Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMulti-Agent Reinforcement Learning with Focal Diversity Optimization
The advancement of Large Language Models (LLMs) and their finetuning strategies has triggered the renewed interests in multi-agent reinforcement learning. In this paper, we introduce a focal diversity-optimized multi-agent reinforcement learning approach, coined as MARL-Focal, with three unique characteristics. First, we develop an agent-fusion framework for encouraging multiple LLM based agents to collaborate in producing the final inference output for each LLM query. Second, we develop a focal-diversity optimized agent selection algorithm that can choose a small subset of the available agents based on how well they can complement one another to generate the query output. Finally, we design a conflict-resolution method to detect output inconsistency among multiple agents and produce our MARL-Focal output through reward-aware and policy-adaptive inference fusion. Extensive evaluations on five benchmarks show that MARL-Focal is cost-efficient and adversarial-robust. Our multi-agent fusion model achieves performance improvement of 5.51\% compared to the best individual LLM-agent and offers stronger robustness over the TruthfulQA benchmark. Code is available at https://github.com/sftekin/rl-focal
Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence
Global climate models (GCMs) are the main tools for understanding and predicting climate change. However, due to limited numerical resolutions, these models suffer from major structural uncertainties; e.g., they cannot resolve critical processes such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such small-scale processes have to be represented as a function of the resolved scales via closures (parametrization). The accuracy of these closures is particularly important for capturing climate extremes. Traditionally, such closures are based on heuristics and simplifying assumptions about the unresolved physics. Recently, supervised-learned closures, trained offline on high-fidelity data, have been shown to outperform the classical physics-based closures. However, this approach requires a significant amount of high-fidelity training data and can also lead to instabilities. Reinforcement learning is emerging as a potent alternative for developing such closures as it requires only low-order statistics and leads to stable closures. In Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements serve a dual role of discretization points and learning agents. We leverage SMARL and fundamentals of turbulence physics to learn closures for prototypes of atmospheric and oceanic turbulence. The policy is trained using only the enstrophy spectrum, which is nearly invariant and can be estimated from a few high-fidelity samples (these few samples are far from enough for supervised/offline learning). We show that these closures lead to stable low-resolution simulations that, at a fraction of the cost, can reproduce the high-fidelity simulations' statistics, including the tails of the probability density functions. The results demonstrate the high potential of SMARL for closure modeling for GCMs, especially in the regime of scarce data and indirect observations.
A Black-box Approach for Non-stationary Multi-agent Reinforcement Learning
We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve Oleft(Delta^{1/4}T^{3/4}right) regret when the degree of nonstationarity, as measured by total variation Delta, is known, and Oleft(Delta^{1/5}T^{4/5}right) regret when Delta is unknown, where T is the number of rounds. Meanwhile, our algorithm inherits the favorable dependence on number of agents from the oracles. As a side contribution that may be independent of interest, we show how to test for various types of equilibria by a black-box reduction to single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria.
Igniting Creative Writing in Small Language Models: LLM-as-a-Judge versus Multi-Agent Refined Rewards
Large Language Models (LLMs) have demonstrated remarkable creative writing capabilities, yet their substantial computational demands hinder widespread use. Enhancing Small Language Models (SLMs) offers a promising alternative, but current methods like Supervised Fine-Tuning (SFT) struggle with novelty, and Reinforcement Learning from Human Feedback (RLHF) is costly. This paper explores two distinct AI-driven reward strategies within a Reinforcement Learning from AI Feedback (RLAIF) framework to ignite the creative writing of a 7B-parameter SLM, specifically for generating Chinese greetings. The first strategy employs a RM trained on high-quality preference data curated by a novel multi-agent rejection sampling framework designed for creative tasks. The second, more novel strategy utilizes a principle-guided LLM-as-a-Judge, whose reward function is optimized via an adversarial training scheme with a reflection mechanism, to directly provide reward signals. Comprehensive experiments reveal that while both approaches significantly enhance creative output over baselines, the principle-guided LLM-as-a-Judge demonstrably yields superior generation quality. Furthermore, it offers notable advantages in training efficiency and reduced dependency on human-annotated data, presenting a more scalable and effective path towards creative SLMs. Our automated evaluation methods also exhibit strong alignment with human judgments. Our code and data are publicly available at https://github.com/weixiaolong94-hub/Igniting-Creative-Writing-in-Small-Language-Models.
LLM Collaboration With Multi-Agent Reinforcement Learning
A large amount of work has been done in Multi-Agent Systems (MAS) for modeling and solving problems with multiple interacting agents. However, most LLMs are pretrained independently and not specifically optimized for coordination. Existing LLM fine-tuning frameworks rely on individual rewards, which require complex reward designs for each agent to encourage collaboration. To address these challenges, we model LLM collaboration as a cooperative Multi-Agent Reinforcement Learning (MARL) problem. We develop a multi-agent, multi-turn algorithm, Multi-Agent Group Relative Policy Optimization (MAGRPO), to solve it, building on current RL approaches for LLMs as well as MARL techniques. Our experiments on LLM writing and coding collaboration demonstrate that fine-tuning MAS with MAGRPO enables agents to generate high-quality responses efficiently through effective cooperation. Our approach opens the door to using other MARL methods for LLMs and highlights the associated challenges.
Multi-Agent Inverse Q-Learning from Demonstrations
When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .
Learning Meta Representations for Agents in Multi-Agent Reinforcement Learning
In multi-agent reinforcement learning, the behaviors that agents learn in a single Markov Game (MG) are typically confined to the given agent number. Every single MG induced by varying the population may possess distinct optimal joint strategies and game-specific knowledge, which are modeled independently in modern multi-agent reinforcement learning algorithms. In this work, our focus is on creating agents that can generalize across population-varying MGs. Instead of learning a unimodal policy, each agent learns a policy set comprising effective strategies across a variety of games. To achieve this, we propose Meta Representations for Agents (MRA) that explicitly models the game-common and game-specific strategic knowledge. By representing the policy sets with multi-modal latent policies, the game-common strategic knowledge and diverse strategic modes are discovered through an iterative optimization procedure. We prove that by approximately maximizing the resulting constrained mutual information objective, the policies can reach Nash Equilibrium in every evaluation MG when the latent space is sufficiently large. When deploying MRA in practical settings with limited latent space sizes, fast adaptation can be achieved by leveraging the first-order gradient information. Extensive experiments demonstrate the effectiveness of MRA in improving training performance and generalization ability in challenging evaluation games.
Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination
Multi-agent reinforcement learning shines as the pinnacle of multi-agent systems, conquering intricate real-world challenges, fostering collaboration and coordination among agents, and unleashing the potential for intelligent decision-making across domains. However, training a multi-agent reinforcement learning network is a formidable endeavor, demanding substantial computational resources to interact with diverse environmental variables, extract state representations, and acquire decision-making knowledge. The recent breakthroughs in large-scale pre-trained models ignite our curiosity: Can we uncover shared knowledge in multi-agent reinforcement learning and leverage pre-trained models to expedite training for future tasks? Addressing this issue, we present an innovative multi-task learning approach that aims to extract and harness common decision-making knowledge, like cooperation and competition, across different tasks. Our approach involves concurrent training of multiple multi-agent tasks, with each task employing independent front-end perception layers while sharing back-end decision-making layers. This effective decoupling of state representation extraction from decision-making allows for more efficient training and better transferability. To evaluate the efficacy of our proposed approach, we conduct comprehensive experiments in two distinct environments: the StarCraft Multi-agent Challenge (SMAC) and the Google Research Football (GRF) environments. The experimental results unequivocally demonstrate the smooth transferability of the shared decision-making network to other tasks, thereby significantly reducing training costs and improving final performance. Furthermore, visualizations authenticate the presence of general multi-agent decision-making knowledge within the shared network layers, further validating the effectiveness of our approach.
Scalable Reinforcement Learning Policies for Multi-Agent Control
We develop a Multi-Agent Reinforcement Learning (MARL) method to learn scalable control policies for target tracking. Our method can handle an arbitrary number of pursuers and targets; we show results for tasks consisting up to 1000 pursuers tracking 1000 targets. We use a decentralized, partially-observable Markov Decision Process framework to model pursuers as agents receiving partial observations (range and bearing) about targets which move using fixed, unknown policies. An attention mechanism is used to parameterize the value function of the agents; this mechanism allows us to handle an arbitrary number of targets. Entropy-regularized off-policy RL methods are used to train a stochastic policy, and we discuss how it enables a hedging behavior between pursuers that leads to a weak form of cooperation in spite of completely decentralized control execution. We further develop a masking heuristic that allows training on smaller problems with few pursuers-targets and execution on much larger problems. Thorough simulation experiments, ablation studies, and comparisons to state of the art algorithms are performed to study the scalability of the approach and robustness of performance to varying numbers of agents and targets.
Learning Decentralized Partially Observable Mean Field Control for Artificial Collective Behavior
Recent reinforcement learning (RL) methods have achieved success in various domains. However, multi-agent RL (MARL) remains a challenge in terms of decentralization, partial observability and scalability to many agents. Meanwhile, collective behavior requires resolution of the aforementioned challenges, and remains of importance to many state-of-the-art applications such as active matter physics, self-organizing systems, opinion dynamics, and biological or robotic swarms. Here, MARL via mean field control (MFC) offers a potential solution to scalability, but fails to consider decentralized and partially observable systems. In this paper, we enable decentralized behavior of agents under partial information by proposing novel models for decentralized partially observable MFC (Dec-POMFC), a broad class of problems with permutation-invariant agents allowing for reduction to tractable single-agent Markov decision processes (MDP) with single-agent RL solution. We provide rigorous theoretical results, including a dynamic programming principle, together with optimality guarantees for Dec-POMFC solutions applied to finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy gradient methods for MARL via centralized training and decentralized execution, together with policy gradient approximation guarantees. In addition, we improve upon state-of-the-art histogram-based MFC by kernel methods, which is of separate interest also for fully observable MFC. We evaluate numerically on representative collective behavior tasks such as adapted Kuramoto and Vicsek swarming models, being on par with state-of-the-art MARL. Overall, our framework takes a step towards RL-based engineering of artificial collective behavior via MFC.
CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
Maximum Entropy Heterogeneous-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) has been shown effective for cooperative games in recent years. However, existing state-of-the-art methods face challenges related to sample complexity, training instability, and the risk of converging to a suboptimal Nash Equilibrium. In this paper, we propose a unified framework for learning stochastic policies to resolve these issues. We embed cooperative MARL problems into probabilistic graphical models, from which we derive the maximum entropy (MaxEnt) objective for MARL. Based on the MaxEnt framework, we propose Heterogeneous-Agent Soft Actor-Critic (HASAC) algorithm. Theoretically, we prove the monotonic improvement and convergence to quantal response equilibrium (QRE) properties of HASAC. Furthermore, we generalize a unified template for MaxEnt algorithmic design named Maximum Entropy Heterogeneous-Agent Mirror Learning (MEHAML), which provides any induced method with the same guarantees as HASAC. We evaluate HASAC on six benchmarks: Bi-DexHands, Multi-Agent MuJoCo, StarCraft Multi-Agent Challenge, Google Research Football, Multi-Agent Particle Environment, and Light Aircraft Game. Results show that HASAC consistently outperforms strong baselines, exhibiting better sample efficiency, robustness, and sufficient exploration.
MANSA: Learning Fast and Slow in Multi-Agent Systems
In multi-agent reinforcement learning (MARL), independent learning (IL) often shows remarkable performance and easily scales with the number of agents. Yet, using IL can be inefficient and runs the risk of failing to successfully train, particularly in scenarios that require agents to coordinate their actions. Using centralised learning (CL) enables MARL agents to quickly learn how to coordinate their behaviour but employing CL everywhere is often prohibitively expensive in real-world applications. Besides, using CL in value-based methods often needs strong representational constraints (e.g. individual-global-max condition) that can lead to poor performance if violated. In this paper, we introduce a novel plug & play IL framework named Multi-Agent Network Selection Algorithm (MANSA) which selectively employs CL only at states that require coordination. At its core, MANSA has an additional agent that uses switching controls to quickly learn the best states to activate CL during training, using CL only where necessary and vastly reducing the computational burden of CL. Our theory proves MANSA preserves cooperative MARL convergence properties, boosts IL performance and can optimally make use of a fixed budget on the number CL calls. We show empirically in Level-based Foraging (LBF) and StarCraft Multi-agent Challenge (SMAC) that MANSA achieves fast, superior and more reliable performance while making 40% fewer CL calls in SMAC and using CL at only 1% CL calls in LBF.
POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation
Multi-agent reinforcement learning (MARL) has recently excelled in solving challenging cooperative and competitive multi-agent problems in various environments with, mostly, few agents and full observability. Moreover, a range of crucial robotics-related tasks, such as multi-robot navigation and obstacle avoidance, that have been conventionally approached with the classical non-learnable methods (e.g., heuristic search) is currently suggested to be solved by the learning-based or hybrid methods. Still, in this domain, it is hard, not to say impossible, to conduct a fair comparison between classical, learning-based, and hybrid approaches due to the lack of a unified framework that supports both learning and evaluation. To this end, we introduce POGEMA, a set of comprehensive tools that includes a fast environment for learning, a generator of problem instances, the collection of pre-defined ones, a visualization toolkit, and a benchmarking tool that allows automated evaluation. We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators (such as success rate and path length), allowing a fair multi-fold comparison. The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
Scalable Multi-Agent Reinforcement Learning through Intelligent Information Aggregation
We consider the problem of multi-agent navigation and collision avoidance when observations are limited to the local neighborhood of each agent. We propose InforMARL, a novel architecture for multi-agent reinforcement learning (MARL) which uses local information intelligently to compute paths for all the agents in a decentralized manner. Specifically, InforMARL aggregates information about the local neighborhood of agents for both the actor and the critic using a graph neural network and can be used in conjunction with any standard MARL algorithm. We show that (1) in training, InforMARL has better sample efficiency and performance than baseline approaches, despite using less information, and (2) in testing, it scales well to environments with arbitrary numbers of agents and obstacles. We illustrate these results using four task environments, including one with predetermined goals for each agent, and one in which the agents collectively try to cover all goals. Code available at https://github.com/nsidn98/InforMARL.
