ratios to neural layers in different types and depths. Extensive experiments on PixArt-alpha, OpenSora, and DiT demonstrate our effectiveness in both image and video generation with no requirements for training. For instance, 2.36times and 1.93times acceleration are achieved on OpenSora and PixArt-alpha with almost no drop in generation quality.
Scalable Diffusion Models with Transformers
We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
From Slow Bidirectional to Fast Causal Video Generators
Current video diffusion models achieve impressive generation quality but struggle in interactive applications due to bidirectional attention dependencies. The generation of a single frame requires the model to process the entire sequence, including the future. We address this limitation by adapting a pretrained bidirectional diffusion transformer to a causal transformer that generates frames on-the-fly. To further reduce latency, we extend distribution matching distillation (DMD) to videos, distilling 50-step diffusion model into a 4-step generator. To enable stable and high-quality distillation, we introduce a student initialization scheme based on teacher's ODE trajectories, as well as an asymmetric distillation strategy that supervises a causal student model with a bidirectional teacher. This approach effectively mitigates error accumulation in autoregressive generation, allowing long-duration video synthesis despite training on short clips. Our model supports fast streaming generation of high quality videos at 9.4 FPS on a single GPU thanks to KV caching. Our approach also enables streaming video-to-video translation, image-to-video, and dynamic prompting in a zero-shot manner. We will release the code based on an open-source model in the future.
MADFormer: Mixed Autoregressive and Diffusion Transformers for Continuous Image Generation
Recent progress in multimodal generation has increasingly combined autoregressive (AR) and diffusion-based approaches, leveraging their complementary strengths: AR models capture long-range dependencies and produce fluent, context-aware outputs, while diffusion models operate in continuous latent spaces to refine high-fidelity visual details. However, existing hybrids often lack systematic guidance on how and why to allocate model capacity between these paradigms. In this work, we introduce MADFormer, a Mixed Autoregressive and Diffusion Transformer that serves as a testbed for analyzing AR-diffusion trade-offs. MADFormer partitions image generation into spatial blocks, using AR layers for one-pass global conditioning across blocks and diffusion layers for iterative local refinement within each block. Through controlled experiments on FFHQ-1024 and ImageNet, we identify two key insights: (1) block-wise partitioning significantly improves performance on high-resolution images, and (2) vertically mixing AR and diffusion layers yields better quality-efficiency balances--improving FID by up to 75% under constrained inference compute. Our findings offer practical design principles for future hybrid generative models.
Latte: Latent Diffusion Transformer for Video Generation
We propose a novel Latent Diffusion Transformer, namely Latte, for video generation. Latte first extracts spatio-temporal tokens from input videos and then adopts a series of Transformer blocks to model video distribution in the latent space. In order to model a substantial number of tokens extracted from videos, four efficient variants are introduced from the perspective of decomposing the spatial and temporal dimensions of input videos. To improve the quality of generated videos, we determine the best practices of Latte through rigorous experimental analysis, including video clip patch embedding, model variants, timestep-class information injection, temporal positional embedding, and learning strategies. Our comprehensive evaluation demonstrates that Latte achieves state-of-the-art performance across four standard video generation datasets, i.e., FaceForensics, SkyTimelapse, UCF101, and Taichi-HD. In addition, we extend Latte to text-to-video generation (T2V) task, where Latte achieves comparable results compared to recent T2V models. We strongly believe that Latte provides valuable insights for future research on incorporating Transformers into diffusion models for video generation.
Scaling Diffusion Mamba with Bidirectional SSMs for Efficient Image and Video Generation
In recent developments, the Mamba architecture, known for its selective state space approach, has shown potential in the efficient modeling of long sequences. However, its application in image generation remains underexplored. Traditional diffusion transformers (DiT), which utilize self-attention blocks, are effective but their computational complexity scales quadratically with the input length, limiting their use for high-resolution images. To address this challenge, we introduce a novel diffusion architecture, Diffusion Mamba (DiM), which foregoes traditional attention mechanisms in favor of a scalable alternative. By harnessing the inherent efficiency of the Mamba architecture, DiM achieves rapid inference times and reduced computational load, maintaining linear complexity with respect to sequence length. Our architecture not only scales effectively but also outperforms existing diffusion transformers in both image and video generation tasks. The results affirm the scalability and efficiency of DiM, establishing a new benchmark for image and video generation techniques. This work advances the field of generative models and paves the way for further applications of scalable architectures.
Breathing New Life into 3D Assets with Generative Repainting
Diffusion-based text-to-image models ignited immense attention from the vision community, artists, and content creators. Broad adoption of these models is due to significant improvement in the quality of generations and efficient conditioning on various modalities, not just text. However, lifting the rich generative priors of these 2D models into 3D is challenging. Recent works have proposed various pipelines powered by the entanglement of diffusion models and neural fields. We explore the power of pretrained 2D diffusion models and standard 3D neural radiance fields as independent, standalone tools and demonstrate their ability to work together in a non-learned fashion. Such modularity has the intrinsic advantage of eased partial upgrades, which became an important property in such a fast-paced domain. Our pipeline accepts any legacy renderable geometry, such as textured or untextured meshes, orchestrates the interaction between 2D generative refinement and 3D consistency enforcement tools, and outputs a painted input geometry in several formats. We conduct a large-scale study on a wide range of objects and categories from the ShapeNetSem dataset and demonstrate the advantages of our approach, both qualitatively and quantitatively. Project page: https://www.obukhov.ai/repainting_3d_assets
BWCache: Accelerating Video Diffusion Transformers through Block-Wise Caching
Recent advancements in Diffusion Transformers (DiTs) have established them as the state-of-the-art method for video generation. However, their inherently sequential denoising process results in inevitable latency, limiting real-world applicability. Existing acceleration methods either compromise visual quality due to architectural modifications or fail to reuse intermediate features at proper granularity. Our analysis reveals that DiT blocks are the primary contributors to inference latency. Across diffusion timesteps, the feature variations of DiT blocks exhibit a U-shaped pattern with high similarity during intermediate timesteps, which suggests substantial computational redundancy. In this paper, we propose Block-Wise Caching (BWCache), a training-free method to accelerate DiT-based video generation. BWCache dynamically caches and reuses features from DiT blocks across diffusion timesteps. Furthermore, we introduce a similarity indicator that triggers feature reuse only when the differences between block features at adjacent timesteps fall below a threshold, thereby minimizing redundant computations while maintaining visual fidelity. Extensive experiments on several video diffusion models demonstrate that BWCache achieves up to 2.24times speedup with comparable visual quality.
Cross-view Masked Diffusion Transformers for Person Image Synthesis
We present X-MDPT (Cross-view Masked Diffusion Prediction Transformers), a novel diffusion model designed for pose-guided human image generation. X-MDPT distinguishes itself by employing masked diffusion transformers that operate on latent patches, a departure from the commonly-used Unet structures in existing works. The model comprises three key modules: 1) a denoising diffusion Transformer, 2) an aggregation network that consolidates conditions into a single vector for the diffusion process, and 3) a mask cross-prediction module that enhances representation learning with semantic information from the reference image. X-MDPT demonstrates scalability, improving FID, SSIM, and LPIPS with larger models. Despite its simple design, our model outperforms state-of-the-art approaches on the DeepFashion dataset while exhibiting efficiency in terms of training parameters, training time, and inference speed. Our compact 33MB model achieves an FID of 7.42, surpassing a prior Unet latent diffusion approach (FID 8.07) using only 11times fewer parameters. Our best model surpasses the pixel-based diffusion with 2{3} of the parameters and achieves 5.43 times faster inference.
xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and introduce a video variational autoencoder (VidVAE). VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens and the computational demands associated with generating long-sequence videos. To further address the computational costs, we propose a divide-and-merge strategy that maintains temporal consistency across video segments. Our Diffusion Transformer (DiT) model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios. We have devised a data processing pipeline from the very beginning and collected over 13M high-quality video-text pairs. The pipeline includes multiple steps such as clipping, text detection, motion estimation, aesthetics scoring, and dense captioning based on our in-house video-LLM model. Training the VidVAE and DiT models required approximately 40 and 642 H100 days, respectively. Our model supports over 14-second 720p video generation in an end-to-end way and demonstrates competitive performance against state-of-the-art T2V models.
VGDFR: Diffusion-based Video Generation with Dynamic Latent Frame Rate
Diffusion Transformer(DiT)-based generation models have achieved remarkable success in video generation. However, their inherent computational demands pose significant efficiency challenges. In this paper, we exploit the inherent temporal non-uniformity of real-world videos and observe that videos exhibit dynamic information density, with high-motion segments demanding greater detail preservation than static scenes. Inspired by this temporal non-uniformity, we propose VGDFR, a training-free approach for Diffusion-based Video Generation with Dynamic Latent Frame Rate. VGDFR adaptively adjusts the number of elements in latent space based on the motion frequency of the latent space content, using fewer tokens for low-frequency segments while preserving detail in high-frequency segments. Specifically, our key contributions are: (1) A dynamic frame rate scheduler for DiT video generation that adaptively assigns frame rates for video segments. (2) A novel latent-space frame merging method to align latent representations with their denoised counterparts before merging those redundant in low-resolution space. (3) A preference analysis of Rotary Positional Embeddings (RoPE) across DiT layers, informing a tailored RoPE strategy optimized for semantic and local information capture. Experiments show that VGDFR can achieve a speedup up to 3x for video generation with minimal quality degradation.
Diffscaler: Enhancing the Generative Prowess of Diffusion Transformers
Recently, diffusion transformers have gained wide attention with its excellent performance in text-to-image and text-to-vidoe models, emphasizing the need for transformers as backbone for diffusion models. Transformer-based models have shown better generalization capability compared to CNN-based models for general vision tasks. However, much less has been explored in the existing literature regarding the capabilities of transformer-based diffusion backbones and expanding their generative prowess to other datasets. This paper focuses on enabling a single pre-trained diffusion transformer model to scale across multiple datasets swiftly, allowing for the completion of diverse generative tasks using just one model. To this end, we propose DiffScaler, an efficient scaling strategy for diffusion models where we train a minimal amount of parameters to adapt to different tasks. In particular, we learn task-specific transformations at each layer by incorporating the ability to utilize the learned subspaces of the pre-trained model, as well as the ability to learn additional task-specific subspaces, which may be absent in the pre-training dataset. As these parameters are independent, a single diffusion model with these task-specific parameters can be used to perform multiple tasks simultaneously. Moreover, we find that transformer-based diffusion models significantly outperform CNN-based diffusion models methods while performing fine-tuning over smaller datasets. We perform experiments on four unconditional image generation datasets. We show that using our proposed method, a single pre-trained model can scale up to perform these conditional and unconditional tasks, respectively, with minimal parameter tuning while performing as close as fine-tuning an entire diffusion model for that particular task.
Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models
This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization. Diffusion models have gained prominence for their effectiveness in high-fidelity image generation. While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability. However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length. While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions. To address this challenge, we propose augmenting the Diffusion model with the Multi-Resolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution. Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance. Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants outperform prior diffusion models, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512. Project page: https://qihao067.github.io/projects/DiMR
BLIP3-o: A Family of Fully Open Unified Multimodal Models-Architecture, Training and Dataset
Unifying image understanding and generation has gained growing attention in recent research on multimodal models. Although design choices for image understanding have been extensively studied, the optimal model architecture and training recipe for a unified framework with image generation remain underexplored. Motivated by the strong potential of autoregressive and diffusion models for high-quality generation and scalability, we conduct a comprehensive study of their use in unified multimodal settings, with emphasis on image representations, modeling objectives, and training strategies. Grounded in these investigations, we introduce a novel approach that employs a diffusion transformer to generate semantically rich CLIP image features, in contrast to conventional VAE-based representations. This design yields both higher training efficiency and improved generative quality. Furthermore, we demonstrate that a sequential pretraining strategy for unified models-first training on image understanding and subsequently on image generation-offers practical advantages by preserving image understanding capability while developing strong image generation ability. Finally, we carefully curate a high-quality instruction-tuning dataset BLIP3o-60k for image generation by prompting GPT-4o with a diverse set of captions covering various scenes, objects, human gestures, and more. Building on our innovative model design, training recipe, and datasets, we develop BLIP3-o, a suite of state-of-the-art unified multimodal models. BLIP3-o achieves superior performance across most of the popular benchmarks spanning both image understanding and generation tasks. To facilitate future research, we fully open-source our models, including code, model weights, training scripts, and pretraining and instruction tuning datasets.
Lumina-Next: Making Lumina-T2X Stronger and Faster with Next-DiT
Lumina-T2X is a nascent family of Flow-based Large Diffusion Transformers that establishes a unified framework for transforming noise into various modalities, such as images and videos, conditioned on text instructions. Despite its promising capabilities, Lumina-T2X still encounters challenges including training instability, slow inference, and extrapolation artifacts. In this paper, we present Lumina-Next, an improved version of Lumina-T2X, showcasing stronger generation performance with increased training and inference efficiency. We begin with a comprehensive analysis of the Flag-DiT architecture and identify several suboptimal components, which we address by introducing the Next-DiT architecture with 3D RoPE and sandwich normalizations. To enable better resolution extrapolation, we thoroughly compare different context extrapolation methods applied to text-to-image generation with 3D RoPE, and propose Frequency- and Time-Aware Scaled RoPE tailored for diffusion transformers. Additionally, we introduced a sigmoid time discretization schedule to reduce sampling steps in solving the Flow ODE and the Context Drop method to merge redundant visual tokens for faster network evaluation, effectively boosting the overall sampling speed. Thanks to these improvements, Lumina-Next not only improves the quality and efficiency of basic text-to-image generation but also demonstrates superior resolution extrapolation capabilities and multilingual generation using decoder-based LLMs as the text encoder, all in a zero-shot manner. To further validate Lumina-Next as a versatile generative framework, we instantiate it on diverse tasks including visual recognition, multi-view, audio, music, and point cloud generation, showcasing strong performance across these domains. By releasing all codes and model weights, we aim to advance the development of next-generation generative AI capable of universal modeling.
Diffusion Transformers with Representation Autoencoders
Latent generative modeling, where a pretrained autoencoder maps pixels into a latent space for the diffusion process, has become the standard strategy for Diffusion Transformers (DiT); however, the autoencoder component has barely evolved. Most DiTs continue to rely on the original VAE encoder, which introduces several limitations: outdated backbones that compromise architectural simplicity, low-dimensional latent spaces that restrict information capacity, and weak representations that result from purely reconstruction-based training and ultimately limit generative quality. In this work, we explore replacing the VAE with pretrained representation encoders (e.g., DINO, SigLIP, MAE) paired with trained decoders, forming what we term Representation Autoencoders (RAEs). These models provide both high-quality reconstructions and semantically rich latent spaces, while allowing for a scalable transformer-based architecture. Since these latent spaces are typically high-dimensional, a key challenge is enabling diffusion transformers to operate effectively within them. We analyze the sources of this difficulty, propose theoretically motivated solutions, and validate them empirically. Our approach achieves faster convergence without auxiliary representation alignment losses. Using a DiT variant equipped with a lightweight, wide DDT head, we achieve strong image generation results on ImageNet: 1.51 FID at 256x256 (no guidance) and 1.13 at both 256x256 and 512x512 (with guidance). RAE offers clear advantages and should be the new default for diffusion transformer training.
Diffusion-TTA: Test-time Adaptation of Discriminative Models via Generative Feedback
The advancements in generative modeling, particularly the advent of diffusion models, have sparked a fundamental question: how can these models be effectively used for discriminative tasks? In this work, we find that generative models can be great test-time adapters for discriminative models. Our method, Diffusion-TTA, adapts pre-trained discriminative models such as image classifiers, segmenters and depth predictors, to each unlabelled example in the test set using generative feedback from a diffusion model. We achieve this by modulating the conditioning of the diffusion model using the output of the discriminative model. We then maximize the image likelihood objective by backpropagating the gradients to discriminative model's parameters. We show Diffusion-TTA significantly enhances the accuracy of various large-scale pre-trained discriminative models, such as, ImageNet classifiers, CLIP models, image pixel labellers and image depth predictors. Diffusion-TTA outperforms existing test-time adaptation methods, including TTT-MAE and TENT, and particularly shines in online adaptation setups, where the discriminative model is continually adapted to each example in the test set. We provide access to code, results, and visualizations on our website: https://diffusion-tta.github.io/.
ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation
Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.
UltraFlux: Data-Model Co-Design for High-quality Native 4K Text-to-Image Generation across Diverse Aspect Ratios
Diffusion transformers have recently delivered strong text-to-image generation around 1K resolution, but we show that extending them to native 4K across diverse aspect ratios exposes a tightly coupled failure mode spanning positional encoding, VAE compression, and optimization. Tackling any of these factors in isolation leaves substantial quality on the table. We therefore take a data-model co-design view and introduce UltraFlux, a Flux-based DiT trained natively at 4K on MultiAspect-4K-1M, a 1M-image 4K corpus with controlled multi-AR coverage, bilingual captions, and rich VLM/IQA metadata for resolution- and AR-aware sampling. On the model side, UltraFlux couples (i) Resonance 2D RoPE with YaRN for training-window-, frequency-, and AR-aware positional encoding at 4K; (ii) a simple, non-adversarial VAE post-training scheme that improves 4K reconstruction fidelity; (iii) an SNR-Aware Huber Wavelet objective that rebalances gradients across timesteps and frequency bands; and (iv) a Stage-wise Aesthetic Curriculum Learning strategy that concentrates high-aesthetic supervision on high-noise steps governed by the model prior. Together, these components yield a stable, detail-preserving 4K DiT that generalizes across wide, square, and tall ARs. On the Aesthetic-Eval at 4096 benchmark and multi-AR 4K settings, UltraFlux consistently outperforms strong open-source baselines across fidelity, aesthetic, and alignment metrics, and-with a LLM prompt refiner-matches or surpasses the proprietary Seedream 4.0.
Let Features Decide Their Own Solvers: Hybrid Feature Caching for Diffusion Transformers
Diffusion Transformers offer state-of-the-art fidelity in image and video synthesis, but their iterative sampling process remains a major bottleneck due to the high cost of transformer forward passes at each timestep. To mitigate this, feature caching has emerged as a training-free acceleration technique that reuses or forecasts hidden representations. However, existing methods often apply a uniform caching strategy across all feature dimensions, ignoring their heterogeneous dynamic behaviors. Therefore, we adopt a new perspective by modeling hidden feature evolution as a mixture of ODEs across dimensions, and introduce HyCa, a Hybrid ODE solver inspired caching framework that applies dimension-wise caching strategies. HyCa achieves near-lossless acceleration across diverse domains and models, including 5.55 times speedup on FLUX, 5.56 times speedup on HunyuanVideo, 6.24 times speedup on Qwen-Image and Qwen-Image-Edit without retraining.
Forecast then Calibrate: Feature Caching as ODE for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) have demonstrated exceptional performance in high-fidelity image and video generation. To reduce their substantial computational costs, feature caching techniques have been proposed to accelerate inference by reusing hidden representations from previous timesteps. However, current methods often struggle to maintain generation quality at high acceleration ratios, where prediction errors increase sharply due to the inherent instability of long-step forecasting. In this work, we adopt an ordinary differential equation (ODE) perspective on the hidden-feature sequence, modeling layer representations along the trajectory as a feature-ODE. We attribute the degradation of existing caching strategies to their inability to robustly integrate historical features under large skipping intervals. To address this, we propose FoCa (Forecast-then-Calibrate), which treats feature caching as a feature-ODE solving problem. Extensive experiments on image synthesis, video generation, and super-resolution tasks demonstrate the effectiveness of FoCa, especially under aggressive acceleration. Without additional training, FoCa achieves near-lossless speedups of 5.50 times on FLUX, 6.45 times on HunyuanVideo, 3.17 times on Inf-DiT, and maintains high quality with a 4.53 times speedup on DiT.
Accelerating Vision Diffusion Transformers with Skip Branches
Diffusion Transformers (DiT), an emerging image and video generation model architecture, has demonstrated great potential because of its high generation quality and scalability properties. Despite the impressive performance, its practical deployment is constrained by computational complexity and redundancy in the sequential denoising process. While feature caching across timesteps has proven effective in accelerating diffusion models, its application to DiT is limited by fundamental architectural differences from U-Net-based approaches. Through empirical analysis of DiT feature dynamics, we identify that significant feature variation between DiT blocks presents a key challenge for feature reusability. To address this, we convert standard DiT into Skip-DiT with skip branches to enhance feature smoothness. Further, we introduce Skip-Cache which utilizes the skip branches to cache DiT features across timesteps at the inference time. We validated effectiveness of our proposal on different DiT backbones for video and image generation, showcasing skip branches to help preserve generation quality and achieve higher speedup. Experimental results indicate that Skip-DiT achieves a 1.5x speedup almost for free and a 2.2x speedup with only a minor reduction in quantitative metrics. Code is available at https://github.com/OpenSparseLLMs/Skip-DiT.git.