Adaptability in Multi-Agent Reinforcement Learning: A Framework and Unified Review
Multi-Agent Reinforcement Learning (MARL) has shown clear effectiveness in coordinating multiple agents across simulated benchmarks and constrained scenarios. However, its deployment in real-world multi-agent systems (MAS) remains limited, primarily due to the complex and dynamic nature of such environments. These challenges arise from multiple interacting sources of variability, including fluctuating agent populations, evolving task goals, and inconsistent execution conditions. Together, these factors demand that MARL algorithms remain effective under continuously changing system configurations and operational demands. To better capture and assess this capacity for adjustment, we introduce the concept of adaptability as a unified and practically grounded lens through which to evaluate the reliability of MARL algorithms under shifting conditions, broadly referring to any changes in the environment dynamics that may occur during learning or execution. Centred on the notion of adaptability, we propose a structured framework comprising three key dimensions: learning adaptability, policy adaptability, and scenario-driven adaptability. By adopting this adaptability perspective, we aim to support more principled assessments of MARL performance beyond narrowly defined benchmarks. Ultimately, this survey contributes to the development of algorithms that are better suited for deployment in dynamic, real-world multi-agent systems.
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning
Policy optimization methods with function approximation are widely used in multi-agent reinforcement learning. However, it remains elusive how to design such algorithms with statistical guarantees. Leveraging a multi-agent performance difference lemma that characterizes the landscape of multi-agent policy optimization, we find that the localized action value function serves as an ideal descent direction for each local policy. Motivated by the observation, we present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO. We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate. We extend our algorithm to the off-policy setting and introduce pessimism to policy evaluation, which aligns with experiments. To our knowledge, this is the first provably convergent multi-agent PPO algorithm in cooperative Markov games.
Cooperative Multi-Agent Reinforcement Learning: Asynchronous Communication and Linear Function Approximation
We study multi-agent reinforcement learning in the setting of episodic Markov decision processes, where multiple agents cooperate via communication through a central server. We propose a provably efficient algorithm based on value iteration that enable asynchronous communication while ensuring the advantage of cooperation with low communication overhead. With linear function approximation, we prove that our algorithm enjoys an mathcal{O}(d^{3/2}H^2K) regret with mathcal{O}(dHM^2) communication complexity, where d is the feature dimension, H is the horizon length, M is the total number of agents, and K is the total number of episodes. We also provide a lower bound showing that a minimal Omega(dM) communication complexity is required to improve the performance through collaboration.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
Multi-Scenario Combination Based on Multi-Agent Reinforcement Learning to Optimize the Advertising Recommendation System
This paper explores multi-scenario optimization on large platforms using multi-agent reinforcement learning (MARL). We address this by treating scenarios like search, recommendation, and advertising as a cooperative, partially observable multi-agent decision problem. We introduce the Multi-Agent Recurrent Deterministic Policy Gradient (MARDPG) algorithm, which aligns different scenarios under a shared objective and allows for strategy communication to boost overall performance. Our results show marked improvements in metrics such as click-through rate (CTR), conversion rate, and total sales, confirming our method's efficacy in practical settings.
Offline Decentralized Multi-Agent Reinforcement Learning
In many real-world multi-agent cooperative tasks, due to high cost and risk, agents cannot continuously interact with the environment and collect experiences during learning, but have to learn from offline datasets. However, the transition dynamics in the dataset of each agent can be much different from the ones induced by the learned policies of other agents in execution, creating large errors in value estimates. Consequently, agents learn uncoordinated low-performing policies. In this paper, we propose a framework for offline decentralized multi-agent reinforcement learning, which exploits value deviation and transition normalization to deliberately modify the transition probabilities. Value deviation optimistically increases the transition probabilities of high-value next states, and transition normalization normalizes the transition probabilities of next states. They together enable agents to learn high-performing and coordinated policies. Theoretically, we prove the convergence of Q-learning under the altered non-stationary transition dynamics. Empirically, we show that the framework can be easily built on many existing offline reinforcement learning algorithms and achieve substantial improvement in a variety of multi-agent tasks.
Contrastive learning-based agent modeling for deep reinforcement learning
Multi-agent systems often require agents to collaborate with or compete against other agents with diverse goals, behaviors, or strategies. Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems, as this is the means by which the ego agent understands other agents' behavior and extracts their meaningful policy representations. These representations can be used to enhance the ego agent's adaptive policy which is trained by reinforcement learning. However, existing agent modeling approaches typically assume the availability of local observations from other agents (modeled agents) during training or a long observation trajectory for policy adaption. To remove these constrictive assumptions and improve agent modeling performance, we devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution. With these observations, CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode. We evaluated the efficacy of our approach in both cooperative and competitive multi-agent environments. Our experiments demonstrate that our approach achieves state-of-the-art on both cooperative and competitive tasks, highlighting the potential of contrastive learning-based agent modeling for enhancing reinforcement learning.
Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques
We initiate the study of Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations. We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games, a problem marked by the challenge of sparse feedback signals. Our theory establishes the upper complexity bounds for Nash Equilibrium in effective MARLHF, demonstrating that single-policy coverage is inadequate and highlighting the importance of unilateral dataset coverage. These theoretical insights are verified through comprehensive experiments. To enhance the practical performance, we further introduce two algorithmic techniques. (1) We propose a Mean Squared Error (MSE) regularization along the time axis to achieve a more uniform reward distribution and improve reward learning outcomes. (2) We utilize imitation learning to approximate the reference policy, ensuring stability and effectiveness in training. Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
A Review of Cooperation in Multi-agent Learning
Cooperation in multi-agent learning (MAL) is a topic at the intersection of numerous disciplines, including game theory, economics, social sciences, and evolutionary biology. Research in this area aims to understand both how agents can coordinate effectively when goals are aligned and how they may cooperate in settings where gains from working together are possible but possibilities for conflict abound. In this paper we provide an overview of the fundamental concepts, problem settings and algorithms of multi-agent learning. This encompasses reinforcement learning, multi-agent sequential decision-making, challenges associated with multi-agent cooperation, and a comprehensive review of recent progress, along with an evaluation of relevant metrics. Finally we discuss open challenges in the field with the aim of inspiring new avenues for research.
Reliably Re-Acting to Partner's Actions with the Social Intrinsic Motivation of Transfer Empowerment
We consider multi-agent reinforcement learning (MARL) for cooperative communication and coordination tasks. MARL agents can be brittle because they can overfit their training partners' policies. This overfitting can produce agents that adopt policies that act under the expectation that other agents will act in a certain way rather than react to their actions. Our objective is to bias the learning process towards finding reactive strategies towards other agents' behaviors. Our method, transfer empowerment, measures the potential influence between agents' actions. Results from three simulated cooperation scenarios support our hypothesis that transfer empowerment improves MARL performance. We discuss how transfer empowerment could be a useful principle to guide multi-agent coordination by ensuring reactiveness to one's partner.
Emergent Tool Use From Multi-Agent Autocurricula
Through multi-agent competition, the simple objective of hide-and-seek, and standard reinforcement learning algorithms at scale, we find that agents create a self-supervised autocurriculum inducing multiple distinct rounds of emergent strategy, many of which require sophisticated tool use and coordination. We find clear evidence of six emergent phases in agent strategy in our environment, each of which creates a new pressure for the opposing team to adapt; for instance, agents learn to build multi-object shelters using moveable boxes which in turn leads to agents discovering that they can overcome obstacles using ramps. We further provide evidence that multi-agent competition may scale better with increasing environment complexity and leads to behavior that centers around far more human-relevant skills than other self-supervised reinforcement learning methods such as intrinsic motivation. Finally, we propose transfer and fine-tuning as a way to quantitatively evaluate targeted capabilities, and we compare hide-and-seek agents to both intrinsic motivation and random initialization baselines in a suite of domain-specific intelligence tests.
Sample-Efficient Multi-Agent RL: An Optimization Perspective
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation. In order to find the minimum assumption for sample-efficient learning, we introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs. Using this measure, we propose the first unified algorithmic framework that ensures sample efficiency in learning Nash Equilibrium, Coarse Correlated Equilibrium, and Correlated Equilibrium for both model-based and model-free MARL problems with low MADC. We also show that our algorithm provides comparable sublinear regret to the existing works. Moreover, our algorithm combines an equilibrium-solving oracle with a single objective optimization subprocedure that solves for the regularized payoff of each deterministic joint policy, which avoids solving constrained optimization problems within data-dependent constraints (Jin et al. 2020; Wang et al. 2023) or executing sampling procedures with complex multi-objective optimization problems (Foster et al. 2023), thus being more amenable to empirical implementation.
Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models
Multi-agent reinforcement learning (MARL) methods struggle with the non-stationarity of multi-agent systems and fail to adaptively learn online when tested with novel agents. Here, we leverage large language models (LLMs) to create an autonomous agent that can handle these challenges. Our agent, Hypothetical Minds, consists of a cognitively-inspired architecture, featuring modular components for perception, memory, and hierarchical planning over two levels of abstraction. We introduce the Theory of Mind module that scaffolds the high-level planning process by generating hypotheses about other agents' strategies in natural language. It then evaluates and iteratively refines these hypotheses by reinforcing hypotheses that make correct predictions about the other agents' behavior. Hypothetical Minds significantly improves performance over previous LLM-agent and RL baselines on a range of competitive, mixed motive, and collaborative domains in the Melting Pot benchmark, including both dyadic and population-based environments. Additionally, comparisons against LLM-agent baselines and ablations reveal the importance of hypothesis evaluation and refinement for succeeding on complex scenarios.
Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
Recent advances in Competitive Self-Play (CSP) have achieved, or even surpassed, human level performance in complex game environments such as Dota 2 and StarCraft II using Distributed Multi-Agent Reinforcement Learning (MARL). One core component of these methods relies on creating a pool of learning agents -- consisting of the Main Agent, past versions of this agent, and Exploiter Agents -- where Exploiter Agents learn counter-strategies to the Main Agents. A key drawback of these approaches is the large computational cost and physical time that is required to train the system, making them impractical to deploy in highly iterative real-life settings such as video game productions. In this paper, we propose the Minimax Exploiter, a game theoretic approach to exploiting Main Agents that leverages knowledge of its opponents, leading to significant increases in data efficiency. We validate our approach in a diversity of settings, including simple turn based games, the arcade learning environment, and For Honor, a modern video game. The Minimax Exploiter consistently outperforms strong baselines, demonstrating improved stability and data efficiency, leading to a robust CSP-MARL method that is both flexible and easy to deploy.
Context-Aware Bayesian Network Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning
Executing actions in a correlated manner is a common strategy for human coordination that often leads to better cooperation, which is also potentially beneficial for cooperative multi-agent reinforcement learning (MARL). However, the recent success of MARL relies heavily on the convenient paradigm of purely decentralized execution, where there is no action correlation among agents for scalability considerations. In this work, we introduce a Bayesian network to inaugurate correlations between agents' action selections in their joint policy. Theoretically, we establish a theoretical justification for why action dependencies are beneficial by deriving the multi-agent policy gradient formula under such a Bayesian network joint policy and proving its global convergence to Nash equilibria under tabular softmax policy parameterization in cooperative Markov games. Further, by equipping existing MARL algorithms with a recent method of differentiable directed acyclic graphs (DAGs), we develop practical algorithms to learn the context-aware Bayesian network policies in scenarios with partial observability and various difficulty. We also dynamically decrease the sparsity of the learned DAG throughout the training process, which leads to weakly or even purely independent policies for decentralized execution. Empirical results on a range of MARL benchmarks show the benefits of our approach.
TiZero: Mastering Multi-Agent Football with Curriculum Learning and Self-Play
Multi-agent football poses an unsolved challenge in AI research. Existing work has focused on tackling simplified scenarios of the game, or else leveraging expert demonstrations. In this paper, we develop a multi-agent system to play the full 11 vs. 11 game mode, without demonstrations. This game mode contains aspects that present major challenges to modern reinforcement learning algorithms; multi-agent coordination, long-term planning, and non-transitivity. To address these challenges, we present TiZero; a self-evolving, multi-agent system that learns from scratch. TiZero introduces several innovations, including adaptive curriculum learning, a novel self-play strategy, and an objective that optimizes the policies of multiple agents jointly. Experimentally, it outperforms previous systems by a large margin on the Google Research Football environment, increasing win rates by over 30%. To demonstrate the generality of TiZero's innovations, they are assessed on several environments beyond football; Overcooked, Multi-agent Particle-Environment, Tic-Tac-Toe and Connect-Four.
Representation Learning For Efficient Deep Multi-Agent Reinforcement Learning
Sample efficiency remains a key challenge in multi-agent reinforcement learning (MARL). A promising approach is to learn a meaningful latent representation space through auxiliary learning objectives alongside the MARL objective to aid in learning a successful control policy. In our work, we present MAPO-LSO (Multi-Agent Policy Optimization with Latent Space Optimization) which applies a form of comprehensive representation learning devised to supplement MARL training. Specifically, MAPO-LSO proposes a multi-agent extension of transition dynamics reconstruction and self-predictive learning that constructs a latent state optimization scheme that can be trivially extended to current state-of-the-art MARL algorithms. Empirical results demonstrate MAPO-LSO to show notable improvements in sample efficiency and learning performance compared to its vanilla MARL counterpart without any additional MARL hyperparameter tuning on a diverse suite of MARL tasks.