TinyFusion: Diffusion Transformers Learned Shallow
Diffusion Transformers have demonstrated remarkable capabilities in image generation but often come with excessive parameterization, resulting in considerable inference overhead in real-world applications. In this work, we present TinyFusion, a depth pruning method designed to remove redundant layers from diffusion transformers via end-to-end learning. The core principle of our approach is to create a pruned model with high recoverability, allowing it to regain strong performance after fine-tuning. To accomplish this, we introduce a differentiable sampling technique to make pruning learnable, paired with a co-optimized parameter to simulate future fine-tuning. While prior works focus on minimizing loss or error after pruning, our method explicitly models and optimizes the post-fine-tuning performance of pruned models. Experimental results indicate that this learnable paradigm offers substantial benefits for layer pruning of diffusion transformers, surpassing existing importance-based and error-based methods. Additionally, TinyFusion exhibits strong generalization across diverse architectures, such as DiTs, MARs, and SiTs. Experiments with DiT-XL show that TinyFusion can craft a shallow diffusion transformer at less than 7% of the pre-training cost, achieving a 2times speedup with an FID score of 2.86, outperforming competitors with comparable efficiency. Code is available at https://github.com/VainF/TinyFusion.
DiTAS: Quantizing Diffusion Transformers via Enhanced Activation Smoothing
Diffusion Transformers (DiTs) have recently attracted significant interest from both industry and academia due to their enhanced capabilities in visual generation, surpassing the performance of traditional diffusion models that employ U-Net. However, the improved performance of DiTs comes at the expense of higher parameter counts and implementation costs, which significantly limits their deployment on resource-constrained devices like mobile phones. We propose DiTAS, a data-free post-training quantization (PTQ) method for efficient DiT inference. DiTAS relies on the proposed temporal-aggregated smoothing techniques to mitigate the impact of the channel-wise outliers within the input activations, leading to much lower quantization error under extremely low bitwidth. To further enhance the performance of the quantized DiT, we adopt the layer-wise grid search strategy to optimize the smoothing factor. Experimental results demonstrate that our approach enables 4-bit weight, 8-bit activation (W4A8) quantization for DiTs while maintaining comparable performance as the full-precision model.
Fast Video Generation with Sliding Tile Attention
Diffusion Transformers (DiTs) with 3D full attention power state-of-the-art video generation, but suffer from prohibitive compute cost -- when generating just a 5-second 720P video, attention alone takes 800 out of 945 seconds of total inference time. This paper introduces sliding tile attention (STA) to address this challenge. STA leverages the observation that attention scores in pretrained video diffusion models predominantly concentrate within localized 3D windows. By sliding and attending over the local spatial-temporal region, STA eliminates redundancy from full attention. Unlike traditional token-wise sliding window attention (SWA), STA operates tile-by-tile with a novel hardware-aware sliding window design, preserving expressiveness while being hardware-efficient. With careful kernel-level optimizations, STA offers the first efficient 2D/3D sliding-window-like attention implementation, achieving 58.79% MFU. Precisely, STA accelerates attention by 2.8-17x over FlashAttention-2 (FA2) and 1.6-10x over FlashAttention-3 (FA3). On the leading video DiT, HunyuanVideo, STA reduces end-to-end latency from 945s (FA3) to 685s without quality degradation, requiring no training. Enabling finetuning further lowers latency to 268s with only a 0.09% drop on VBench.
DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation
With diffusion transformer (DiT) excelling in video generation, its use in specific tasks has drawn increasing attention. However, adapting DiT for pose-guided human image animation faces two core challenges: (a) existing U-Net-based pose control methods may be suboptimal for the DiT backbone; and (b) removing text guidance, as in previous approaches, often leads to semantic loss and model degradation. To address these issues, we propose DynamiCtrl, a novel framework for human animation in video DiT architecture. Specifically, we use a shared VAE encoder for human images and driving poses, unifying them into a common latent space, maintaining pose fidelity, and eliminating the need for an expert pose encoder during video denoising. To integrate pose control into the DiT backbone effectively, we propose a novel Pose-adaptive Layer Norm model. It injects normalized pose features into the denoising process via conditioning on visual tokens, enabling seamless and scalable pose control across DiT blocks. Furthermore, to overcome the shortcomings of text removal, we introduce the "Joint-text" paradigm, which preserves the role of text embeddings to provide global semantic context. Through full-attention blocks, image and pose features are aligned with text features, enhancing semantic consistency, leveraging pretrained knowledge, and enabling multi-level control. Experiments verify the superiority of DynamiCtrl on benchmark and self-collected data (e.g., achieving the best LPIPS of 0.166), demonstrating strong character control and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer
Latent diffusion models have shown promising results in text-to-audio (T2A) generation tasks, yet previous models have encountered difficulties in generation quality, computational cost, diffusion sampling, and data preparation. In this paper, we introduce EzAudio, a transformer-based T2A diffusion model, to handle these challenges. Our approach includes several key innovations: (1) We build the T2A model on the latent space of a 1D waveform Variational Autoencoder (VAE), avoiding the complexities of handling 2D spectrogram representations and using an additional neural vocoder. (2) We design an optimized diffusion transformer architecture specifically tailored for audio latent representations and diffusion modeling, which enhances convergence speed, training stability, and memory usage, making the training process easier and more efficient. (3) To tackle data scarcity, we adopt a data-efficient training strategy that leverages unlabeled data for learning acoustic dependencies, audio caption data annotated by audio-language models for text-to-audio alignment learning, and human-labeled data for fine-tuning. (4) We introduce a classifier-free guidance (CFG) rescaling method that simplifies EzAudio by achieving strong prompt alignment while preserving great audio quality when using larger CFG scores, eliminating the need to struggle with finding the optimal CFG score to balance this trade-off. EzAudio surpasses existing open-source models in both objective metrics and subjective evaluations, delivering realistic listening experiences while maintaining a streamlined model structure, low training costs, and an easy-to-follow training pipeline. Code, data, and pre-trained models are released at: https://haidog-yaqub.github.io/EzAudio-Page/.
E-MD3C: Taming Masked Diffusion Transformers for Efficient Zero-Shot Object Customization
We propose E-MD3C (Efficient Masked Diffusion Transformer with Disentangled Conditions and Compact Collector), a highly efficient framework for zero-shot object image customization. Unlike prior works reliant on resource-intensive Unet architectures, our approach employs lightweight masked diffusion transformers operating on latent patches, offering significantly improved computational efficiency. The framework integrates three core components: (1) an efficient masked diffusion transformer for processing autoencoder latents, (2) a disentangled condition design that ensures compactness while preserving background alignment and fine details, and (3) a learnable Conditions Collector that consolidates multiple inputs into a compact representation for efficient denoising and learning. E-MD3C outperforms the existing approach on the VITON-HD dataset across metrics such as PSNR, FID, SSIM, and LPIPS, demonstrating clear advantages in parameters, memory efficiency, and inference speed. With only 1{4} of the parameters, our Transformer-based 468M model delivers 2.5times faster inference and uses 2{3} of the GPU memory compared to an 1720M Unet-based latent diffusion model.
MagicInfinite: Generating Infinite Talking Videos with Your Words and Voice
We present MagicInfinite, a novel diffusion Transformer (DiT) framework that overcomes traditional portrait animation limitations, delivering high-fidelity results across diverse character types-realistic humans, full-body figures, and stylized anime characters. It supports varied facial poses, including back-facing views, and animates single or multiple characters with input masks for precise speaker designation in multi-character scenes. Our approach tackles key challenges with three innovations: (1) 3D full-attention mechanisms with a sliding window denoising strategy, enabling infinite video generation with temporal coherence and visual quality across diverse character styles; (2) a two-stage curriculum learning scheme, integrating audio for lip sync, text for expressive dynamics, and reference images for identity preservation, enabling flexible multi-modal control over long sequences; and (3) region-specific masks with adaptive loss functions to balance global textual control and local audio guidance, supporting speaker-specific animations. Efficiency is enhanced via our innovative unified step and cfg distillation techniques, achieving a 20x inference speed boost over the basemodel: generating a 10 second 540x540p video in 10 seconds or 720x720p in 30 seconds on 8 H100 GPUs, without quality loss. Evaluations on our new benchmark demonstrate MagicInfinite's superiority in audio-lip synchronization, identity preservation, and motion naturalness across diverse scenarios. It is publicly available at https://www.hedra.com/, with examples at https://magicinfinite.github.io/.
Efficient Scaling of Diffusion Transformers for Text-to-Image Generation
We empirically study the scaling properties of various Diffusion Transformers (DiTs) for text-to-image generation by performing extensive and rigorous ablations, including training scaled DiTs ranging from 0.3B upto 8B parameters on datasets up to 600M images. We find that U-ViT, a pure self-attention based DiT model provides a simpler design and scales more effectively in comparison with cross-attention based DiT variants, which allows straightforward expansion for extra conditions and other modalities. We identify a 2.3B U-ViT model can get better performance than SDXL UNet and other DiT variants in controlled setting. On the data scaling side, we investigate how increasing dataset size and enhanced long caption improve the text-image alignment performance and the learning efficiency.
Pluggable Pruning with Contiguous Layer Distillation for Diffusion Transformers
Diffusion Transformers (DiTs) have shown exceptional performance in image generation, yet their large parameter counts incur high computational costs, impeding deployment in resource-constrained settings. To address this, we propose Pluggable Pruning with Contiguous Layer Distillation (PPCL), a flexible structured pruning framework specifically designed for DiT architectures. First, we identify redundant layer intervals through a linear probing mechanism combined with the first-order differential trend analysis of similarity metrics. Subsequently, we propose a plug-and-play teacher-student alternating distillation scheme tailored to integrate depth-wise and width-wise pruning within a single training phase. This distillation framework enables flexible knowledge transfer across diverse pruning ratios, eliminating the need for per-configuration retraining. Extensive experiments on multiple Multi-Modal Diffusion Transformer architecture models demonstrate that PPCL achieves a 50\% reduction in parameter count compared to the full model, with less than 3\% degradation in key objective metrics. Notably, our method maintains high-quality image generation capabilities while achieving higher compression ratios, rendering it well-suited for resource-constrained environments. The open-source code, checkpoints for PPCL can be found at the following link: https://github.com/OPPO-Mente-Lab/Qwen-Image-Pruning.
SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model
X-ray imaging is a rapid and cost-effective tool for visualizing internal human anatomy. While multi-view X-ray imaging provides complementary information that enhances diagnosis, intervention, and education, acquiring images from multiple angles increases radiation exposure and complicates clinical workflows. To address these challenges, we propose a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Unlike prior methods, which are limited in angular range, resolution, and image quality, our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation. Experimental results demonstrate that our method generates higher-resolution outputs with improved control over viewing angles. This capability has significant implications not only for clinical applications but also for medical education and data extension, enabling the creation of diverse, high-quality datasets for training and analysis. Our code is available at https://github.com/xiechun298/SV-DRR.
FiTv2: Scalable and Improved Flexible Vision Transformer for Diffusion Model
Nature is infinitely resolution-free. In the context of this reality, existing diffusion models, such as Diffusion Transformers, often face challenges when processing image resolutions outside of their trained domain. To address this limitation, we conceptualize images as sequences of tokens with dynamic sizes, rather than traditional methods that perceive images as fixed-resolution grids. This perspective enables a flexible training strategy that seamlessly accommodates various aspect ratios during both training and inference, thus promoting resolution generalization and eliminating biases introduced by image cropping. On this basis, we present the Flexible Vision Transformer (FiT), a transformer architecture specifically designed for generating images with unrestricted resolutions and aspect ratios. We further upgrade the FiT to FiTv2 with several innovative designs, includingthe Query-Key vector normalization, the AdaLN-LoRA module, a rectified flow scheduler, and a Logit-Normal sampler. Enhanced by a meticulously adjusted network structure, FiTv2 exhibits 2times convergence speed of FiT. When incorporating advanced training-free extrapolation techniques, FiTv2 demonstrates remarkable adaptability in both resolution extrapolation and diverse resolution generation. Additionally, our exploration of the scalability of the FiTv2 model reveals that larger models exhibit better computational efficiency. Furthermore, we introduce an efficient post-training strategy to adapt a pre-trained model for the high-resolution generation. Comprehensive experiments demonstrate the exceptional performance of FiTv2 across a broad range of resolutions. We have released all the codes and models at https://github.com/whlzy/FiT to promote the exploration of diffusion transformer models for arbitrary-resolution image generation.
DiffSurf: A Transformer-based Diffusion Model for Generating and Reconstructing 3D Surfaces in Pose
This paper presents DiffSurf, a transformer-based denoising diffusion model for generating and reconstructing 3D surfaces. Specifically, we design a diffusion transformer architecture that predicts noise from noisy 3D surface vertices and normals. With this architecture, DiffSurf is able to generate 3D surfaces in various poses and shapes, such as human bodies, hands, animals and man-made objects. Further, DiffSurf is versatile in that it can address various 3D downstream tasks including morphing, body shape variation and 3D human mesh fitting to 2D keypoints. Experimental results on 3D human model benchmarks demonstrate that DiffSurf can generate shapes with greater diversity and higher quality than previous generative models. Furthermore, when applied to the task of single-image 3D human mesh recovery, DiffSurf achieves accuracy comparable to prior techniques at a near real-time rate.
Lumina-Video: Efficient and Flexible Video Generation with Multi-scale Next-DiT
Recent advancements have established Diffusion Transformers (DiTs) as a dominant framework in generative modeling. Building on this success, Lumina-Next achieves exceptional performance in the generation of photorealistic images with Next-DiT. However, its potential for video generation remains largely untapped, with significant challenges in modeling the spatiotemporal complexity inherent to video data. To address this, we introduce Lumina-Video, a framework that leverages the strengths of Next-DiT while introducing tailored solutions for video synthesis. Lumina-Video incorporates a Multi-scale Next-DiT architecture, which jointly learns multiple patchifications to enhance both efficiency and flexibility. By incorporating the motion score as an explicit condition, Lumina-Video also enables direct control of generated videos' dynamic degree. Combined with a progressive training scheme with increasingly higher resolution and FPS, and a multi-source training scheme with mixed natural and synthetic data, Lumina-Video achieves remarkable aesthetic quality and motion smoothness at high training and inference efficiency. We additionally propose Lumina-V2A, a video-to-audio model based on Next-DiT, to create synchronized sounds for generated videos. Codes are released at https://www.github.com/Alpha-VLLM/Lumina-Video.
No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves
Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance the generation quality of diffusion transformers. However, existing approaches necessitate to either introduce an external and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation Alignment (SRA), a simple yet straightforward method that obtains representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in the earlier layer with higher noise to that in the later layer with lower noise to progressively enhance the overall representation learning during only the generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that are heavily dependent on powerful external representation priors.
Scaling Diffusion Transformers Efficiently via μP
Diffusion Transformers have emerged as the foundation for vision generative models, but their scalability is limited by the high cost of hyperparameter (HP) tuning at large scales. Recently, Maximal Update Parametrization (muP) was proposed for vanilla Transformers, which enables stable HP transfer from small to large language models, and dramatically reduces tuning costs. However, it remains unclear whether muP of vanilla Transformers extends to diffusion Transformers, which differ architecturally and objectively. In this work, we generalize standard muP to diffusion Transformers and validate its effectiveness through large-scale experiments. First, we rigorously prove that muP of mainstream diffusion Transformers, including DiT, U-ViT, PixArt-alpha, and MMDiT, aligns with that of the vanilla Transformer, enabling the direct application of existing muP methodologies. Leveraging this result, we systematically demonstrate that DiT-muP enjoys robust HP transferability. Notably, DiT-XL-2-muP with transferred learning rate achieves 2.9 times faster convergence than the original DiT-XL-2. Finally, we validate the effectiveness of muP on text-to-image generation by scaling PixArt-alpha from 0.04B to 0.61B and MMDiT from 0.18B to 18B. In both cases, models under muP outperform their respective baselines while requiring small tuning cost, only 5.5% of one training run for PixArt-alpha and 3% of consumption by human experts for MMDiT-18B. These results establish muP as a principled and efficient framework for scaling diffusion Transformers.
HiPA: Enabling One-Step Text-to-Image Diffusion Models via High-Frequency-Promoting Adaptation
Diffusion models have revolutionized text-to-image generation, but their real-world applications are hampered by the extensive time needed for hundreds of diffusion steps. Although progressive distillation has been proposed to speed up diffusion sampling to 2-8 steps, it still falls short in one-step generation, and necessitates training multiple student models, which is highly parameter-extensive and time-consuming. To overcome these limitations, we introduce High-frequency-Promoting Adaptation (HiPA), a parameter-efficient approach to enable one-step text-to-image diffusion. Grounded in the insight that high-frequency information is essential but highly lacking in one-step diffusion, HiPA focuses on training one-step, low-rank adaptors to specifically enhance the under-represented high-frequency abilities of advanced diffusion models. The learned adaptors empower these diffusion models to generate high-quality images in just a single step. Compared with progressive distillation, HiPA achieves much better performance in one-step text-to-image generation (37.3 rightarrow 23.8 in FID-5k on MS-COCO 2017) and 28.6x training speed-up (108.8 rightarrow 3.8 A100 GPU days), requiring only 0.04% training parameters (7,740 million rightarrow 3.3 million). We also demonstrate HiPA's effectiveness in text-guided image editing, inpainting and super-resolution tasks, where our adapted models consistently deliver high-quality outputs in just one diffusion step. The source code will be released.
DiTTo-TTS: Efficient and Scalable Zero-Shot Text-to-Speech with Diffusion Transformer
Large-scale diffusion models have shown outstanding generative abilities across multiple modalities including images, videos, and audio. However, text-to-speech (TTS) systems typically involve domain-specific modeling factors (e.g., phonemes and phoneme-level durations) to ensure precise temporal alignments between text and speech, which hinders the efficiency and scalability of diffusion models for TTS. In this work, we present an efficient and scalable Diffusion Transformer (DiT) that utilizes off-the-shelf pre-trained text and speech encoders. Our approach addresses the challenge of text-speech alignment via cross-attention mechanisms with the prediction of the total length of speech representations. To achieve this, we enhance the DiT architecture to suit TTS and improve the alignment by incorporating semantic guidance into the latent space of speech. We scale the training dataset and the model size to 82K hours and 790M parameters, respectively. Our extensive experiments demonstrate that the large-scale diffusion model for TTS without domain-specific modeling not only simplifies the training pipeline but also yields superior or comparable zero-shot performance to state-of-the-art TTS models in terms of naturalness, intelligibility, and speaker similarity. Our speech samples are available at https://ditto-tts.github.io.
TR-DQ: Time-Rotation Diffusion Quantization
Diffusion models have been widely adopted in image and video generation. However, their complex network architecture leads to high inference overhead for its generation process. Existing diffusion quantization methods primarily focus on the quantization of the model structure while ignoring the impact of time-steps variation during sampling. At the same time, most current approaches fail to account for significant activations that cannot be eliminated, resulting in substantial performance degradation after quantization. To address these issues, we propose Time-Rotation Diffusion Quantization (TR-DQ), a novel quantization method incorporating time-step and rotation-based optimization. TR-DQ first divides the sampling process based on time-steps and applies a rotation matrix to smooth activations and weights dynamically. For different time-steps, a dedicated hyperparameter is introduced for adaptive timing modeling, which enables dynamic quantization across different time steps. Additionally, we also explore the compression potential of Classifier-Free Guidance (CFG-wise) to establish a foundation for subsequent work. TR-DQ achieves state-of-the-art (SOTA) performance on image generation and video generation tasks and a 1.38-1.89x speedup and 1.97-2.58x memory reduction in inference compared to existing quantization methods.
Brain-inspired Action Generation with Spiking Transformer Diffusion Policy Model
Spiking Neural Networks (SNNs) has the ability to extract spatio-temporal features due to their spiking sequence. While previous research has primarily foucus on the classification of image and reinforcement learning. In our paper, we put forward novel diffusion policy model based on Spiking Transformer Neural Networks and Denoising Diffusion Probabilistic Model (DDPM): Spiking Transformer Modulate Diffusion Policy Model (STMDP), a new brain-inspired model for generating robot action trajectories. In order to improve the performance of this model, we develop a novel decoder module: Spiking Modulate De coder (SMD), which replaces the traditional Decoder module within the Transformer architecture. Additionally, we explored the substitution of DDPM with Denoising Diffusion Implicit Models (DDIM) in our frame work. We conducted experiments across four robotic manipulation tasks and performed ablation studies on the modulate block. Our model consistently outperforms existing Transformer-based diffusion policy method. Especially in Can task, we achieved an improvement of 8%. The proposed STMDP method integrates SNNs, dffusion model and Transformer architecture, which offers new perspectives and promising directions for exploration in brain-inspired robotics.