Learning Policies for Dynamic Coalition Formation in Multi-Robot Task Allocation
We propose a decentralized, learning-based framework for dynamic coalition formation in Multi-Robot Task Allocation (MRTA). Our approach extends Multi-Agent Proximal Policy Optimization (MAPPO) by integrating spatial action maps, robot motion planning, intention sharing, and task allocation revision to enable effective and adaptive coalition formation. Extensive simulation studies confirm the effectiveness of our model, enabling each robot to rely solely on local information to learn timely revisions of task selections and form coalitions with other robots to complete collaborative tasks. Additionally, our model significantly outperforms existing methods, including a market-based baseline. Furthermore, we evaluate the scalability and generalizability of the proposed framework, highlighting its ability to handle large robot populations and adapt to scenarios featuring diverse task sets.
Decentralized Policy Optimization
The study of decentralized learning or independent learning in cooperative multi-agent reinforcement learning has a history of decades. Recently empirical studies show that independent PPO (IPPO) can obtain good performance, close to or even better than the methods of centralized training with decentralized execution, in several benchmarks. However, decentralized actor-critic with convergence guarantee is still open. In this paper, we propose decentralized policy optimization (DPO), a decentralized actor-critic algorithm with monotonic improvement and convergence guarantee. We derive a novel decentralized surrogate for policy optimization such that the monotonic improvement of joint policy can be guaranteed by each agent independently optimizing the surrogate. In practice, this decentralized surrogate can be realized by two adaptive coefficients for policy optimization at each agent. Empirically, we compare DPO with IPPO in a variety of cooperative multi-agent tasks, covering discrete and continuous action spaces, and fully and partially observable environments. The results show DPO outperforms IPPO in most tasks, which can be the evidence for our theoretical results.
Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL
Recent advances in large language models (LLMs) and multi-agent systems have demonstrated remarkable capabilities in complex problem-solving tasks such as deep research, vibe coding, and mathematical reasoning. However, most existing multi-agent systems are built upon manual prompt/workflow engineering with sophisticated agent frameworks, making them computationally inefficient, less capable, and can not benefit from data-centric learning. In this work, we introduce Chain-of-Agents (CoA), a novel paradigm of LLM reasoning that enables native end-to-end complex problem-solving in the same way as a multi-agent system (i.e., multi-turn problem solving with multiple tools and multiple agents) within one model. In chain-of-agents problem-solving, the model dynamically activates different tool agents and role-playing agents to simulate multi-agent collaboration in an end-to-end fashion. To elicit end-to-end chain-of-agents problem-solving abilities in LLMs, we introduce a multi-agent distillation framework to distill state-of-the-art multi-agent systems into chain-of-agents trajectories for agentic supervised fine-tuning. We then use agentic reinforcement learning on verifiable agentic tasks to further improve the models' capabilities on chain-of-agents problem solving. We call the resulting models Agent Foundation Models (AFMs). Our empirical studies demonstrate that AFM establishes new state-of-the-art performance across diverse benchmarks in both web agent and code agent settings. We make the entire research, including the model weights, code for training and evaluation, and the training data, fully open-sourced, which offers a solid starting point for future research on agent models and agentic RL.
Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and Optimism
In this paper, we provide a general framework for studying multi-agent online learning problems in the presence of delays and asynchronicities. Specifically, we propose and analyze a class of adaptive dual averaging schemes in which agents only need to accumulate gradient feedback received from the whole system, without requiring any between-agent coordination. In the single-agent case, the adaptivity of the proposed method allows us to extend a range of existing results to problems with potentially unbounded delays between playing an action and receiving the corresponding feedback. In the multi-agent case, the situation is significantly more complicated because agents may not have access to a global clock to use as a reference point; to overcome this, we focus on the information that is available for producing each prediction rather than the actual delay associated with each feedback. This allows us to derive adaptive learning strategies with optimal regret bounds, even in a fully decentralized, asynchronous environment. Finally, we also analyze an "optimistic" variant of the proposed algorithm which is capable of exploiting the predictability of problems with a slower variation and leads to improved regret bounds.
Population-based Evaluation in Repeated Rock-Paper-Scissors as a Benchmark for Multiagent Reinforcement Learning
Progress in fields of machine learning and adversarial planning has benefited significantly from benchmark domains, from checkers and the classic UCI data sets to Go and Diplomacy. In sequential decision-making, agent evaluation has largely been restricted to few interactions against experts, with the aim to reach some desired level of performance (e.g. beating a human professional player). We propose a benchmark for multiagent learning based on repeated play of the simple game Rock, Paper, Scissors along with a population of forty-three tournament entries, some of which are intentionally sub-optimal. We describe metrics to measure the quality of agents based both on average returns and exploitability. We then show that several RL, online learning, and language model approaches can learn good counter-strategies and generalize well, but ultimately lose to the top-performing bots, creating an opportunity for research in multiagent learning.
Efficient Reinforcement Learning for Global Decision Making in the Presence of Local Agents at Scale
We study reinforcement learning for global decision-making in the presence of many local agents, where the global decision-maker makes decisions affecting all local agents, and the objective is to learn a policy that maximizes the rewards of both the global and the local agents. Such problems find many applications, e.g. demand response, EV charging, queueing, etc. In this setting, scalability has been a long-standing challenge due to the size of the state/action space which can be exponential in the number of agents. This work proposes the SUB-SAMPLE-Q algorithm where the global agent subsamples kleq n local agents to compute an optimal policy in time that is only exponential in k, providing an exponential speedup from standard methods that are exponential in n. We show that the learned policy converges to the optimal policy in the order of O(1/k+epsilon_{k,m}) as the number of sub-sampled agents k increases, where epsilon_{k,m} is the Bellman noise. We also conduct numerical simulations in a demand-response setting and a queueing setting.
Robust Subtask Learning for Compositional Generalization
Compositional reinforcement learning is a promising approach for training policies to perform complex long-horizon tasks. Typically, a high-level task is decomposed into a sequence of subtasks and a separate policy is trained to perform each subtask. In this paper, we focus on the problem of training subtask policies in a way that they can be used to perform any task; here, a task is given by a sequence of subtasks. We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance. We formulate the problem as a two agent zero-sum game in which the adversary picks the sequence of subtasks. We propose two RL algorithms to solve this game: one is an adaptation of existing multi-agent RL algorithms to our setting and the other is an asynchronous version which enables parallel training of subtask policies. We evaluate our approach on two multi-task environments with continuous states and actions and demonstrate that our algorithms outperform state-of-the-art baselines.
Enhancing Language Multi-Agent Learning with Multi-Agent Credit Re-Assignment for Interactive Environment Generalization
LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
SRMT: Shared Memory for Multi-agent Lifelong Pathfinding
Multi-agent reinforcement learning (MARL) demonstrates significant progress in solving cooperative and competitive multi-agent problems in various environments. One of the principal challenges in MARL is the need for explicit prediction of the agents' behavior to achieve cooperation. To resolve this issue, we propose the Shared Recurrent Memory Transformer (SRMT) which extends memory transformers to multi-agent settings by pooling and globally broadcasting individual working memories, enabling agents to exchange information implicitly and coordinate their actions. We evaluate SRMT on the Partially Observable Multi-Agent Pathfinding problem in a toy Bottleneck navigation task that requires agents to pass through a narrow corridor and on a POGEMA benchmark set of tasks. In the Bottleneck task, SRMT consistently outperforms a variety of reinforcement learning baselines, especially under sparse rewards, and generalizes effectively to longer corridors than those seen during training. On POGEMA maps, including Mazes, Random, and MovingAI, SRMT is competitive with recent MARL, hybrid, and planning-based algorithms. These results suggest that incorporating shared recurrent memory into the transformer-based architectures can enhance coordination in decentralized multi-agent systems. The source code for training and evaluation is available on GitHub: https://github.com/Aloriosa/srmt.
Ensembling Prioritized Hybrid Policies for Multi-agent Pathfinding
Multi-Agent Reinforcement Learning (MARL) based Multi-Agent Path Finding (MAPF) has recently gained attention due to its efficiency and scalability. Several MARL-MAPF methods choose to use communication to enrich the information one agent can perceive. However, existing works still struggle in structured environments with high obstacle density and a high number of agents. To further improve the performance of the communication-based MARL-MAPF solvers, we propose a new method, Ensembling Prioritized Hybrid Policies (EPH). We first propose a selective communication block to gather richer information for better agent coordination within multi-agent environments and train the model with a Q learning-based algorithm. We further introduce three advanced inference strategies aimed at bolstering performance during the execution phase. First, we hybridize the neural policy with single-agent expert guidance for navigating conflict-free zones. Secondly, we propose Q value-based methods for prioritized resolution of conflicts as well as deadlock situations. Finally, we introduce a robust ensemble method that can efficiently collect the best out of multiple possible solutions. We empirically evaluate EPH in complex multi-agent environments and demonstrate competitive performance against state-of-the-art neural methods for MAPF. We open-source our code at https://github.com/ai4co/eph-mapf.
LOQA: Learning with Opponent Q-Learning Awareness
In various real-world scenarios, interactions among agents often resemble the dynamics of general-sum games, where each agent strives to optimize its own utility. Despite the ubiquitous relevance of such settings, decentralized machine learning algorithms have struggled to find equilibria that maximize individual utility while preserving social welfare. In this paper we introduce Learning with Opponent Q-Learning Awareness (LOQA), a novel, decentralized reinforcement learning algorithm tailored to optimizing an agent's individual utility while fostering cooperation among adversaries in partially competitive environments. LOQA assumes the opponent samples actions proportionally to their action-value function Q. Experimental results demonstrate the effectiveness of LOQA at achieving state-of-the-art performance in benchmark scenarios such as the Iterated Prisoner's Dilemma and the Coin Game. LOQA achieves these outcomes with a significantly reduced computational footprint, making it a promising approach for practical multi-agent applications.
FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning
Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at https://sites.google.com/view/fightladder/home.
Attention-Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic Partial Observability
Stochastic partial observability poses a major challenge for decentralized coordination in multi-agent reinforcement learning but is largely neglected in state-of-the-art research due to a strong focus on state-based centralized training for decentralized execution (CTDE) and benchmarks that lack sufficient stochasticity like StarCraft Multi-Agent Challenge (SMAC). In this paper, we propose Attention-based Embeddings of Recurrence In multi-Agent Learning (AERIAL) to approximate value functions under stochastic partial observability. AERIAL replaces the true state with a learned representation of multi-agent recurrence, considering more accurate information about decentralized agent decisions than state-based CTDE. We then introduce MessySMAC, a modified version of SMAC with stochastic observations and higher variance in initial states, to provide a more general and configurable benchmark regarding stochastic partial observability. We evaluate AERIAL in Dec-Tiger as well as in a variety of SMAC and MessySMAC maps, and compare the results with state-based CTDE. Furthermore, we evaluate the robustness of AERIAL and state-based CTDE against various stochasticity configurations in MessySMAC.
Offline Learning in Markov Games with General Function Approximation
We study offline multi-agent reinforcement learning (RL) in Markov games, where the goal is to learn an approximate equilibrium -- such as Nash equilibrium and (Coarse) Correlated Equilibrium -- from an offline dataset pre-collected from the game. Existing works consider relatively restricted tabular or linear models and handle each equilibria separately. In this work, we provide the first framework for sample-efficient offline learning in Markov games under general function approximation, handling all 3 equilibria in a unified manner. By using Bellman-consistent pessimism, we obtain interval estimation for policies' returns, and use both the upper and the lower bounds to obtain a relaxation on the gap of a candidate policy, which becomes our optimization objective. Our results generalize prior works and provide several additional insights. Importantly, we require a data coverage condition that improves over the recently proposed "unilateral concentrability". Our condition allows selective coverage of deviation policies that optimally trade-off between their greediness (as approximate best responses) and coverage, and we show scenarios where this leads to significantly better guarantees. As a new connection, we also show how our algorithmic framework can subsume seemingly different solution concepts designed for the special case of two-player zero-sum games.
StarCraft II: A New Challenge for Reinforcement Learning
This paper introduces SC2LE (StarCraft II Learning Environment), a reinforcement learning environment based on the StarCraft II game. This domain poses a new grand challenge for reinforcement learning, representing a more difficult class of problems than considered in most prior work. It is a multi-agent problem with multiple players interacting; there is imperfect information due to a partially observed map; it has a large action space involving the selection and control of hundreds of units; it has a large state space that must be observed solely from raw input feature planes; and it has delayed credit assignment requiring long-term strategies over thousands of steps. We describe the observation, action, and reward specification for the StarCraft II domain and provide an open source Python-based interface for communicating with the game engine. In addition to the main game maps, we provide a suite of mini-games focusing on different elements of StarCraft II gameplay. For the main game maps, we also provide an accompanying dataset of game replay data from human expert players. We give initial baseline results for neural networks trained from this data to predict game outcomes and player actions. Finally, we present initial baseline results for canonical deep reinforcement learning agents applied to the StarCraft II domain. On the mini-games, these agents learn to achieve a level of play that is comparable to a novice player. However, when trained on the main game, these agents are unable to make significant progress. Thus, SC2LE offers a new and challenging environment for exploring deep reinforcement learning algorithms and architectures.
Reproducibility Study of "Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents"
This study evaluates and extends the findings made by Piatti et al., who introduced GovSim, a simulation framework designed to assess the cooperative decision-making capabilities of large language models (LLMs) in resource-sharing scenarios. By replicating key experiments, we validate claims regarding the performance of large models, such as GPT-4-turbo, compared to smaller models. The impact of the universalization principle is also examined, with results showing that large models can achieve sustainable cooperation, with or without the principle, while smaller models fail without it. In addition, we provide multiple extensions to explore the applicability of the framework to new settings. We evaluate additional models, such as DeepSeek-V3 and GPT-4o-mini, to test whether cooperative behavior generalizes across different architectures and model sizes. Furthermore, we introduce new settings: we create a heterogeneous multi-agent environment, study a scenario using Japanese instructions, and explore an "inverse environment" where agents must cooperate to mitigate harmful resource distributions. Our results confirm that the benchmark can be applied to new models, scenarios, and languages, offering valuable insights into the adaptability of LLMs in complex cooperative tasks. Moreover, the experiment involving heterogeneous multi-agent systems demonstrates that high-performing models can influence lower-performing ones to adopt similar behaviors. This finding has significant implications for other agent-based applications, potentially enabling more efficient use of computational resources and contributing to the development of more effective cooperative AI systems.
Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits
The study of collaborative multi-agent bandits has attracted significant attention recently. In light of this, we initiate the study of a new collaborative setting, consisting of N agents such that each agent is learning one of M stochastic multi-armed bandits to minimize their group cumulative regret. We develop decentralized algorithms which facilitate collaboration between the agents under two scenarios. We characterize the performance of these algorithms by deriving the per agent cumulative regret and group regret upper bounds. We also prove lower bounds for the group regret in this setting, which demonstrates the near-optimal behavior of the proposed algorithms.
Decision Market Based Learning For Multi-agent Contextual Bandit Problems
Information is often stored in a distributed and proprietary form, and agents who own information are often self-interested and require incentives to reveal their information. Suitable mechanisms are required to elicit and aggregate such distributed information for decision making. In this paper, we use simulations to investigate the use of decision markets as mechanisms in a multi-agent learning system to aggregate distributed information for decision-making in a contextual bandit problem. The system utilises strictly proper decision scoring rules to assess the accuracy of probabilistic reports from agents, which allows agents to learn to solve the contextual bandit problem jointly. Our simulations show that our multi-agent system with distributed information can be trained as efficiently as a centralised counterpart with a single agent that receives all information. Moreover, we use our system to investigate scenarios with deterministic decision scoring rules which are not incentive compatible. We observe the emergence of more complex dynamics with manipulative behaviour, which agrees with existing theoretical analyses.
Attacking Cooperative Multi-Agent Reinforcement Learning by Adversarial Minority Influence
This study probes the vulnerabilities of cooperative multi-agent reinforcement learning (c-MARL) under adversarial attacks, a critical determinant of c-MARL's worst-case performance prior to real-world implementation. Current observation-based attacks, constrained by white-box assumptions, overlook c-MARL's complex multi-agent interactions and cooperative objectives, resulting in impractical and limited attack capabilities. To address these shortcomes, we propose Adversarial Minority Influence (AMI), a practical and strong for c-MARL. AMI is a practical black-box attack and can be launched without knowing victim parameters. AMI is also strong by considering the complex multi-agent interaction and the cooperative goal of agents, enabling a single adversarial agent to unilaterally misleads majority victims to form targeted worst-case cooperation. This mirrors minority influence phenomena in social psychology. To achieve maximum deviation in victim policies under complex agent-wise interactions, our unilateral attack aims to characterize and maximize the impact of the adversary on the victims. This is achieved by adapting a unilateral agent-wise relation metric derived from mutual information, thereby mitigating the adverse effects of victim influence on the adversary. To lead the victims into a jointly detrimental scenario, our targeted attack deceives victims into a long-term, cooperatively harmful situation by guiding each victim towards a specific target, determined through a trial-and-error process executed by a reinforcement learning agent. Through AMI, we achieve the first successful attack against real-world robot swarms and effectively fool agents in simulated environments into collectively worst-case scenarios, including Starcraft II and Multi-agent Mujoco. The source code and demonstrations can be found at: https://github.com/DIG-Beihang/AMI.
Investigating the Impact of Direct Punishment on the Emergence of Cooperation in Multi-Agent Reinforcement Learning Systems
Solving the problem of cooperation is fundamentally important for the creation and maintenance of functional societies. Problems of cooperation are omnipresent within human society, with examples ranging from navigating busy road junctions to negotiating treaties. As the use of AI becomes more pervasive throughout society, the need for socially intelligent agents capable of navigating these complex cooperative dilemmas is becoming increasingly evident. Direct punishment is a ubiquitous social mechanism that has been shown to foster the emergence of cooperation in both humans and non-humans. In the natural world, direct punishment is often strongly coupled with partner selection and reputation and used in conjunction with third-party punishment. The interactions between these mechanisms could potentially enhance the emergence of cooperation within populations. However, no previous work has evaluated the learning dynamics and outcomes emerging from Multi-Agent Reinforcement Learning (MARL) populations that combine these mechanisms. This paper addresses this gap. It presents a comprehensive analysis and evaluation of the behaviors and learning dynamics associated with direct punishment, third-party punishment, partner selection, and reputation. Finally, we discuss the implications of using these mechanisms on the design of cooperative AI systems.
Constrained Black-Box Attacks Against Multi-Agent Reinforcement Learning
Collaborative multi-agent reinforcement learning (c-MARL) has rapidly evolved, offering state-of-the-art algorithms for real-world applications, including sensitive domains. However, a key challenge to its widespread adoption is the lack of a thorough investigation into its vulnerabilities to adversarial attacks. Existing work predominantly focuses on training-time attacks or unrealistic scenarios, such as access to policy weights or the ability to train surrogate policies. In this paper, we investigate new vulnerabilities under more realistic and constrained conditions, assuming an adversary can only collect and perturb the observations of deployed agents. We also consider scenarios where the adversary has no access at all. We propose simple yet highly effective algorithms for generating adversarial perturbations designed to misalign how victim agents perceive their environment. Our approach is empirically validated on three benchmarks and 22 environments, demonstrating its effectiveness across diverse algorithms and environments. Furthermore, we show that our algorithm is sample-efficient, requiring only 1,000 samples compared to the millions needed by previous methods.
Byzantine Robust Cooperative Multi-Agent Reinforcement Learning as a Bayesian Game
In this study, we explore the robustness of cooperative multi-agent reinforcement learning (c-MARL) against Byzantine failures, where any agent can enact arbitrary, worst-case actions due to malfunction or adversarial attack. To address the uncertainty that any agent can be adversarial, we propose a Bayesian Adversarial Robust Dec-POMDP (BARDec-POMDP) framework, which views Byzantine adversaries as nature-dictated types, represented by a separate transition. This allows agents to learn policies grounded on their posterior beliefs about the type of other agents, fostering collaboration with identified allies and minimizing vulnerability to adversarial manipulation. We define the optimal solution to the BARDec-POMDP as an ex post robust Bayesian Markov perfect equilibrium, which we proof to exist and weakly dominates the equilibrium of previous robust MARL approaches. To realize this equilibrium, we put forward a two-timescale actor-critic algorithm with almost sure convergence under specific conditions. Experimentation on matrix games, level-based foraging and StarCraft II indicate that, even under worst-case perturbations, our method successfully acquires intricate micromanagement skills and adaptively aligns with allies, demonstrating resilience against non-oblivious adversaries, random allies, observation-based attacks, and transfer-based attacks.
MACTAS: Self-Attention-Based Module for Inter-Agent Communication in Multi-Agent Reinforcement Learning
Communication is essential for the collective execution of complex tasks by human agents, motivating interest in communication mechanisms for multi-agent reinforcement learning (MARL). However, existing communication protocols in MARL are often complex and non-differentiable. In this work, we introduce a self-attention-based communication module that exchanges information between the agents in MARL. Our proposed approach is fully differentiable, allowing agents to learn to generate messages in a reward-driven manner. The module can be seamlessly integrated with any action-value function decomposition method and can be viewed as an extension of such decompositions. Notably, it includes a fixed number of trainable parameters, independent of the number of agents. Experimental results on the SMAC benchmark demonstrate the effectiveness of our approach, which achieves state-of-the-art performance on several maps.
Neural MMO v1.3: A Massively Multiagent Game Environment for Training and Evaluating Neural Networks
Progress in multiagent intelligence research is fundamentally limited by the number and quality of environments available for study. In recent years, simulated games have become a dominant research platform within reinforcement learning, in part due to their accessibility and interpretability. Previous works have targeted and demonstrated success on arcade, first person shooter (FPS), real-time strategy (RTS), and massive online battle arena (MOBA) games. Our work considers massively multiplayer online role-playing games (MMORPGs or MMOs), which capture several complexities of real-world learning that are not well modeled by any other game genre. We present Neural MMO, a massively multiagent game environment inspired by MMOs and discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO. We further demonstrate that standard policy gradient methods and simple baseline models can learn interesting emergent exploration and specialization behaviors in this setting.
Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning
Federated reinforcement learning (FRL) has emerged as a promising paradigm for reducing the sample complexity of reinforcement learning tasks by exploiting information from different agents. However, when each agent interacts with a potentially different environment, little to nothing is known theoretically about the non-asymptotic performance of FRL algorithms. The lack of such results can be attributed to various technical challenges and their intricate interplay: Markovian sampling, linear function approximation, multiple local updates to save communication, heterogeneity in the reward functions and transition kernels of the agents' MDPs, and continuous state-action spaces. Moreover, in the on-policy setting, the behavior policies vary with time, further complicating the analysis. In response, we introduce FedSARSA, a novel federated on-policy reinforcement learning scheme, equipped with linear function approximation, to address these challenges and provide a comprehensive finite-time error analysis. Notably, we establish that FedSARSA converges to a policy that is near-optimal for all agents, with the extent of near-optimality proportional to the level of heterogeneity. Furthermore, we prove that FedSARSA leverages agent collaboration to enable linear speedups as the number of agents increases, which holds for both fixed and adaptive step-size configurations.
Policy Mirror Ascent for Efficient and Independent Learning in Mean Field Games
Mean-field games have been used as a theoretical tool to obtain an approximate Nash equilibrium for symmetric and anonymous N-player games. However, limiting applicability, existing theoretical results assume variations of a "population generative model", which allows arbitrary modifications of the population distribution by the learning algorithm. Moreover, learning algorithms typically work on abstract simulators with population instead of the N-player game. Instead, we show that N agents running policy mirror ascent converge to the Nash equilibrium of the regularized game within mathcal{O}(varepsilon^{-2}) samples from a single sample trajectory without a population generative model, up to a standard O(1{N}) error due to the mean field. Taking a divergent approach from the literature, instead of working with the best-response map we first show that a policy mirror ascent map can be used to construct a contractive operator having the Nash equilibrium as its fixed point. We analyze single-path TD learning for N-agent games, proving sample complexity guarantees by only using a sample path from the N-agent simulator without a population generative model. Furthermore, we demonstrate that our methodology allows for independent learning by N agents with finite sample guarantees.
UAV Pathfinding in Dynamic Obstacle Avoidance with Multi-agent Reinforcement Learning
Multi-agent reinforcement learning based methods are significant for online planning of feasible and safe paths for agents in dynamic and uncertain scenarios. Although some methods like fully centralized and fully decentralized methods achieve a certain measure of success, they also encounter problems such as dimension explosion and poor convergence, respectively. In this paper, we propose a novel centralized training with decentralized execution method based on multi-agent reinforcement learning to solve the dynamic obstacle avoidance problem online. In this approach, each agent communicates only with the central planner or only with its neighbors, respectively, to plan feasible and safe paths online. We improve our methods based on the idea of model predictive control to increase the training efficiency and sample utilization of agents. The experimental results in both simulation, indoor, and outdoor environments validate the effectiveness of our method. The video is available at https://www.bilibili.com/video/BV1gw41197hV/?vd_source=9de61aecdd9fb684e546d032ef7fe7bf
Decentralized Monte Carlo Tree Search for Partially Observable Multi-agent Pathfinding
The Multi-Agent Pathfinding (MAPF) problem involves finding a set of conflict-free paths for a group of agents confined to a graph. In typical MAPF scenarios, the graph and the agents' starting and ending vertices are known beforehand, allowing the use of centralized planning algorithms. However, in this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally and are restricted in communications with each other. Specifically, we investigate the lifelong variant of MAPF, where new goals are continually assigned to the agents upon completion of previous ones. Drawing inspiration from the successful AlphaZero approach, we propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks. Our approach utilizes the agent's observations to recreate the intrinsic Markov decision process, which is then used for planning with a tailored for multi-agent tasks version of neural MCTS. The experimental results show that our approach outperforms state-of-the-art learnable MAPF solvers. The source code is available at https://github.com/AIRI-Institute/mats-lp.
Subgoal-based Hierarchical Reinforcement Learning for Multi-Agent Collaboration
Recent advancements in reinforcement learning have made significant impacts across various domains, yet they often struggle in complex multi-agent environments due to issues like algorithm instability, low sampling efficiency, and the challenges of exploration and dimensionality explosion. Hierarchical reinforcement learning (HRL) offers a structured approach to decompose complex tasks into simpler sub-tasks, which is promising for multi-agent settings. This paper advances the field by introducing a hierarchical architecture that autonomously generates effective subgoals without explicit constraints, enhancing both flexibility and stability in training. We propose a dynamic goal generation strategy that adapts based on environmental changes. This method significantly improves the adaptability and sample efficiency of the learning process. Furthermore, we address the critical issue of credit assignment in multi-agent systems by synergizing our hierarchical architecture with a modified QMIX network, thus improving overall strategy coordination and efficiency. Comparative experiments with mainstream reinforcement learning algorithms demonstrate the superior convergence speed and performance of our approach in both single-agent and multi-agent environments, confirming its effectiveness and flexibility in complex scenarios. Our code is open-sourced at: https://github.com/SICC-Group/GMAH.
Learning Mean Field Games on Sparse Graphs: A Hybrid Graphex Approach
Learning the behavior of large agent populations is an important task for numerous research areas. Although the field of multi-agent reinforcement learning (MARL) has made significant progress towards solving these systems, solutions for many agents often remain computationally infeasible and lack theoretical guarantees. Mean Field Games (MFGs) address both of these issues and can be extended to Graphon MFGs (GMFGs) to include network structures between agents. Despite their merits, the real world applicability of GMFGs is limited by the fact that graphons only capture dense graphs. Since most empirically observed networks show some degree of sparsity, such as power law graphs, the GMFG framework is insufficient for capturing these network topologies. Thus, we introduce the novel concept of Graphex MFGs (GXMFGs) which builds on the graph theoretical concept of graphexes. Graphexes are the limiting objects to sparse graph sequences that also have other desirable features such as the small world property. Learning equilibria in these games is challenging due to the rich and sparse structure of the underlying graphs. To tackle these challenges, we design a new learning algorithm tailored to the GXMFG setup. This hybrid graphex learning approach leverages that the system mainly consists of a highly connected core and a sparse periphery. After defining the system and providing a theoretical analysis, we state our learning approach and demonstrate its learning capabilities on both synthetic graphs and real-world networks. This comparison shows that our GXMFG learning algorithm successfully extends MFGs to a highly relevant class of hard, realistic learning problems that are not accurately addressed by current MARL and MFG methods.
Learn to Follow: Decentralized Lifelong Multi-agent Pathfinding via Planning and Learning
Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph and is typically solved in a centralized fashion. Conversely, in this work, we investigate the decentralized MAPF setting, when the central controller that posses all the information on the agents' locations and goals is absent and the agents have to sequientially decide the actions on their own without having access to a full state of the environment. We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones. To address this complex problem, we propose a method that integrates two complementary approaches: planning with heuristic search and reinforcement learning through policy optimization. Planning is utilized to construct and re-plan individual paths. We enhance our planning algorithm with a dedicated technique tailored to avoid congestion and increase the throughput of the system. We employ reinforcement learning to discover the collision avoidance policies that effectively guide the agents along the paths. The policy is implemented as a neural network and is effectively trained without any reward-shaping or external guidance. We evaluate our method on a wide range of setups comparing it to the state-of-the-art solvers. The results show that our method consistently outperforms the learnable competitors, showing higher throughput and better ability to generalize to the maps that were unseen at the training stage. Moreover our solver outperforms a rule-based one in terms of throughput and is an order of magnitude faster than a state-of-the-art search-based solver.
Competing for Shareable Arms in Multi-Player Multi-Armed Bandits
Competitions for shareable and limited resources have long been studied with strategic agents. In reality, agents often have to learn and maximize the rewards of the resources at the same time. To design an individualized competing policy, we model the competition between agents in a novel multi-player multi-armed bandit (MPMAB) setting where players are selfish and aim to maximize their own rewards. In addition, when several players pull the same arm, we assume that these players averagely share the arms' rewards by expectation. Under this setting, we first analyze the Nash equilibrium when arms' rewards are known. Subsequently, we propose a novel SelfishMPMAB with Averaging Allocation (SMAA) approach based on the equilibrium. We theoretically demonstrate that SMAA could achieve a good regret guarantee for each player when all players follow the algorithm. Additionally, we establish that no single selfish player can significantly increase their rewards through deviation, nor can they detrimentally affect other players' rewards without incurring substantial losses for themselves. We finally validate the effectiveness of the method in extensive synthetic experiments.
AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.
Perspectives for Direct Interpretability in Multi-Agent Deep Reinforcement Learning
Multi-Agent Deep Reinforcement Learning (MADRL) was proven efficient in solving complex problems in robotics or games, yet most of the trained models are hard to interpret. While learning intrinsically interpretable models remains a prominent approach, its scalability and flexibility are limited in handling complex tasks or multi-agent dynamics. This paper advocates for direct interpretability, generating post hoc explanations directly from trained models, as a versatile and scalable alternative, offering insights into agents' behaviour, emergent phenomena, and biases without altering models' architectures. We explore modern methods, including relevance backpropagation, knowledge edition, model steering, activation patching, sparse autoencoders and circuit discovery, to highlight their applicability to single-agent, multi-agent, and training process challenges. By addressing MADRL interpretability, we propose directions aiming to advance active topics such as team identification, swarm coordination and sample efficiency.
Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization
Combinatorial optimization problems involving multiple agents are notoriously challenging due to their NP-hard nature and the necessity for effective agent coordination. Despite advancements in learning-based methods, existing approaches often face critical limitations, including suboptimal agent coordination, poor generalizability, and high computational latency. To address these issues, we propose Parallel AutoRegressive Combinatorial Optimization (PARCO), a reinforcement learning framework designed to construct high-quality solutions for multi-agent combinatorial tasks efficiently. To this end, PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities. We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency. Code available at: https://github.com/ai4co/parco.
Graph Attention-based Reinforcement Learning for Trajectory Design and Resource Assignment in Multi-UAV Assisted Communication
In the multiple unmanned aerial vehicle (UAV)- assisted downlink communication, it is challenging for UAV base stations (UAV BSs) to realize trajectory design and resource assignment in unknown environments. The cooperation and competition between UAV BSs in the communication network leads to a Markov game problem. Multi-agent reinforcement learning is a significant solution for the above decision-making. However, there are still many common issues, such as the instability of the system and low utilization of historical data, that limit its application. In this paper, a novel graph-attention multi-agent trust region (GA-MATR) reinforcement learning framework is proposed to solve the multi-UAV assisted communication problem. Graph recurrent network is introduced to process and analyze complex topology of the communication network, so as to extract useful information and patterns from observational information. The attention mechanism provides additional weighting for conveyed information, so that the critic network can accurately evaluate the value of behavior for UAV BSs. This provides more reliable feedback signals and helps the actor network update the strategy more effectively. Ablation simulations indicate that the proposed approach attains improved convergence over the baselines. UAV BSs learn the optimal communication strategies to achieve their maximum cumulative rewards. Additionally, multi-agent trust region method with monotonic convergence provides an estimated Nash equilibrium for the multi-UAV assisted communication Markov game.
Compositional Shielding and Reinforcement Learning for Multi-Agent Systems
Deep reinforcement learning has emerged as a powerful tool for obtaining high-performance policies. However, the safety of these policies has been a long-standing issue. One promising paradigm to guarantee safety is a shield, which shields a policy from making unsafe actions. However, computing a shield scales exponentially in the number of state variables. This is a particular concern in multi-agent systems with many agents. In this work, we propose a novel approach for multi-agent shielding. We address scalability by computing individual shields for each agent. The challenge is that typical safety specifications are global properties, but the shields of individual agents only ensure local properties. Our key to overcome this challenge is to apply assume-guarantee reasoning. Specifically, we present a sound proof rule that decomposes a (global, complex) safety specification into (local, simple) obligations for the shields of the individual agents. Moreover, we show that applying the shields during reinforcement learning significantly improves the quality of the policies obtained for a given training budget. We demonstrate the effectiveness and scalability of our multi-agent shielding framework in two case studies, reducing the computation time from hours to seconds and achieving fast learning convergence.
Learning to Deceive in Multi-Agent Hidden Role Games
Deception is prevalent in human social settings. However, studies into the effect of deception on reinforcement learning algorithms have been limited to simplistic settings, restricting their applicability to complex real-world problems. This paper addresses this by introducing a new mixed competitive-cooperative multi-agent reinforcement learning (MARL) environment inspired by popular role-based deception games such as Werewolf, Avalon, and Among Us. The environment's unique challenge lies in the necessity to cooperate with other agents despite not knowing if they are friend or foe. Furthermore, we introduce a model of deception, which we call Bayesian belief manipulation (BBM) and demonstrate its effectiveness at deceiving other agents in this environment while also increasing the deceiving agent's performance.
ColorGrid: A Multi-Agent Non-Stationary Environment for Goal Inference and Assistance
Autonomous agents' interactions with humans are increasingly focused on adapting to their changing preferences in order to improve assistance in real-world tasks. Effective agents must learn to accurately infer human goals, which are often hidden, to collaborate well. However, existing Multi-Agent Reinforcement Learning (MARL) environments lack the necessary attributes required to rigorously evaluate these agents' learning capabilities. To this end, we introduce ColorGrid, a novel MARL environment with customizable non-stationarity, asymmetry, and reward structure. We investigate the performance of Independent Proximal Policy Optimization (IPPO), a state-of-the-art (SOTA) MARL algorithm, in ColorGrid and find through extensive ablations that, particularly with simultaneous non-stationary and asymmetric goals between a ``leader'' agent representing a human and a ``follower'' assistant agent, ColorGrid is unsolved by IPPO. To support benchmarking future MARL algorithms, we release our environment code, model checkpoints, and trajectory visualizations at https://github.com/andreyrisukhin/ColorGrid.
Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games
We consider the problem of decentralized multi-agent reinforcement learning in Markov games. A fundamental question is whether there exist algorithms that, when adopted by all agents and run independently in a decentralized fashion, lead to no-regret for each player, analogous to celebrated convergence results in normal-form games. While recent work has shown that such algorithms exist for restricted settings (notably, when regret is defined with respect to deviations to Markovian policies), the question of whether independent no-regret learning can be achieved in the standard Markov game framework was open. We provide a decisive negative resolution this problem, both from a computational and statistical perspective. We show that: - Under the widely-believed assumption that PPAD-hard problems cannot be solved in polynomial time, there is no polynomial-time algorithm that attains no-regret in general-sum Markov games when executed independently by all players, even when the game is known to the algorithm designer and the number of players is a small constant. - When the game is unknown, no algorithm, regardless of computational efficiency, can achieve no-regret without observing a number of episodes that is exponential in the number of players. Perhaps surprisingly, our lower bounds hold even for seemingly easier setting in which all agents are controlled by a a centralized algorithm. They are proven via lower bounds for a simpler problem we refer to as SparseCCE, in which the goal is to compute a coarse correlated equilibrium that is sparse in the sense that it can be represented as a mixture of a small number of product policies. The crux of our approach is a novel application of aggregation techniques from online learning, whereby we show that any algorithm for the SparseCCE problem can be used to compute approximate Nash equilibria for non-zero sum normal-form games.
Open-Ended Learning Leads to Generally Capable Agents
In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.
A Survey on Self-play Methods in Reinforcement Learning
Self-play, characterized by agents' interactions with copies or past versions of itself, has recently gained prominence in reinforcement learning. This paper first clarifies the preliminaries of self-play, including the multi-agent reinforcement learning framework and basic game theory concepts. Then it provides a unified framework and classifies existing self-play algorithms within this framework. Moreover, the paper bridges the gap between the algorithms and their practical implications by illustrating the role of self-play in different scenarios. Finally, the survey highlights open challenges and future research directions in self-play. This paper is an essential guide map for understanding the multifaceted landscape of self-play in RL.
LLM-Powered Decentralized Generative Agents with Adaptive Hierarchical Knowledge Graph for Cooperative Planning
Developing intelligent agents for long-term cooperation in dynamic open-world scenarios is a major challenge in multi-agent systems. Traditional Multi-agent Reinforcement Learning (MARL) frameworks like centralized training decentralized execution (CTDE) struggle with scalability and flexibility. They require centralized long-term planning, which is difficult without custom reward functions, and face challenges in processing multi-modal data. CTDE approaches also assume fixed cooperation strategies, making them impractical in dynamic environments where agents need to adapt and plan independently. To address decentralized multi-agent cooperation, we propose Decentralized Adaptive Knowledge Graph Memory and Structured Communication System (DAMCS) in a novel Multi-agent Crafter environment. Our generative agents, powered by Large Language Models (LLMs), are more scalable than traditional MARL agents by leveraging external knowledge and language for long-term planning and reasoning. Instead of fully sharing information from all past experiences, DAMCS introduces a multi-modal memory system organized as a hierarchical knowledge graph and a structured communication protocol to optimize agent cooperation. This allows agents to reason from past interactions and share relevant information efficiently. Experiments on novel multi-agent open-world tasks show that DAMCS outperforms both MARL and LLM baselines in task efficiency and collaboration. Compared to single-agent scenarios, the two-agent scenario achieves the same goal with 63% fewer steps, and the six-agent scenario with 74% fewer steps, highlighting the importance of adaptive memory and structured communication in achieving long-term goals. We publicly release our project at: https://happyeureka.github.io/damcs.
Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge?
Most recently developed approaches to cooperative multi-agent reinforcement learning in the centralized training with decentralized execution setting involve estimating a centralized, joint value function. In this paper, we demonstrate that, despite its various theoretical shortcomings, Independent PPO (IPPO), a form of independent learning in which each agent simply estimates its local value function, can perform just as well as or better than state-of-the-art joint learning approaches on popular multi-agent benchmark suite SMAC with little hyperparameter tuning. We also compare IPPO to several variants; the results suggest that IPPO's strong performance may be due to its robustness to some forms of environment non-stationarity.
JaxRobotarium: Training and Deploying Multi-Robot Policies in 10 Minutes
Multi-agent reinforcement learning (MARL) has emerged as a promising solution for learning complex and scalable coordination behaviors in multi-robot systems. However, established MARL platforms (e.g., SMAC and MPE) lack robotics relevance and hardware deployment, leaving multi-robot learning researchers to develop bespoke environments and hardware testbeds dedicated to the development and evaluation of their individual contributions. The Multi-Agent RL Benchmark and Learning Environment for the Robotarium (MARBLER) is an exciting recent step in providing a standardized robotics-relevant platform for MARL, by bridging the Robotarium testbed with existing MARL software infrastructure. However, MARBLER lacks support for parallelization and GPU/TPU execution, making the platform prohibitively slow compared to modern MARL environments and hindering adoption. We contribute JaxRobotarium, a Jax-powered end-to-end simulation, learning, deployment, and benchmarking platform for the Robotarium. JaxRobotarium enables rapid training and deployment of multi-robot RL (MRRL) policies with realistic robot dynamics and safety constraints, supporting parallelization and hardware acceleration. Our generalizable learning interface integrates easily with SOTA MARL libraries (e.g., JaxMARL). In addition, JaxRobotarium includes eight standardized coordination scenarios, including four novel scenarios that bring established MARL benchmark tasks (e.g., RWARE and Level-Based Foraging) to a robotics setting. We demonstrate that JaxRobotarium retains high simulation fidelity while achieving dramatic speedups over baseline (20x in training and 150x in simulation), and provides an open-access sim-to-real evaluation pipeline through the Robotarium testbed, accelerating and democratizing access to multi-robot learning research and evaluation. Our code is available at https://github.com/GT-STAR-Lab/JaxRobotarium.
Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
We tackle real-world problems with complex structures beyond the pixel-based game or simulator. We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph that defines a set of subtasks and their dependencies that are unknown to the agent. Different from the previous meta-rl methods trying to directly infer the unstructured task embedding, our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks, and use it as a prior to improve the task inference in testing. Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks than various existing algorithms such as meta reinforcement learning, hierarchical reinforcement learning, and other heuristic agents.
Thespian: Multi-Character Text Role-Playing Game Agents
Text-adventure games and text role-playing games are grand challenges for reinforcement learning game playing agents. Text role-playing games are open-ended environments where an agent must faithfully play a particular character. We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters. We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt that can be used to direct it as to which character to play at any time. We further describe an attention mechanism that allows the agent to learn new characters that are based on previously learned characters in a few-shot fashion. We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning
Offline multi-agent reinforcement learning (MARL) is an exciting direction of research that uses static datasets to find optimal control policies for multi-agent systems. Though the field is by definition data-driven, efforts have thus far neglected data in their drive to achieve state-of-the-art results. We first substantiate this claim by surveying the literature, showing how the majority of works generate their own datasets without consistent methodology and provide sparse information about the characteristics of these datasets. We then show why neglecting the nature of the data is problematic, through salient examples of how tightly algorithmic performance is coupled to the dataset used, necessitating a common foundation for experiments in the field. In response, we take a big step towards improving data usage and data awareness in offline MARL, with three key contributions: (1) a clear guideline for generating novel datasets; (2) a standardisation of over 80 existing datasets, hosted in a publicly available repository, using a consistent storage format and easy-to-use API; and (3) a suite of analysis tools that allow us to understand these datasets better, aiding further development.
Learn as Individuals, Evolve as a Team: Multi-agent LLMs Adaptation in Embodied Environments
Large language models (LLMs) possess extensive knowledge bases and strong reasoning capabilities, making them promising tools for complex, multi-agent planning in embodied environments. However, despite LLMs' advanced abilities and the sophisticated modular design of agentic methods, existing LLM-based planning algorithms remain limited by weak adaptation capabilities to multi-agent embodied scenarios. We address this limitation by introducing a framework that enables LLM agents to learn and evolve both before and during test time, equipping them with environment-relevant knowledge for better planning and enhanced communication for improved cooperation. Inspired by centralized training with decentralized execution in multi-agent reinforcement learning, we propose a Learn as Individuals, Evolve as a Team (LIET) paradigm for multi-agent LLMs adaptation. At the individual level, LLM agents learn a local utility function from exploratory datasets to better comprehend the embodied environment, which is then queried during test time to support informed decision-making. At the team level, LLM agents collaboratively and iteratively maintain and update a shared cooperation knowledge list based on new experiences, using it to guide more effective communication. By combining individual learning with team evolution, LIET enables comprehensive and flexible adaptation for LLM agents. Our experiments on Communicative Watch-And-Help and ThreeD-World Multi-Agent Transport benchmarks demonstrate that LIET, instantiated with both LLaMA and GPT-4o, outperforms existing baselines and exhibits strong cooperative planning abilities.
MALT: Improving Reasoning with Multi-Agent LLM Training
Enabling effective collaboration among LLMs is a crucial step toward developing autonomous systems capable of solving complex problems. While LLMs are typically used as single-model generators, where humans critique and refine their outputs, the potential for jointly-trained collaborative models remains largely unexplored. Despite promising results in multi-agent communication and debate settings, little progress has been made in training models to work together on tasks. In this paper, we present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems. Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles: a generator, verifier, and refinement model iteratively solving problems. We propose a trajectory-expansion-based synthetic data generation process and a credit assignment strategy driven by joint outcome based rewards. This enables our post-training setup to utilize both positive and negative trajectories to autonomously improve each model's specialized capabilities as part of a joint sequential system. We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively over the same baseline model. This demonstrates an early advance in multi-agent cooperative capabilities for performance on mathematical and common sense reasoning questions. More generally, our work provides a concrete direction for research around multi-agent LLM training approaches.
MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks, from generating high-quality presentation slides to even conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methods to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a brand-new POMDP called Flex-POMDP, which aligns with the LaMAS optimization in real-world applications and a universal algorithmic framework tailored specifically for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We review the evolution from RL to RFT, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a LaMAS-oriented formulation of RFT. Central to this work is a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work serves as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
Cooperative Multi-Agent Planning with Adaptive Skill Synthesis
Despite much progress in training distributed artificial intelligence (AI), building cooperative multi-agent systems with multi-agent reinforcement learning (MARL) faces challenges in sample efficiency, interpretability, and transferability. Unlike traditional learning-based methods that require extensive interaction with the environment, large language models (LLMs) demonstrate remarkable capabilities in zero-shot planning and complex reasoning. However, existing LLM-based approaches heavily rely on text-based observations and struggle with the non-Markovian nature of multi-agent interactions under partial observability. We present COMPASS, a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making. The skill library, bootstrapped from demonstrations, evolves via planner-guided tasks to enable adaptive strategies. COMPASS propagates entity information through multi-hop communication under partial observability. Evaluations on the improved StarCraft Multi-Agent Challenge (SMACv2) demonstrate COMPASS's strong performance against state-of-the-art MARL baselines across both symmetric and asymmetric scenarios. Notably, in the symmetric Protoss 5v5 task, COMPASS achieved a 57\% win rate, representing a 30 percentage point advantage over QMIX (27\%). Project page can be found at https://stellar-entremet-1720bb.netlify.app/.
IntersectionZoo: Eco-driving for Benchmarking Multi-Agent Contextual Reinforcement Learning
Despite the popularity of multi-agent reinforcement learning (RL) in simulated and two-player applications, its success in messy real-world applications has been limited. A key challenge lies in its generalizability across problem variations, a common necessity for many real-world problems. Contextual reinforcement learning (CRL) formalizes learning policies that generalize across problem variations. However, the lack of standardized benchmarks for multi-agent CRL has hindered progress in the field. Such benchmarks are desired to be based on real-world applications to naturally capture the many open challenges of real-world problems that affect generalization. To bridge this gap, we propose IntersectionZoo, a comprehensive benchmark suite for multi-agent CRL through the real-world application of cooperative eco-driving in urban road networks. The task of cooperative eco-driving is to control a fleet of vehicles to reduce fleet-level vehicular emissions. By grounding IntersectionZoo in a real-world application, we naturally capture real-world problem characteristics, such as partial observability and multiple competing objectives. IntersectionZoo is built on data-informed simulations of 16,334 signalized intersections derived from 10 major US cities, modeled in an open-source industry-grade microscopic traffic simulator. By modeling factors affecting vehicular exhaust emissions (e.g., temperature, road conditions, travel demand), IntersectionZoo provides one million data-driven traffic scenarios. Using these traffic scenarios, we benchmark popular multi-agent RL and human-like driving algorithms and demonstrate that the popular multi-agent RL algorithms struggle to generalize in CRL settings.
Social learning spontaneously emerges by searching optimal heuristics with deep reinforcement learning
How have individuals of social animals in nature evolved to learn from each other, and what would be the optimal strategy for such learning in a specific environment? Here, we address both problems by employing a deep reinforcement learning model to optimize the social learning strategies (SLSs) of agents in a cooperative game in a multi-dimensional landscape. Throughout the training for maximizing the overall payoff, we find that the agent spontaneously learns various concepts of social learning, such as copying, focusing on frequent and well-performing neighbors, self-comparison, and the importance of balancing between individual and social learning, without any explicit guidance or prior knowledge about the system. The SLS from a fully trained agent outperforms all of the traditional, baseline SLSs in terms of mean payoff. We demonstrate the superior performance of the reinforcement learning agent in various environments, including temporally changing environments and real social networks, which also verifies the adaptability of our framework to different social settings.
Off-the-Grid MARL: Datasets with Baselines for Offline Multi-Agent Reinforcement Learning
Being able to harness the power of large datasets for developing cooperative multi-agent controllers promises to unlock enormous value for real-world applications. Many important industrial systems are multi-agent in nature and are difficult to model using bespoke simulators. However, in industry, distributed processes can often be recorded during operation, and large quantities of demonstrative data stored. Offline multi-agent reinforcement learning (MARL) provides a promising paradigm for building effective decentralised controllers from such datasets. However, offline MARL is still in its infancy and therefore lacks standardised benchmark datasets and baselines typically found in more mature subfields of reinforcement learning (RL). These deficiencies make it difficult for the community to sensibly measure progress. In this work, we aim to fill this gap by releasing off-the-grid MARL (OG-MARL): a growing repository of high-quality datasets with baselines for cooperative offline MARL research. Our datasets provide settings that are characteristic of real-world systems, including complex environment dynamics, heterogeneous agents, non-stationarity, many agents, partial observability, suboptimality, sparse rewards and demonstrated coordination. For each setting, we provide a range of different dataset types (e.g. Good, Medium, Poor, and Replay) and profile the composition of experiences for each dataset. We hope that OG-MARL will serve the community as a reliable source of datasets and help drive progress, while also providing an accessible entry point for researchers new to the field.
Speaking the Language of Teamwork: LLM-Guided Credit Assignment in Multi-Agent Reinforcement Learning
Credit assignment, the process of attributing credit or blame to individual agents for their contributions to a team's success or failure, remains a fundamental challenge in multi-agent reinforcement learning (MARL), particularly in environments with sparse rewards. Commonly-used approaches such as value decomposition often lead to suboptimal policies in these settings, and designing dense reward functions that align with human intuition can be complex and labor-intensive. In this work, we propose a novel framework where a large language model (LLM) generates dense, agent-specific rewards based on a natural language description of the task and the overall team goal. By learning a potential-based reward function over multiple queries, our method reduces the impact of ranking errors while allowing the LLM to evaluate each agent's contribution to the overall task. Through extensive experiments, we demonstrate that our approach achieves faster convergence and higher policy returns compared to state-of-the-art MARL baselines.
Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.
Static Sandboxes Are Inadequate: Modeling Societal Complexity Requires Open-Ended Co-Evolution in LLM-Based Multi-Agent Simulations
What if artificial agents could not just communicate, but also evolve, adapt, and reshape their worlds in ways we cannot fully predict? With llm now powering multi-agent systems and social simulations, we are witnessing new possibilities for modeling open-ended, ever-changing environments. Yet, most current simulations remain constrained within static sandboxes, characterized by predefined tasks, limited dynamics, and rigid evaluation criteria. These limitations prevent them from capturing the complexity of real-world societies. In this paper, we argue that static, task-specific benchmarks are fundamentally inadequate and must be rethought. We critically review emerging architectures that blend llm with multi-agent dynamics, highlight key hurdles such as balancing stability and diversity, evaluating unexpected behaviors, and scaling to greater complexity, and introduce a fresh taxonomy for this rapidly evolving field. Finally, we present a research roadmap centered on open-endedness, continuous co-evolution, and the development of resilient, socially aligned AI ecosystems. We call on the community to move beyond static paradigms and help shape the next generation of adaptive, socially-aware multi-agent simulations.
The Landscape of Agentic Reinforcement Learning for LLMs: A Survey
The emergence of agentic reinforcement learning (Agentic RL) marks a paradigm shift from conventional reinforcement learning applied to large language models (LLM RL), reframing LLMs from passive sequence generators into autonomous, decision-making agents embedded in complex, dynamic worlds. This survey formalizes this conceptual shift by contrasting the degenerate single-step Markov Decision Processes (MDPs) of LLM-RL with the temporally extended, partially observable Markov decision processes (POMDPs) that define Agentic RL. Building on this foundation, we propose a comprehensive twofold taxonomy: one organized around core agentic capabilities, including planning, tool use, memory, reasoning, self-improvement, and perception, and the other around their applications across diverse task domains. Central to our thesis is that reinforcement learning serves as the critical mechanism for transforming these capabilities from static, heuristic modules into adaptive, robust agentic behavior. To support and accelerate future research, we consolidate the landscape of open-source environments, benchmarks, and frameworks into a practical compendium. By synthesizing over five hundred recent works, this survey charts the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose AI agents.
Sample Efficient Myopic Exploration Through Multitask Reinforcement Learning with Diverse Tasks
Multitask Reinforcement Learning (MTRL) approaches have gained increasing attention for its wide applications in many important Reinforcement Learning (RL) tasks. However, while recent advancements in MTRL theory have focused on the improved statistical efficiency by assuming a shared structure across tasks, exploration--a crucial aspect of RL--has been largely overlooked. This paper addresses this gap by showing that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design like epsilon-greedy that are inefficient in general can be sample-efficient for MTRL. To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL. It may also shed light on the enigmatic success of the wide applications of myopic exploration in practice. To validate the role of diversity, we conduct experiments on synthetic robotic control environments, where the diverse task set aligns with the task selection by automatic curriculum learning, which is empirically shown to improve sample-efficiency.
A Survey on the Optimization of Large Language Model-based Agents
With the rapid development of Large Language Models (LLMs), LLM-based agents have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks. However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs, which often leads to limited effectiveness or suboptimal performance in complex agent-related environments. Although LLM optimization techniques can improve model performance across many general tasks, they lack specialized optimization towards critical agent functionalities such as long-term planning, dynamic environmental interaction, and complex decision-making. Although numerous recent studies have explored various strategies to optimize LLM-based agents for complex agent tasks, a systematic review summarizing and comparing these methods from a holistic perspective is still lacking. In this survey, we provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods. We first focus on parameter-driven optimization, covering fine-tuning-based optimization, reinforcement learning-based optimization, and hybrid strategies, analyzing key aspects such as trajectory data construction, fine-tuning techniques, reward function design, and optimization algorithms. Additionally, we briefly discuss parameter-free strategies that optimize agent behavior through prompt engineering and external knowledge retrieval. Finally, we summarize the datasets and benchmarks used for evaluation and tuning, review key applications of LLM-based agents, and discuss major challenges and promising future directions. Our repository for related references is available at https://github.com/YoungDubbyDu/LLM-Agent-Optimization.