GenTron: Delving Deep into Diffusion Transformers for Image and Video Generation
In this study, we explore Transformer-based diffusion models for image and video generation. Despite the dominance of Transformer architectures in various fields due to their flexibility and scalability, the visual generative domain primarily utilizes CNN-based U-Net architectures, particularly in diffusion-based models. We introduce GenTron, a family of Generative models employing Transformer-based diffusion, to address this gap. Our initial step was to adapt Diffusion Transformers (DiTs) from class to text conditioning, a process involving thorough empirical exploration of the conditioning mechanism. We then scale GenTron from approximately 900M to over 3B parameters, observing significant improvements in visual quality. Furthermore, we extend GenTron to text-to-video generation, incorporating novel motion-free guidance to enhance video quality. In human evaluations against SDXL, GenTron achieves a 51.1% win rate in visual quality (with a 19.8% draw rate), and a 42.3% win rate in text alignment (with a 42.9% draw rate). GenTron also excels in the T2I-CompBench, underscoring its strengths in compositional generation. We believe this work will provide meaningful insights and serve as a valuable reference for future research.
HarmoniCa: Harmonizing Training and Inference for Better Feature Cache in Diffusion Transformer Acceleration
Diffusion Transformers (DiTs) have gained prominence for outstanding scalability and extraordinary performance in generative tasks. However, their considerable inference costs impede practical deployment. The feature cache mechanism, which involves storing and retrieving redundant computations across timesteps, holds promise for reducing per-step inference time in diffusion models. Most existing caching methods for DiT are manually designed. Although the learning-based approach attempts to optimize strategies adaptively, it suffers from discrepancies between training and inference, which hampers both the performance and acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies primarily stem from two aspects: (1) Prior Timestep Disregard, where training ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch, where the training target (align predicted noise in each timestep) deviates from the goal of inference (generate the high-quality image). To alleviate these discrepancies, we propose HarmoniCa, a novel method that Harmonizes training and inference with a novel learning-based Caching framework built upon Step-Wise Denoising Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared to the traditional training paradigm, the newly proposed SDT maintains the continuity of the denoising process, enabling the model to leverage information from prior timesteps during training, similar to the way it operates during inference. Furthermore, we design IEPO, which integrates an efficient proxy mechanism to approximate the final image error caused by reusing the cached feature. Therefore, IEPO helps balance final image quality and cache utilization, resolving the issue of training that only considers the impact of cache usage on the predicted output at each timestep.
DiffiT: Diffusion Vision Transformers for Image Generation
Diffusion models with their powerful expressivity and high sample quality have enabled many new applications and use-cases in various domains. For sample generation, these models rely on a denoising neural network that generates images by iterative denoising. Yet, the role of denoising network architecture is not well-studied with most efforts relying on convolutional residual U-Nets. In this paper, we study the effectiveness of vision transformers in diffusion-based generative learning. Specifically, we propose a new model, denoted as Diffusion Vision Transformers (DiffiT), which consists of a hybrid hierarchical architecture with a U-shaped encoder and decoder. We introduce a novel time-dependent self-attention module that allows attention layers to adapt their behavior at different stages of the denoising process in an efficient manner. We also introduce latent DiffiT which consists of transformer model with the proposed self-attention layers, for high-resolution image generation. Our results show that DiffiT is surprisingly effective in generating high-fidelity images, and it achieves state-of-the-art (SOTA) benchmarks on a variety of class-conditional and unconditional synthesis tasks. In the latent space, DiffiT achieves a new SOTA FID score of 1.73 on ImageNet-256 dataset. Repository: https://github.com/NVlabs/DiffiT
Generating Images with 3D Annotations Using Diffusion Models
Diffusion models have emerged as a powerful generative method, capable of producing stunning photo-realistic images from natural language descriptions. However, these models lack explicit control over the 3D structure in the generated images. Consequently, this hinders our ability to obtain detailed 3D annotations for the generated images or to craft instances with specific poses and distances. In this paper, we propose 3D Diffusion Style Transfer (3D-DST), which incorporates 3D geometry control into diffusion models. Our method exploits ControlNet, which extends diffusion models by using visual prompts in addition to text prompts. We generate images of the 3D objects taken from 3D shape repositories (e.g., ShapeNet and Objaverse), render them from a variety of poses and viewing directions, compute the edge maps of the rendered images, and use these edge maps as visual prompts to generate realistic images. With explicit 3D geometry control, we can easily change the 3D structures of the objects in the generated images and obtain ground-truth 3D annotations automatically. This allows us to improve a wide range of vision tasks, e.g., classification and 3D pose estimation, in both in-distribution (ID) and out-of-distribution (OOD) settings. We demonstrate the effectiveness of our method through extensive experiments on ImageNet-100/200, ImageNet-R, PASCAL3D+, ObjectNet3D, and OOD-CV. The results show that our method significantly outperforms existing methods, e.g., 3.8 percentage points on ImageNet-100 using DeiT-B.
MirrorMe: Towards Realtime and High Fidelity Audio-Driven Halfbody Animation
Audio-driven portrait animation, which synthesizes realistic videos from reference images using audio signals, faces significant challenges in real-time generation of high-fidelity, temporally coherent animations. While recent diffusion-based methods improve generation quality by integrating audio into denoising processes, their reliance on frame-by-frame UNet architectures introduces prohibitive latency and struggles with temporal consistency. This paper introduces MirrorMe, a real-time, controllable framework built on the LTX video model, a diffusion transformer that compresses video spatially and temporally for efficient latent space denoising. To address LTX's trade-offs between compression and semantic fidelity, we propose three innovations: 1. A reference identity injection mechanism via VAE-encoded image concatenation and self-attention, ensuring identity consistency; 2. A causal audio encoder and adapter tailored to LTX's temporal structure, enabling precise audio-expression synchronization; and 3. A progressive training strategy combining close-up facial training, half-body synthesis with facial masking, and hand pose integration for enhanced gesture control. Extensive experiments on the EMTD Benchmark demonstrate MirrorMe's state-of-the-art performance in fidelity, lip-sync accuracy, and temporal stability.
Sequential Posterior Sampling with Diffusion Models
Diffusion models have quickly risen in popularity for their ability to model complex distributions and perform effective posterior sampling. Unfortunately, the iterative nature of these generative models makes them computationally expensive and unsuitable for real-time sequential inverse problems such as ultrasound imaging. Considering the strong temporal structure across sequences of frames, we propose a novel approach that models the transition dynamics to improve the efficiency of sequential diffusion posterior sampling in conditional image synthesis. Through modeling sequence data using a video vision transformer (ViViT) transition model based on previous diffusion outputs, we can initialize the reverse diffusion trajectory at a lower noise scale, greatly reducing the number of iterations required for convergence. We demonstrate the effectiveness of our approach on a real-world dataset of high frame rate cardiac ultrasound images and show that it achieves the same performance as a full diffusion trajectory while accelerating inference 25times, enabling real-time posterior sampling. Furthermore, we show that the addition of a transition model improves the PSNR up to 8\% in cases with severe motion. Our method opens up new possibilities for real-time applications of diffusion models in imaging and other domains requiring real-time inference.
U-DiTs: Downsample Tokens in U-Shaped Diffusion Transformers
Diffusion Transformers (DiTs) introduce the transformer architecture to diffusion tasks for latent-space image generation. With an isotropic architecture that chains a series of transformer blocks, DiTs demonstrate competitive performance and good scalability; but meanwhile, the abandonment of U-Net by DiTs and their following improvements is worth rethinking. To this end, we conduct a simple toy experiment by comparing a U-Net architectured DiT with an isotropic one. It turns out that the U-Net architecture only gain a slight advantage amid the U-Net inductive bias, indicating potential redundancies within the U-Net-style DiT. Inspired by the discovery that U-Net backbone features are low-frequency-dominated, we perform token downsampling on the query-key-value tuple for self-attention and bring further improvements despite a considerable amount of reduction in computation. Based on self-attention with downsampled tokens, we propose a series of U-shaped DiTs (U-DiTs) in the paper and conduct extensive experiments to demonstrate the extraordinary performance of U-DiT models. The proposed U-DiT could outperform DiT-XL/2 with only 1/6 of its computation cost. Codes are available at https://github.com/YuchuanTian/U-DiT.
StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
TIDE : Temporal-Aware Sparse Autoencoders for Interpretable Diffusion Transformers in Image Generation
Diffusion Transformers (DiTs) are a powerful yet underexplored class of generative models compared to U-Net-based diffusion architectures. We propose TIDE-Temporal-aware sparse autoencoders for Interpretable Diffusion transformErs-a framework designed to extract sparse, interpretable activation features across timesteps in DiTs. TIDE effectively captures temporally-varying representations and reveals that DiTs naturally learn hierarchical semantics (e.g., 3D structure, object class, and fine-grained concepts) during large-scale pretraining. Experiments show that TIDE enhances interpretability and controllability while maintaining reasonable generation quality, enabling applications such as safe image editing and style transfer.
Gaussian Variation Field Diffusion for High-fidelity Video-to-4D Synthesis
In this paper, we present a novel framework for video-to-4D generation that creates high-quality dynamic 3D content from single video inputs. Direct 4D diffusion modeling is extremely challenging due to costly data construction and the high-dimensional nature of jointly representing 3D shape, appearance, and motion. We address these challenges by introducing a Direct 4DMesh-to-GS Variation Field VAE that directly encodes canonical Gaussian Splats (GS) and their temporal variations from 3D animation data without per-instance fitting, and compresses high-dimensional animations into a compact latent space. Building upon this efficient representation, we train a Gaussian Variation Field diffusion model with temporal-aware Diffusion Transformer conditioned on input videos and canonical GS. Trained on carefully-curated animatable 3D objects from the Objaverse dataset, our model demonstrates superior generation quality compared to existing methods. It also exhibits remarkable generalization to in-the-wild video inputs despite being trained exclusively on synthetic data, paving the way for generating high-quality animated 3D content. Project page: https://gvfdiffusion.github.io/.
TED-VITON: Transformer-Empowered Diffusion Models for Virtual Try-On
Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task.
PuzzleFusion: Unleashing the Power of Diffusion Models for Spatial Puzzle Solving
This paper presents an end-to-end neural architecture based on Diffusion Models for spatial puzzle solving, particularly jigsaw puzzle and room arrangement tasks. In the latter task, for instance, the proposed system "PuzzleFusion" takes a set of room layouts as polygonal curves in the top-down view and aligns the room layout pieces by estimating their 2D translations and rotations, akin to solving the jigsaw puzzle of room layouts. A surprising discovery of the paper is that the simple use of a Diffusion Model effectively solves these challenging spatial puzzle tasks as a conditional generation process. To enable learning of an end-to-end neural system, the paper introduces new datasets with ground-truth arrangements: 1) 2D Voronoi jigsaw dataset, a synthetic one where pieces are generated by Voronoi diagram of 2D pointset; and 2) MagicPlan dataset, a real one offered by MagicPlan from its production pipeline, where pieces are room layouts constructed by augmented reality App by real-estate consumers. The qualitative and quantitative evaluations demonstrate that our approach outperforms the competing methods by significant margins in all the tasks.
SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer
This paper presents SANA-1.5, a linear Diffusion Transformer for efficient scaling in text-to-image generation. Building upon SANA-1.0, we introduce three key innovations: (1) Efficient Training Scaling: A depth-growth paradigm that enables scaling from 1.6B to 4.8B parameters with significantly reduced computational resources, combined with a memory-efficient 8-bit optimizer. (2) Model Depth Pruning: A block importance analysis technique for efficient model compression to arbitrary sizes with minimal quality loss. (3) Inference-time Scaling: A repeated sampling strategy that trades computation for model capacity, enabling smaller models to match larger model quality at inference time. Through these strategies, SANA-1.5 achieves a text-image alignment score of 0.72 on GenEval, which can be further improved to 0.80 through inference scaling, establishing a new SoTA on GenEval benchmark. These innovations enable efficient model scaling across different compute budgets while maintaining high quality, making high-quality image generation more accessible.
SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers
Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis. However, their inference process remains computationally expensive due to the repeated evaluation of resource-intensive attention and feed-forward modules. To address this, we introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures. SmoothCache leverages the observed high similarity between layer outputs across adjacent diffusion timesteps. By analyzing layer-wise representation errors from a small calibration set, SmoothCache adaptively caches and reuses key features during inference. Our experiments demonstrate that SmoothCache achieves 8% to 71% speed up while maintaining or even improving generation quality across diverse modalities. We showcase its effectiveness on DiT-XL for image generation, Open-Sora for text-to-video, and Stable Audio Open for text-to-audio, highlighting its potential to enable real-time applications and broaden the accessibility of powerful DiT models.
ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On
This paper introduces ITA-MDT, the Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON), designed to overcome the limitations of previous approaches by leveraging the Masked Diffusion Transformer (MDT) for improved handling of both global garment context and fine-grained details. The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment. Unlike conventional diffusion-based virtual try-on models that depend on large pre-trained U-Net architectures, ITA-MDT leverages a lightweight, scalable transformer-based denoising diffusion model with a mask latent modeling scheme, achieving competitive results while reducing computational overhead. A key component of ITA-MDT is the Image-Timestep Adaptive Feature Aggregator (ITAFA), a dynamic feature aggregator that combines all of the features from the image encoder into a unified feature of the same size, guided by diffusion timestep and garment image complexity. This enables adaptive weighting of features, allowing the model to emphasize either global information or fine-grained details based on the requirements of the denoising stage. Additionally, the Salient Region Extractor (SRE) module is presented to identify complex region of the garment to provide high-resolution local information to the denoising model as an additional condition alongside the global information of the full garment image. This targeted conditioning strategy enhances detail preservation of fine details in highly salient garment regions, optimizing computational resources by avoiding unnecessarily processing entire garment image. Comparative evaluations confirms that ITA-MDT improves efficiency while maintaining strong performance, reaching state-of-the-art results in several metrics.
DiffusionPipe: Training Large Diffusion Models with Efficient Pipelines
Diffusion models have emerged as dominant performers for image generation. To support training large diffusion models, this paper studies pipeline parallel training of diffusion models and proposes DiffusionPipe, a synchronous pipeline training system that advocates innovative pipeline bubble filling technique, catering to structural characteristics of diffusion models. State-of-the-art diffusion models typically include trainable (the backbone) and non-trainable (e.g., frozen input encoders) parts. We first unify optimal stage partitioning and pipeline scheduling of single and multiple backbones in representative diffusion models with a dynamic programming approach. We then propose to fill the computation of non-trainable model parts into idle periods of the pipeline training of the backbones by an efficient greedy algorithm, thus achieving high training throughput. Extensive experiments show that DiffusionPipe can achieve up to 1.41x speedup over pipeline parallel methods and 1.28x speedup over data parallel training on popular diffusion models.
AERIS: Argonne Earth Systems Model for Reliable and Skillful Predictions
Generative machine learning offers new opportunities to better understand complex Earth system dynamics. Recent diffusion-based methods address spectral biases and improve ensemble calibration in weather forecasting compared to deterministic methods, yet have so far proven difficult to scale stably at high resolutions. We introduce AERIS, a 1.3 to 80B parameter pixel-level Swin diffusion transformer to address this gap, and SWiPe, a generalizable technique that composes window parallelism with sequence and pipeline parallelism to shard window-based transformers without added communication cost or increased global batch size. On Aurora (10,080 nodes), AERIS sustains 10.21 ExaFLOPS (mixed precision) and a peak performance of 11.21 ExaFLOPS with 1 times 1 patch size on the 0.25{\deg} ERA5 dataset, achieving 95.5% weak scaling efficiency, and 81.6% strong scaling efficiency. AERIS outperforms the IFS ENS and remains stable on seasonal scales to 90 days, highlighting the potential of billion-parameter diffusion models for weather and climate prediction.
SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention
In Diffusion Transformer (DiT) models, particularly for video generation, attention latency is a major bottleneck due to the long sequence length and the quadratic complexity. We find that attention weights can be separated into two parts: a small fraction of large weights with high rank and the remaining weights with very low rank. This naturally suggests applying sparse acceleration to the first part and low-rank acceleration to the second. Based on this finding, we propose SLA (Sparse-Linear Attention), a trainable attention method that fuses sparse and linear attention to accelerate diffusion models. SLA classifies attention weights into critical, marginal, and negligible categories, applying O(N^2) attention to critical weights, O(N) attention to marginal weights, and skipping negligible ones. SLA combines these computations into a single GPU kernel and supports both forward and backward passes. With only a few fine-tuning steps using SLA, DiT models achieve a 20x reduction in attention computation, resulting in significant acceleration without loss of generation quality. Experiments show that SLA reduces attention computation by 95% without degrading end-to-end generation quality, outperforming baseline methods. In addition, we implement an efficient GPU kernel for SLA, which yields a 13.7x speedup in attention computation and a 2.2x end-to-end speedup in video generation on Wan2.1-1.3B.
Masked Diffusion Transformer is a Strong Image Synthesizer
Despite its success in image synthesis, we observe that diffusion probabilistic models (DPMs) often lack contextual reasoning ability to learn the relations among object parts in an image, leading to a slow learning process. To solve this issue, we propose a Masked Diffusion Transformer (MDT) that introduces a mask latent modeling scheme to explicitly enhance the DPMs' ability of contextual relation learning among object semantic parts in an image. During training, MDT operates on the latent space to mask certain tokens. Then, an asymmetric masking diffusion transformer is designed to predict masked tokens from unmasked ones while maintaining the diffusion generation process. Our MDT can reconstruct the full information of an image from its incomplete contextual input, thus enabling it to learn the associated relations among image tokens. Experimental results show that MDT achieves superior image synthesis performance, e.g. a new SoTA FID score on the ImageNet dataset, and has about 3x faster learning speed than the previous SoTA DiT. The source code is released at https://github.com/sail-sg/MDT.
LiT: Delving into a Simplified Linear Diffusion Transformer for Image Generation
In commonly used sub-quadratic complexity modules, linear attention benefits from simplicity and high parallelism, making it promising for image synthesis tasks. However, the architectural design and learning strategy for linear attention remain underexplored in this field. In this paper, we offer a suite of ready-to-use solutions for efficient linear diffusion Transformers. Our core contributions include: (1) Simplified Linear Attention using few heads, observing the free-lunch effect of performance without latency increase. (2) Weight inheritance from a fully pre-trained diffusion Transformer: initializing linear Transformer using pre-trained diffusion Transformer and loading all parameters except for those related to linear attention. (3) Hybrid knowledge distillation objective: using a pre-trained diffusion Transformer to help the training of the student linear Transformer, supervising not only the predicted noise but also the variance of the reverse diffusion process. These guidelines lead to our proposed Linear Diffusion Transformer (LiT), an efficient text-to-image Transformer that can be deployed offline on a laptop. Experiments show that in class-conditional 256*256 and 512*512 ImageNet benchmark LiT achieves highly competitive FID while reducing training steps by 80% and 77% compared to DiT. LiT also rivals methods based on Mamba or Gated Linear Attention. Besides, for text-to-image generation, LiT allows for the rapid synthesis of up to 1K resolution photorealistic images. Project page: https://techmonsterwang.github.io/LiT/.
StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D
In the realm of text-to-3D generation, utilizing 2D diffusion models through score distillation sampling (SDS) frequently leads to issues such as blurred appearances and multi-faced geometry, primarily due to the intrinsically noisy nature of the SDS loss. Our analysis identifies the core of these challenges as the interaction among noise levels in the 2D diffusion process, the architecture of the diffusion network, and the 3D model representation. To overcome these limitations, we present StableDreamer, a methodology incorporating three advances. First, inspired by InstructNeRF2NeRF, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss. This finding provides a novel tool to debug SDS, which we use to show the impact of time-annealing noise levels on reducing multi-faced geometries. Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition. Based on this observation, StableDreamer introduces a two-stage training strategy that effectively combines these aspects, resulting in high-fidelity 3D models. Third, we adopt an anisotropic 3D Gaussians representation, replacing Neural Radiance Fields (NeRFs), to enhance the overall quality, reduce memory usage during training, and accelerate rendering speeds, and better capture semi-transparent objects. StableDreamer reduces multi-face geometries, generates fine details, and converges stably.
CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer
We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weights of both the 3D Causal VAE and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
Paris: A Decentralized Trained Open-Weight Diffusion Model
We present Paris, the first publicly released diffusion model pre-trained entirely through decentralized computation. Paris demonstrates that high-quality text-to-image generation can be achieved without centrally coordinated infrastructure. Paris is open for research and commercial use. Paris required implementing our Distributed Diffusion Training framework from scratch. The model consists of 8 expert diffusion models (129M-605M parameters each) trained in complete isolation with no gradient, parameter, or intermediate activation synchronization. Rather than requiring synchronized gradient updates across thousands of GPUs, we partition data into semantically coherent clusters where each expert independently optimizes its subset while collectively approximating the full distribution. A lightweight transformer router dynamically selects appropriate experts at inference, achieving generation quality comparable to centrally coordinated baselines. Eliminating synchronization enables training on heterogeneous hardware without specialized interconnects. Empirical validation confirms that Paris's decentralized training maintains generation quality while removing the dedicated GPU cluster requirement for large-scale diffusion models. Paris achieves this using 14times less training data and 16times less compute than the prior decentralized baseline.
Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
PanoWorld-X: Generating Explorable Panoramic Worlds via Sphere-Aware Video Diffusion
Generating a complete and explorable 360-degree visual world enables a wide range of downstream applications. While prior works have advanced the field, they remain constrained by either narrow field-of-view limitations, which hinder the synthesis of continuous and holistic scenes, or insufficient camera controllability that restricts free exploration by users or autonomous agents. To address this, we propose PanoWorld-X, a novel framework for high-fidelity and controllable panoramic video generation with diverse camera trajectories. Specifically, we first construct a large-scale dataset of panoramic video-exploration route pairs by simulating camera trajectories in virtual 3D environments via Unreal Engine. As the spherical geometry of panoramic data misaligns with the inductive priors from conventional video diffusion, we then introduce a Sphere-Aware Diffusion Transformer architecture that reprojects equirectangular features onto the spherical surface to model geometric adjacency in latent space, significantly enhancing visual fidelity and spatiotemporal continuity. Extensive experiments demonstrate that our PanoWorld-X achieves superior performance in various aspects, including motion range, control precision, and visual quality, underscoring its potential for real-world applications.
Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles
Once deployed, medical image analysis methods are often faced with unexpected image corruptions and noise perturbations. These unknown covariate shifts present significant challenges to deep learning based methods trained on "clean" images. This often results in unreliable predictions and poorly calibrated confidence, hence hindering clinical applicability. While recent methods have been developed to address specific issues such as confidence calibration or adversarial robustness, no single framework effectively tackles all these challenges simultaneously. To bridge this gap, we propose LaDiNE, a novel ensemble learning method combining the robustness of Vision Transformers with diffusion-based generative models for improved reliability in medical image classification. Specifically, transformer encoder blocks are used as hierarchical feature extractors that learn invariant features from images for each ensemble member, resulting in features that are robust to input perturbations. In addition, diffusion models are used as flexible density estimators to estimate member densities conditioned on the invariant features, leading to improved modeling of complex data distributions while retaining properly calibrated confidence. Extensive experiments on tuberculosis chest X-rays and melanoma skin cancer datasets demonstrate that LaDiNE achieves superior performance compared to a wide range of state-of-the-art methods by simultaneously improving prediction accuracy and confidence calibration under unseen noise, adversarial perturbations, and resolution degradation.
TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
Self-supervised learning has garnered increasing attention in time series analysis for benefiting various downstream tasks and reducing reliance on labeled data. Despite its effectiveness, existing methods often struggle to comprehensively capture both long-term dynamic evolution and subtle local patterns in a unified manner. In this work, we propose TimeDART, a novel self-supervised time series pre-training framework that unifies two powerful generative paradigms to learn more transferable representations. Specifically, we first employ a causal Transformer encoder, accompanied by a patch-based embedding strategy, to model the evolving trends from left to right. Building on this global modeling, we further introduce a denoising diffusion process to capture fine-grained local patterns through forward diffusion and reverse denoising. Finally, we optimize the model in an autoregressive manner. As a result, TimeDART effectively accounts for both global and local sequence features in a coherent way. We conduct extensive experiments on public datasets for time series forecasting and classification. The experimental results demonstrate that TimeDART consistently outperforms previous compared methods, validating the effectiveness of our approach. Our code is available at https://github.com/Melmaphother/TimeDART.
Scaling Laws For Diffusion Transformers
Diffusion transformers (DiT) have already achieved appealing synthesis and scaling properties in content recreation, e.g., image and video generation. However, scaling laws of DiT are less explored, which usually offer precise predictions regarding optimal model size and data requirements given a specific compute budget. Therefore, experiments across a broad range of compute budgets, from 1e17 to 6e18 FLOPs are conducted to confirm the existence of scaling laws in DiT for the first time. Concretely, the loss of pretraining DiT also follows a power-law relationship with the involved compute. Based on the scaling law, we can not only determine the optimal model size and required data but also accurately predict the text-to-image generation loss given a model with 1B parameters and a compute budget of 1e21 FLOPs. Additionally, we also demonstrate that the trend of pre-training loss matches the generation performances (e.g., FID), even across various datasets, which complements the mapping from compute to synthesis quality and thus provides a predictable benchmark that assesses model performance and data quality at a reduced cost.
DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
Mosaic-SDF for 3D Generative Models
Current diffusion or flow-based generative models for 3D shapes divide to two: distilling pre-trained 2D image diffusion models, and training directly on 3D shapes. When training a diffusion or flow models on 3D shapes a crucial design choice is the shape representation. An effective shape representation needs to adhere three design principles: it should allow an efficient conversion of large 3D datasets to the representation form; it should provide a good tradeoff of approximation power versus number of parameters; and it should have a simple tensorial form that is compatible with existing powerful neural architectures. While standard 3D shape representations such as volumetric grids and point clouds do not adhere to all these principles simultaneously, we advocate in this paper a new representation that does. We introduce Mosaic-SDF (M-SDF): a simple 3D shape representation that approximates the Signed Distance Function (SDF) of a given shape by using a set of local grids spread near the shape's boundary. The M-SDF representation is fast to compute for each shape individually making it readily parallelizable; it is parameter efficient as it only covers the space around the shape's boundary; and it has a simple matrix form, compatible with Transformer-based architectures. We demonstrate the efficacy of the M-SDF representation by using it to train a 3D generative flow model including class-conditioned generation with the 3D Warehouse dataset, and text-to-3D generation using a dataset of about 600k caption-shape pairs.
Learning Few-Step Diffusion Models by Trajectory Distribution Matching
Accelerating diffusion model sampling is crucial for efficient AIGC deployment. While diffusion distillation methods -- based on distribution matching and trajectory matching -- reduce sampling to as few as one step, they fall short on complex tasks like text-to-image generation. Few-step generation offers a better balance between speed and quality, but existing approaches face a persistent trade-off: distribution matching lacks flexibility for multi-step sampling, while trajectory matching often yields suboptimal image quality. To bridge this gap, we propose learning few-step diffusion models by Trajectory Distribution Matching (TDM), a unified distillation paradigm that combines the strengths of distribution and trajectory matching. Our method introduces a data-free score distillation objective, aligning the student's trajectory with the teacher's at the distribution level. Further, we develop a sampling-steps-aware objective that decouples learning targets across different steps, enabling more adjustable sampling. This approach supports both deterministic sampling for superior image quality and flexible multi-step adaptation, achieving state-of-the-art performance with remarkable efficiency. Our model, TDM, outperforms existing methods on various backbones, such as SDXL and PixArt-alpha, delivering superior quality and significantly reduced training costs. In particular, our method distills PixArt-alpha into a 4-step generator that outperforms its teacher on real user preference at 1024 resolution. This is accomplished with 500 iterations and 2 A800 hours -- a mere 0.01% of the teacher's training cost. In addition, our proposed TDM can be extended to accelerate text-to-video diffusion. Notably, TDM can outperform its teacher model (CogVideoX-2B) by using only 4 NFE on VBench, improving the total score from 80.91 to 81.65. Project page: https://tdm-t2x.github.io/
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
A Versatile Diffusion Transformer with Mixture of Noise Levels for Audiovisual Generation
Training diffusion models for audiovisual sequences allows for a range of generation tasks by learning conditional distributions of various input-output combinations of the two modalities. Nevertheless, this strategy often requires training a separate model for each task which is expensive. Here, we propose a novel training approach to effectively learn arbitrary conditional distributions in the audiovisual space.Our key contribution lies in how we parameterize the diffusion timestep in the forward diffusion process. Instead of the standard fixed diffusion timestep, we propose applying variable diffusion timesteps across the temporal dimension and across modalities of the inputs. This formulation offers flexibility to introduce variable noise levels for various portions of the input, hence the term mixture of noise levels. We propose a transformer-based audiovisual latent diffusion model and show that it can be trained in a task-agnostic fashion using our approach to enable a variety of audiovisual generation tasks at inference time. Experiments demonstrate the versatility of our method in tackling cross-modal and multimodal interpolation tasks in the audiovisual space. Notably, our proposed approach surpasses baselines in generating temporally and perceptually consistent samples conditioned on the input. Project page: avdit2024.github.io
Forecasting When to Forecast: Accelerating Diffusion Models with Confidence-Gated Taylor
Diffusion Transformers (DiTs) have demonstrated remarkable performance in visual generation tasks. However, their low inference speed limits their deployment in low-resource applications. Recent training-free approaches exploit the redundancy of features across timesteps by caching and reusing past representations to accelerate inference. Building on this idea, TaylorSeer instead uses cached features to predict future ones via Taylor expansion. However, its module-level prediction across all transformer blocks (e.g., attention or feedforward modules) requires storing fine-grained intermediate features, leading to notable memory and computation overhead. Moreover, it adopts a fixed caching schedule without considering the varying accuracy of predictions across timesteps, which can lead to degraded outputs when prediction fails. To address these limitations, we propose a novel approach to better leverage Taylor-based acceleration. First, we shift the Taylor prediction target from the module level to the last block level, significantly reducing the number of cached features. Furthermore, observing strong sequential dependencies among Transformer blocks, we propose to use the error between the Taylor-estimated and actual outputs of the first block as an indicator of prediction reliability. If the error is small, we trust the Taylor prediction for the last block; otherwise, we fall back to full computation, thereby enabling a dynamic caching mechanism. Empirical results show that our method achieves a better balance between speed and quality, achieving a 3.17x acceleration on FLUX, 2.36x on DiT, and 4.14x on Wan Video with negligible quality drop. The Project Page is https://cg-taylor-acce.github.io/CG-Taylor/{here.}
Region-Adaptive Sampling for Diffusion Transformers
Diffusion models (DMs) have become the leading choice for generative tasks across diverse domains. However, their reliance on multiple sequential forward passes significantly limits real-time performance. Previous acceleration methods have primarily focused on reducing the number of sampling steps or reusing intermediate results, failing to leverage variations across spatial regions within the image due to the constraints of convolutional U-Net structures. By harnessing the flexibility of Diffusion Transformers (DiTs) in handling variable number of tokens, we introduce RAS, a novel, training-free sampling strategy that dynamically assigns different sampling ratios to regions within an image based on the focus of the DiT model. Our key observation is that during each sampling step, the model concentrates on semantically meaningful regions, and these areas of focus exhibit strong continuity across consecutive steps. Leveraging this insight, RAS updates only the regions currently in focus, while other regions are updated using cached noise from the previous step. The model's focus is determined based on the output from the preceding step, capitalizing on the temporal consistency we observed. We evaluate RAS on Stable Diffusion 3 and Lumina-Next-T2I, achieving speedups up to 2.36x and 2.51x, respectively, with minimal degradation in generation quality. Additionally, a user study reveals that RAS delivers comparable qualities under human evaluation while achieving a 1.6x speedup. Our approach makes a significant step towards more efficient diffusion transformers, enhancing their potential for real-time applications.
TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models
The Diffusion model, a prevalent framework for image generation, encounters significant challenges in terms of broad applicability due to its extended inference times and substantial memory requirements. Efficient Post-training Quantization (PTQ) is pivotal for addressing these issues in traditional models. Different from traditional models, diffusion models heavily depend on the time-step t to achieve satisfactory multi-round denoising. Usually, t from the finite set {1, ldots, T} is encoded to a temporal feature by a few modules totally irrespective of the sampling data. However, existing PTQ methods do not optimize these modules separately. They adopt inappropriate reconstruction targets and complex calibration methods, resulting in a severe disturbance of the temporal feature and denoising trajectory, as well as a low compression efficiency. To solve these, we propose a Temporal Feature Maintenance Quantization (TFMQ) framework building upon a Temporal Information Block which is just related to the time-step t and unrelated to the sampling data. Powered by the pioneering block design, we devise temporal information aware reconstruction (TIAR) and finite set calibration (FSC) to align the full-precision temporal features in a limited time. Equipped with the framework, we can maintain the most temporal information and ensure the end-to-end generation quality. Extensive experiments on various datasets and diffusion models prove our state-of-the-art results. Remarkably, our quantization approach, for the first time, achieves model performance nearly on par with the full-precision model under 4-bit weight quantization. Additionally, our method incurs almost no extra computational cost and accelerates quantization time by 2.0 times on LSUN-Bedrooms 256 times 256 compared to previous works.
DiT-Air: Revisiting the Efficiency of Diffusion Model Architecture Design in Text to Image Generation
In this work, we empirically study Diffusion Transformers (DiTs) for text-to-image generation, focusing on architectural choices, text-conditioning strategies, and training protocols. We evaluate a range of DiT-based architectures--including PixArt-style and MMDiT variants--and compare them with a standard DiT variant which directly processes concatenated text and noise inputs. Surprisingly, our findings reveal that the performance of standard DiT is comparable with those specialized models, while demonstrating superior parameter-efficiency, especially when scaled up. Leveraging the layer-wise parameter sharing strategy, we achieve a further reduction of 66% in model size compared to an MMDiT architecture, with minimal performance impact. Building on an in-depth analysis of critical components such as text encoders and Variational Auto-Encoders (VAEs), we introduce DiT-Air and DiT-Air-Lite. With supervised and reward fine-tuning, DiT-Air achieves state-of-the-art performance on GenEval and T2I CompBench, while DiT-Air-Lite remains highly competitive, surpassing most existing models despite its compact size.
Home-made Diffusion Model from Scratch to Hatch
We introduce Home-made Diffusion Model (HDM), an efficient yet powerful text-to-image diffusion model optimized for training (and inferring) on consumer-grade hardware. HDM achieves competitive 1024x1024 generation quality while maintaining a remarkably low training cost of $535-620 using four RTX5090 GPUs, representing a significant reduction in computational requirements compared to traditional approaches. Our key contributions include: (1) Cross-U-Transformer (XUT), a novel U-shape transformer, Cross-U-Transformer (XUT), that employs cross-attention for skip connections, providing superior feature integration that leads to remarkable compositional consistency; (2) a comprehensive training recipe that incorporates TREAD acceleration, a novel shifted square crop strategy for efficient arbitrary aspect-ratio training, and progressive resolution scaling; and (3) an empirical demonstration that smaller models (343M parameters) with carefully crafted architectures can achieve high-quality results and emergent capabilities, such as intuitive camera control. Our work provides an alternative paradigm of scaling, demonstrating a viable path toward democratizing high-quality text-to-image generation for individual researchers and smaller organizations with limited computational resources.
CaloDREAM -- Detector Response Emulation via Attentive flow Matching
Detector simulations are an exciting application of modern generative networks. Their sparse high-dimensional data combined with the required precision poses a serious challenge. We show how combining Conditional Flow Matching with transformer elements allows us to simulate the detector phase space reliably. Namely, we use an autoregressive transformer to simulate the energy of each layer, and a vision transformer for the high-dimensional voxel distributions. We show how dimension reduction via latent diffusion allows us to train more efficiently and how diffusion networks can be evaluated faster with bespoke solvers. We showcase our framework, CaloDREAM, on datasets 2 and 3 of the CaloChallenge.
PixArt-α: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis
The most advanced text-to-image (T2I) models require significant training costs (e.g., millions of GPU hours), seriously hindering the fundamental innovation for the AIGC community while increasing CO2 emissions. This paper introduces PIXART-alpha, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators (e.g., Imagen, SDXL, and even Midjourney), reaching near-commercial application standards. Additionally, it supports high-resolution image synthesis up to 1024px resolution with low training cost, as shown in Figure 1 and 2. To achieve this goal, three core designs are proposed: (1) Training strategy decomposition: We devise three distinct training steps that separately optimize pixel dependency, text-image alignment, and image aesthetic quality; (2) Efficient T2I Transformer: We incorporate cross-attention modules into Diffusion Transformer (DiT) to inject text conditions and streamline the computation-intensive class-condition branch; (3) High-informative data: We emphasize the significance of concept density in text-image pairs and leverage a large Vision-Language model to auto-label dense pseudo-captions to assist text-image alignment learning. As a result, PIXART-alpha's training speed markedly surpasses existing large-scale T2I models, e.g., PIXART-alpha only takes 10.8% of Stable Diffusion v1.5's training time (675 vs. 6,250 A100 GPU days), saving nearly \300,000 (26,000 vs. \320,000) and reducing 90% CO2 emissions. Moreover, compared with a larger SOTA model, RAPHAEL, our training cost is merely 1%. Extensive experiments demonstrate that PIXART-\alpha excels in image quality, artistry, and semantic control. We hope PIXART-\alpha$ will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.
MakeAnything: Harnessing Diffusion Transformers for Multi-Domain Procedural Sequence Generation
A hallmark of human intelligence is the ability to create complex artifacts through structured multi-step processes. Generating procedural tutorials with AI is a longstanding but challenging goal, facing three key obstacles: (1) scarcity of multi-task procedural datasets, (2) maintaining logical continuity and visual consistency between steps, and (3) generalizing across multiple domains. To address these challenges, we propose a multi-domain dataset covering 21 tasks with over 24,000 procedural sequences. Building upon this foundation, we introduce MakeAnything, a framework based on the diffusion transformer (DIT), which leverages fine-tuning to activate the in-context capabilities of DIT for generating consistent procedural sequences. We introduce asymmetric low-rank adaptation (LoRA) for image generation, which balances generalization capabilities and task-specific performance by freezing encoder parameters while adaptively tuning decoder layers. Additionally, our ReCraft model enables image-to-process generation through spatiotemporal consistency constraints, allowing static images to be decomposed into plausible creation sequences. Extensive experiments demonstrate that MakeAnything surpasses existing methods, setting new performance benchmarks for procedural generation tasks.
SHaDe: Compact and Consistent Dynamic 3D Reconstruction via Tri-Plane Deformation and Latent Diffusion
We present a novel framework for dynamic 3D scene reconstruction that integrates three key components: an explicit tri-plane deformation field, a view-conditioned canonical radiance field with spherical harmonics (SH) attention, and a temporally-aware latent diffusion prior. Our method encodes 4D scenes using three orthogonal 2D feature planes that evolve over time, enabling efficient and compact spatiotemporal representation. These features are explicitly warped into a canonical space via a deformation offset field, eliminating the need for MLP-based motion modeling. In canonical space, we replace traditional MLP decoders with a structured SH-based rendering head that synthesizes view-dependent color via attention over learned frequency bands improving both interpretability and rendering efficiency. To further enhance fidelity and temporal consistency, we introduce a transformer-guided latent diffusion module that refines the tri-plane and deformation features in a compressed latent space. This generative module denoises scene representations under ambiguous or out-of-distribution (OOD) motion, improving generalization. Our model is trained in two stages: the diffusion module is first pre-trained independently, and then fine-tuned jointly with the full pipeline using a combination of image reconstruction, diffusion denoising, and temporal consistency losses. We demonstrate state-of-the-art results on synthetic benchmarks, surpassing recent methods such as HexPlane and 4D Gaussian Splatting in visual quality, temporal coherence, and robustness to sparse-view dynamic inputs.
Lazy Diffusion Transformer for Interactive Image Editing
We introduce a novel diffusion transformer, LazyDiffusion, that generates partial image updates efficiently. Our approach targets interactive image editing applications in which, starting from a blank canvas or an image, a user specifies a sequence of localized image modifications using binary masks and text prompts. Our generator operates in two phases. First, a context encoder processes the current canvas and user mask to produce a compact global context tailored to the region to generate. Second, conditioned on this context, a diffusion-based transformer decoder synthesizes the masked pixels in a "lazy" fashion, i.e., it only generates the masked region. This contrasts with previous works that either regenerate the full canvas, wasting time and computation, or confine processing to a tight rectangular crop around the mask, ignoring the global image context altogether. Our decoder's runtime scales with the mask size, which is typically small, while our encoder introduces negligible overhead. We demonstrate that our approach is competitive with state-of-the-art inpainting methods in terms of quality and fidelity while providing a 10x speedup for typical user interactions, where the editing mask represents 10% of the image.
3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion
The increasing demand for high-quality 3D assets across various industries necessitates efficient and automated 3D content creation. Despite recent advancements in 3D generative models, existing methods still face challenges with optimization speed, geometric fidelity, and the lack of assets for physically based rendering (PBR). In this paper, we introduce 3DTopia-XL, a scalable native 3D generative model designed to overcome these limitations. 3DTopia-XL leverages a novel primitive-based 3D representation, PrimX, which encodes detailed shape, albedo, and material field into a compact tensorial format, facilitating the modeling of high-resolution geometry with PBR assets. On top of the novel representation, we propose a generative framework based on Diffusion Transformer (DiT), which comprises 1) Primitive Patch Compression, 2) and Latent Primitive Diffusion. 3DTopia-XL learns to generate high-quality 3D assets from textual or visual inputs. We conduct extensive qualitative and quantitative experiments to demonstrate that 3DTopia-XL significantly outperforms existing methods in generating high-quality 3D assets with fine-grained textures and materials, efficiently bridging the quality gap between generative models and real-world applications.