Decentralized Aerial Manipulation of a Cable-Suspended Load using Multi-Agent Reinforcement Learning
This paper presents the first decentralized method to enable real-world 6-DoF manipulation of a cable-suspended load using a team of Micro-Aerial Vehicles (MAVs). Our method leverages multi-agent reinforcement learning (MARL) to train an outer-loop control policy for each MAV. Unlike state-of-the-art controllers that utilize a centralized scheme, our policy does not require global states, inter-MAV communications, nor neighboring MAV information. Instead, agents communicate implicitly through load pose observations alone, which enables high scalability and flexibility. It also significantly reduces computing costs during inference time, enabling onboard deployment of the policy. In addition, we introduce a new action space design for the MAVs using linear acceleration and body rates. This choice, combined with a robust low-level controller, enables reliable sim-to-real transfer despite significant uncertainties caused by cable tension during dynamic 3D motion. We validate our method in various real-world experiments, including full-pose control under load model uncertainties, showing setpoint tracking performance comparable to the state-of-the-art centralized method. We also demonstrate cooperation amongst agents with heterogeneous control policies, and robustness to the complete in-flight loss of one MAV. Videos of experiments: https://autonomousrobots.nl/paper_websites/aerial-manipulation-marl
Communicating Plans, Not Percepts: Scalable Multi-Agent Coordination with Embodied World Models
Robust coordination is critical for effective decision-making in multi-agent systems, especially under partial observability. A central question in Multi-Agent Reinforcement Learning (MARL) is whether to engineer communication protocols or learn them end-to-end. We investigate this dichotomy using embodied world models. We propose and compare two communication strategies for a cooperative task-allocation problem. The first, Learned Direct Communication (LDC), learns a protocol end-to-end, with agents generating messages and actions concurrently. The second, Intention Communication, uses an engineered inductive bias: a compact, learned world model, the Imagined Trajectory Generation Module (ITGM), to simulate future states. Agents then communicate a summary of this plan. We evaluate these approaches on goal-directed interaction in a grid world, a canonical abstraction for embodied AI problems. Our experiments reveal that while emergent communication is viable in simple settings, the engineered, world model-based approach shows superior performance, sample efficiency, and scalability as complexity increases. These findings advocate for integrating structured, predictive models into MARL agents to enable active, goal-driven coordination.
GPUDrive: Data-driven, multi-agent driving simulation at 1 million FPS
Multi-agent learning algorithms have been successful at generating superhuman planning in a wide variety of games but have had little impact on the design of deployed multi-agent planners. A key bottleneck in applying these techniques to multi-agent planning is that they require billions of steps of experience. To enable the study of multi-agent planning at this scale, we present GPUDrive, a GPU-accelerated, multi-agent simulator built on top of the Madrona Game Engine that can generate over a million steps of experience per second. Observation, reward, and dynamics functions are written directly in C++, allowing users to define complex, heterogeneous agent behaviors that are lowered to high-performance CUDA. We show that using GPUDrive we are able to effectively train reinforcement learning agents over many scenes in the Waymo Motion dataset, yielding highly effective goal-reaching agents in minutes for individual scenes and generally capable agents in a few hours. We ship these trained agents as part of the code base at https://github.com/Emerge-Lab/gpudrive.
Reinforcement Learning for Machine Learning Engineering Agents
Existing agents for solving tasks such as ML engineering rely on prompting powerful language models. As a result, these agents do not improve with more experience. In this paper, we show that agents backed by weaker models that improve via reinforcement learning (RL) can outperform agents backed by much larger, but static models. We identify two major challenges with RL in this setting. First, actions can take a variable amount of time (e.g., executing code for different solutions), which leads to asynchronous policy gradient updates that favor faster but suboptimal solutions. To tackle variable-duration actions, we propose duration-aware gradient updates in a distributed asynchronous RL framework to amplify high-cost but high-reward actions. Second, using only test split performance as a reward provides limited feedback. A program that is nearly correct is treated the same as one that fails entirely. To address this, we propose environment instrumentation to offer partial credit, distinguishing almost-correct programs from those that fail early (e.g., during data loading). Environment instrumentation uses a separate static language model to insert print statement to an existing program to log the agent's experimental progress, from which partial credit can be extracted as reward signals for learning. Our experimental results on MLEBench suggest that performing gradient updates on a much smaller model (Qwen2.5-3B) trained with RL outperforms prompting a much larger model (Claude-3.5-Sonnet) with agent scaffolds, by an average of 22% across 12 Kaggle tasks.
PyTAG: Tabletop Games for Multi-Agent Reinforcement Learning
Modern Tabletop Games present various interesting challenges for Multi-agent Reinforcement Learning. In this paper, we introduce PyTAG, a new framework that supports interacting with a large collection of games implemented in the Tabletop Games framework. In this work we highlight the challenges tabletop games provide, from a game-playing agent perspective, along with the opportunities they provide for future research. Additionally, we highlight the technical challenges that involve training Reinforcement Learning agents on these games. To explore the Multi-agent setting provided by PyTAG we train the popular Proximal Policy Optimisation Reinforcement Learning algorithm using self-play on a subset of games and evaluate the trained policies against some simple agents and Monte-Carlo Tree Search implemented in the Tabletop Games framework.
Multi-Agent Tool-Integrated Policy Optimization
Large language models (LLMs) increasingly rely on multi-turn tool-integrated planning for knowledge-intensive and complex reasoning tasks. Existing implementations typically rely on a single agent, but they suffer from limited context length and noisy tool responses. A natural solution is to adopt a multi-agent framework with planner- and worker-agents to manage context. However, no existing methods support effective reinforcement learning post-training of tool-integrated multi-agent frameworks. To address this gap, we propose Multi-Agent Tool-Integrated Policy Optimization (MATPO), which enables distinct roles (planner and worker) to be trained within a single LLM instance using role-specific prompts via reinforcement learning. MATPO is derived from a principled credit assignment mechanism across planner and worker rollouts. This design eliminates the need to deploy multiple LLMs, which would be memory-intensive, while preserving the benefits of specialization. Experiments on GAIA-text, WebWalkerQA, and FRAMES show that MATPO consistently outperforms single-agent baselines by an average of 18.38% relative improvement in performance and exhibits greater robustness to noisy tool outputs. Our findings highlight the effectiveness of unifying multiple agent roles within a single LLM and provide practical insights for stable and efficient multi-agent RL training.
Multi-Agent MDP Homomorphic Networks
This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information, yet is able to share experience between global symmetries in the joint state-action space of cooperative multi-agent systems. In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations. For example, consider a group of agents navigating: rotating the state globally results in a permutation of the optimal joint policy. Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting, because such approaches rely on the global symmetry in the full state-action spaces, and these can result in correspondences across agents. To encode such symmetries while still allowing distributed execution we propose a factorization that decomposes global symmetries into local transformations. Our proposed factorization allows for distributing the computation that enforces global symmetries over local agents and local interactions. We introduce a multi-agent equivariant policy network based on this factorization. We show empirically on symmetric multi-agent problems that globally symmetric distributable policies improve data efficiency compared to non-equivariant baselines.
Attention-Guided Contrastive Role Representations for Multi-Agent Reinforcement Learning
Real-world multi-agent tasks usually involve dynamic team composition with the emergence of roles, which should also be a key to efficient cooperation in multi-agent reinforcement learning (MARL). Drawing inspiration from the correlation between roles and agent's behavior patterns, we propose a novel framework of Attention-guided COntrastive Role representation learning for MARL (ACORM) to promote behavior heterogeneity, knowledge transfer, and skillful coordination across agents. First, we introduce mutual information maximization to formalize role representation learning, derive a contrastive learning objective, and concisely approximate the distribution of negative pairs. Second, we leverage an attention mechanism to prompt the global state to attend to learned role representations in value decomposition, implicitly guiding agent coordination in a skillful role space to yield more expressive credit assignment. Experiments and visualizations on challenging StarCraft II micromanagement tasks demonstrate the state-of-the-art performance of our method and its advantages over existing approaches. Our code is available at https://github.com/NJU-RL/ACORM}{https://github.com/NJU-RL/ACORM.
ConcaveQ: Non-Monotonic Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement Learning
Value function factorization has achieved great success in multi-agent reinforcement learning by optimizing joint action-value functions through the maximization of factorized per-agent utilities. To ensure Individual-Global-Maximum property, existing works often focus on value factorization using monotonic functions, which are known to result in restricted representation expressiveness. In this paper, we analyze the limitations of monotonic factorization and present ConcaveQ, a novel non-monotonic value function factorization approach that goes beyond monotonic mixing functions and employs neural network representations of concave mixing functions. Leveraging the concave property in factorization, an iterative action selection scheme is developed to obtain optimal joint actions during training. It is used to update agents' local policy networks, enabling fully decentralized execution. The effectiveness of the proposed ConcaveQ is validated across scenarios involving multi-agent predator-prey environment and StarCraft II micromanagement tasks. Empirical results exhibit significant improvement of ConcaveQ over state-of-the-art multi-agent reinforcement learning approaches.
A Game-Theoretic Framework for Managing Risk in Multi-Agent Systems
In order for agents in multi-agent systems (MAS) to be safe, they need to take into account the risks posed by the actions of other agents. However, the dominant paradigm in game theory (GT) assumes that agents are not affected by risk from other agents and only strive to maximise their expected utility. For example, in hybrid human-AI driving systems, it is necessary to limit large deviations in reward resulting from car crashes. Although there are equilibrium concepts in game theory that take into account risk aversion, they either assume that agents are risk-neutral with respect to the uncertainty caused by the actions of other agents, or they are not guaranteed to exist. We introduce a new GT-based Risk-Averse Equilibrium (RAE) that always produces a solution that minimises the potential variance in reward accounting for the strategy of other agents. Theoretically and empirically, we show RAE shares many properties with a Nash Equilibrium (NE), establishing convergence properties and generalising to risk-dominant NE in certain cases. To tackle large-scale problems, we extend RAE to the PSRO multi-agent reinforcement learning (MARL) framework. We empirically demonstrate the minimum reward variance benefits of RAE in matrix games with high-risk outcomes. Results on MARL experiments show RAE generalises to risk-dominant NE in a trust dilemma game and that it reduces instances of crashing by 7x in an autonomous driving setting versus the best performing baseline.
Instigating Cooperation among LLM Agents Using Adaptive Information Modulation
This paper introduces a novel framework combining LLM agents as proxies for human strategic behavior with reinforcement learning (RL) to engage these agents in evolving strategic interactions within team environments. Our approach extends traditional agent-based simulations by using strategic LLM agents (SLA) and introducing dynamic and adaptive governance through a pro-social promoting RL agent (PPA) that modulates information access across agents in a network, optimizing social welfare and promoting pro-social behavior. Through validation in iterative games, including the prisoner dilemma, we demonstrate that SLA agents exhibit nuanced strategic adaptations. The PPA agent effectively learns to adjust information transparency, resulting in enhanced cooperation rates. This framework offers significant insights into AI-mediated social dynamics, contributing to the deployment of AI in real-world team settings.
A Minimaximalist Approach to Reinforcement Learning from Human Feedback
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a rater or preference model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while maintaining robustness to the intransitive and stochastic preferences that frequently occur in practice when aggregating human judgments.
Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration
Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at https://read-llm.github.io/.
Multi-User Reinforcement Learning with Low Rank Rewards
In this work, we consider the problem of collaborative multi-user reinforcement learning. In this setting there are multiple users with the same state-action space and transition probabilities but with different rewards. Under the assumption that the reward matrix of the N users has a low-rank structure -- a standard and practically successful assumption in the offline collaborative filtering setting -- the question is can we design algorithms with significantly lower sample complexity compared to the ones that learn the MDP individually for each user. Our main contribution is an algorithm which explores rewards collaboratively with N user-specific MDPs and can learn rewards efficiently in two key settings: tabular MDPs and linear MDPs. When N is large and the rank is constant, the sample complexity per MDP depends logarithmically over the size of the state-space, which represents an exponential reduction (in the state-space size) when compared to the standard ``non-collaborative'' algorithms.
TAG: A Decentralized Framework for Multi-Agent Hierarchical Reinforcement Learning
Hierarchical organization is fundamental to biological systems and human societies, yet artificial intelligence systems often rely on monolithic architectures that limit adaptability and scalability. Current hierarchical reinforcement learning (HRL) approaches typically restrict hierarchies to two levels or require centralized training, which limits their practical applicability. We introduce TAME Agent Framework (TAG), a framework for constructing fully decentralized hierarchical multi-agent systems.TAG enables hierarchies of arbitrary depth through a novel LevelEnv concept, which abstracts each hierarchy level as the environment for the agents above it. This approach standardizes information flow between levels while preserving loose coupling, allowing for seamless integration of diverse agent types. We demonstrate the effectiveness of TAG by implementing hierarchical architectures that combine different RL agents across multiple levels, achieving improved performance over classical multi-agent RL baselines on standard benchmarks. Our results show that decentralized hierarchical organization enhances both learning speed and final performance, positioning TAG as a promising direction for scalable multi-agent systems.
Multi-Agent Actor-Critic with Harmonic Annealing Pruning for Dynamic Spectrum Access Systems
Multi-Agent Deep Reinforcement Learning (MADRL) has emerged as a powerful tool for optimizing decentralized decision-making systems in complex settings, such as Dynamic Spectrum Access (DSA). However, deploying deep learning models on resource-constrained edge devices remains challenging due to their high computational cost. To address this challenge, in this paper, we present a novel sparse recurrent MARL framework integrating gradual neural network pruning into the independent actor global critic paradigm. Additionally, we introduce a harmonic annealing sparsity scheduler, which achieves comparable, and in certain cases superior, performance to standard linear and polynomial pruning schedulers at large sparsities. Our experimental investigation demonstrates that the proposed DSA framework can discover superior policies, under diverse training conditions, outperforming conventional DSA, MADRL baselines, and state-of-the-art pruning techniques.
Stronger Together: On-Policy Reinforcement Learning for Collaborative LLMs
Multi-agent systems (MAS) and reinforcement learning (RL) are widely used to enhance the agentic capabilities of large language models (LLMs). MAS improves task performance through role-based orchestration, while RL uses environmental rewards to learn stronger policies, such as GRPO-style optimization. However, applying on-policy RL to MAS remains underexplored and presents unique challenges. Algorithmically, standard GRPO grouping assumptions break down because prompts vary by role and by turn. System-wise, the training stack must support MAS-workflow rollouts and on-policy updates for both single-policy and multi-policy models. We propose AT-GRPO, which includes (i) an agent- and turn-wise grouped RL algorithm tailored to MAS and (ii) a training system that supports both single- and multi-policy regimes. Across game, planning, coding, and math tasks, AT-GRPO delivers substantial gains. On long-horizon planning, it increases accuracy from a 14.0 to 47.0 percent single-agent RL baseline to 96.0 to 99.5 percent. It also improves reasoning performance, with average gains of 3.87 to 7.62 percent on coding tasks and 9.0 to 17.93 percent on math. Code and environments are available at: https://github.com/pettingllms-ai/PettingLLMs.
MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.
AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs
Large-language models (LLMs) have demonstrated powerful problem-solving capabilities, in particular when organized in multi-agent systems. However, the advent of such systems also raises several questions on the ability of a complex network of agents to effectively self-organize and collaborate. While measuring performance on standard reasoning benchmarks indicates how well multi-agent systems can solve reasoning tasks, it is unclear whether these systems are able to leverage their topology effectively. Here, we propose AgentsNet, a new benchmark for multi-agent reasoning. By drawing inspiration from classical problems in distributed systems and graph theory, AgentsNet measures the ability of multi-agent systems to collaboratively form strategies for problem-solving, self-organization, and effective communication given a network topology. We evaluate a variety of baseline methods on AgentsNet including homogeneous networks of agents which first have to agree on basic protocols for organization and communication. We find that some frontier LLMs are already demonstrating strong performance for small networks but begin to fall off once the size of the network scales. While existing multi-agent benchmarks cover at most 2-5 agents, AgentsNet is practically unlimited in size and can scale with new generations of LLMs. As such, we also probe frontier models in a setup with up to 100 agents.
Scaling Large-Language-Model-based Multi-Agent Collaboration
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration, demonstrating that collective intelligence can surpass the capabilities of each individual. Inspired by the neural scaling law, which posits that increasing neurons leads to emergent abilities, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration. Technically, we propose multi-agent collaboration networks (MacNet), which utilize directed acyclic graphs to organize agents and streamline their interactive reasoning via topological ordering, with solutions derived from their dialogues. Extensive experiments show that MacNet consistently outperforms baseline models, enabling effective agent collaboration across various network topologies and supporting cooperation among more than a thousand agents. Notably, we observed a small-world collaboration phenomenon, where topologies resembling small-world properties achieved superior performance. Additionally, we identified a collaborative scaling law, indicating that normalized solution quality follows a logistic growth pattern as scaling agents, with collaborative emergence occurring much earlier than previously observed instances of neural emergence. The code and data will be available at https://github.com/OpenBMB/ChatDev.
LLM-Mediated Guidance of MARL Systems
In complex multi-agent environments, achieving efficient learning and desirable behaviours is a significant challenge for Multi-Agent Reinforcement Learning (MARL) systems. This work explores the potential of combining MARL with Large Language Model (LLM)-mediated interventions to guide agents toward more desirable behaviours. Specifically, we investigate how LLMs can be used to interpret and facilitate interventions that shape the learning trajectories of multiple agents. We experimented with two types of interventions, referred to as controllers: a Natural Language (NL) Controller and a Rule-Based (RB) Controller. The NL Controller, which uses an LLM to simulate human-like interventions, showed a stronger impact than the RB Controller. Our findings indicate that agents particularly benefit from early interventions, leading to more efficient training and higher performance. Both intervention types outperform the baseline without interventions, highlighting the potential of LLM-mediated guidance to accelerate training and enhance MARL performance in challenging environments.
Counterfactual Conservative Q Learning for Offline Multi-agent Reinforcement Learning
Offline multi-agent reinforcement learning is challenging due to the coupling effect of both distribution shift issue common in offline setting and the high dimension issue common in multi-agent setting, making the action out-of-distribution (OOD) and value overestimation phenomenon excessively severe. Tomitigate this problem, we propose a novel multi-agent offline RL algorithm, named CounterFactual Conservative Q-Learning (CFCQL) to conduct conservative value estimation. Rather than regarding all the agents as a high dimensional single one and directly applying single agent methods to it, CFCQL calculates conservative regularization for each agent separately in a counterfactual way and then linearly combines them to realize an overall conservative value estimation. We prove that it still enjoys the underestimation property and the performance guarantee as those single agent conservative methods do, but the induced regularization and safe policy improvement bound are independent of the agent number, which is therefore theoretically superior to the direct treatment referred to above, especially when the agent number is large. We further conduct experiments on four environments including both discrete and continuous action settings on both existing and our man-made datasets, demonstrating that CFCQL outperforms existing methods on most datasets and even with a remarkable margin on some of them.
Context-Aware Sparse Deep Coordination Graphs
Learning sparse coordination graphs adaptive to the coordination dynamics among agents is a long-standing problem in cooperative multi-agent learning. This paper studies this problem and proposes a novel method using the variance of payoff functions to construct context-aware sparse coordination topologies. We theoretically consolidate our method by proving that the smaller the variance of payoff functions is, the less likely action selection will change after removing the corresponding edge. Moreover, we propose to learn action representations to effectively reduce the influence of payoff functions' estimation errors on graph construction. To empirically evaluate our method, we present the Multi-Agent COordination (MACO) benchmark by collecting classic coordination problems in the literature, increasing their difficulty, and classifying them into different types. We carry out a case study and experiments on the MACO and StarCraft II micromanagement benchmark to demonstrate the dynamics of sparse graph learning, the influence of graph sparseness, and the learning performance of our method. (The MACO benchmark and codes are publicly available at https://github.com/TonghanWang/CASEC-MACO-benchmark.)
How to Train a Leader: Hierarchical Reasoning in Multi-Agent LLMs
Large Language Models (LLMs) have achieved strong performance on a wide range of complex reasoning tasks, yet further gains are often possible by leveraging the complementary strengths of multiple models. While multi-agent frameworks can improve solution quality by leveraging multiple LLMs, existing methods are often computationally expensive, both at training and inference time. In this work, we introduce a hierarchical multi-agent framework that addresses these challenges by training only a single leader LLM to coordinate a team of untrained peer agents. To this end, we propose Multi-agent guided Leader Policy Optimization (MLPO), a novel approach which trains the leader to evaluate and synthesize agent responses without auxiliary value networks or explicit agent feedback. Leaders trained with MLPO exhibit improved performance not only when interacting with the agent team at inference time, but also enjoy improved performance when deployed in single-agent settings without the team. Empirical results on Big-Bench Hard (BBH), MATH, and MMLU demonstrate that our framework achieves substantial performance improvements over both single-agent and multi-agent baselines. Our results highlight the effectiveness and efficiency of training a single, flexible leader for collaborative reasoning in multi-agent LLM systems.
MultiPrompter: Cooperative Prompt Optimization with Multi-Agent Reinforcement Learning
Recently, there has been an increasing interest in automated prompt optimization based on reinforcement learning (RL). This approach offers important advantages, such as generating interpretable prompts and being compatible with black-box foundation models. However, the substantial prompt space size poses challenges for RL-based methods, often leading to suboptimal policy convergence. This paper introduces MultiPrompter, a new framework that views prompt optimization as a cooperative game between prompters which take turns composing a prompt together. Our cooperative prompt optimization effectively reduces the problem size and helps prompters learn optimal prompts. We test our method on the text-to-image task and show its ability to generate higher-quality images than baselines.
MasHost Builds It All: Autonomous Multi-Agent System Directed by Reinforcement Learning
Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently emerged as a powerful paradigm for tackling complex real-world tasks. However, existing Mas construction methods typically rely on manually crafted interaction mechanisms or heuristic rules, introducing human biases and constraining the autonomous ability. Even with recent advances in adaptive Mas construction, existing systems largely remain within the paradigm of semi-autonomous patterns. In this work, we propose MasHost, a Reinforcement Learning (RL)-based framework for autonomous and query-adaptive Mas design. By formulating Mas construction as a graph search problem, our proposed MasHost jointly samples agent roles and their interactions through a unified probabilistic sampling mechanism. Beyond the accuracy and efficiency objectives pursued in prior works, we introduce component rationality as an additional and novel design principle in Mas. To achieve this multi-objective optimization, we propose Hierarchical Relative Policy Optimization (HRPO), a novel RL strategy that collaboratively integrates group-relative advantages and action-wise rewards. To our knowledge, our proposed MasHost is the first RL-driven framework for autonomous Mas graph construction. Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms most competitive baselines, validating its effectiveness, efficiency, and structure rationality.
CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards
Self-evolution is a central research topic in enabling large language model (LLM)-based agents to continually improve their capabilities after pretraining. Recent research has witnessed a transition from reinforcement learning (RL)-free to RL-based methods. Current RL-based methods either rely on dense external reward signals or extract intrinsic reward signals from LLMs themselves. However, these approaches diverge from the self-evolution mechanisms observed in human intelligence, where individuals learn and improve through mutual discussion and collaboration. In this work, we introduce Co-Evolving Multi-Agent Systems (CoMAS), a novel framework that enables agents to improve autonomously by learning from inter-agent interactions without external supervision. CoMAS generates intrinsic rewards from rich discussion dynamics, employs an LLM-as-a-judge mechanism to formulate these rewards, and optimizes each agent's policy through RL, thereby enabling decentralized and scalable co-evolution. Experimental results demonstrate that CoMAS consistently outperforms untrained agents and achieves state-of-the-art performance across most evaluation settings. Ablation studies confirm the necessity of interaction-based reward signals and reveal promising scalability as the number and diversity of agents increase. These findings establish CoMAS as a novel and effective paradigm for self-evolution in LLM-based agents.
Learning Generalizable Skills from Offline Multi-Task Data for Multi-Agent Cooperation
Learning cooperative multi-agent policy from offline multi-task data that can generalize to unseen tasks with varying numbers of agents and targets is an attractive problem in many scenarios. Although aggregating general behavior patterns among multiple tasks as skills to improve policy transfer is a promising approach, two primary challenges hinder the further advancement of skill learning in offline multi-task MARL. Firstly, extracting general cooperative behaviors from various action sequences as common skills lacks bringing cooperative temporal knowledge into them. Secondly, existing works only involve common skills and can not adaptively choose independent knowledge as task-specific skills in each task for fine-grained action execution. To tackle these challenges, we propose Hierarchical and Separate Skill Discovery (HiSSD), a novel approach for generalizable offline multi-task MARL through skill learning. HiSSD leverages a hierarchical framework that jointly learns common and task-specific skills. The common skills learn cooperative temporal knowledge and enable in-sample exploitation for offline multi-task MARL. The task-specific skills represent the priors of each task and achieve a task-guided fine-grained action execution. To verify the advancement of our method, we conduct experiments on multi-agent MuJoCo and SMAC benchmarks. After training the policy using HiSSD on offline multi-task data, the empirical results show that HiSSD assigns effective cooperative behaviors and obtains superior performance in unseen tasks.
Multi-Agent Design: Optimizing Agents with Better Prompts and Topologies
Large language models, employed as multiple agents that interact and collaborate with each other, have excelled at solving complex tasks. The agents are programmed with prompts that declare their functionality, along with the topologies that orchestrate interactions across agents. Designing prompts and topologies for multi-agent systems (MAS) is inherently complex. To automate the entire design process, we first conduct an in-depth analysis of the design space aiming to understand the factors behind building effective MAS. We reveal that prompts together with topologies play critical roles in enabling more effective MAS design. Based on the insights, we propose Multi-Agent System Search (MASS), a MAS optimization framework that efficiently exploits the complex MAS design space by interleaving its optimization stages, from local to global, from prompts to topologies, over three stages: 1) block-level (local) prompt optimization; 2) workflow topology optimization; 3) workflow-level (global) prompt optimization, where each stage is conditioned on the iteratively optimized prompts/topologies from former stages. We show that MASS-optimized multi-agent systems outperform a spectrum of existing alternatives by a substantial margin. Based on the MASS-found systems, we finally propose design principles behind building effective multi-agent systems.
Multi-Advisor Reinforcement Learning
We consider tackling a single-agent RL problem by distributing it to n learners. These learners, called advisors, endeavour to solve the problem from a different focus. Their advice, taking the form of action values, is then communicated to an aggregator, which is in control of the system. We show that the local planning method for the advisors is critical and that none of the ones found in the literature is flawless: the egocentric planning overestimates values of states where the other advisors disagree, and the agnostic planning is inefficient around danger zones. We introduce a novel approach called empathic and discuss its theoretical aspects. We empirically examine and validate our theoretical findings on a fruit collection task.
Coevolving with the Other You: Fine-Tuning LLM with Sequential Cooperative Multi-Agent Reinforcement Learning
Reinforcement learning (RL) has emerged as a pivotal technique for fine-tuning large language models (LLMs) on specific tasks. However, prevailing RL fine-tuning methods predominantly rely on PPO and its variants. Though these algorithms are effective in general RL settings, they often exhibit suboptimal performance and vulnerability to distribution collapse when applied to the fine-tuning of LLMs. In this paper, we propose CORY, extending the RL fine-tuning of LLMs to a sequential cooperative multi-agent reinforcement learning framework, to leverage the inherent coevolution and emergent capabilities of multi-agent systems. In CORY, the LLM to be fine-tuned is initially duplicated into two autonomous agents: a pioneer and an observer. The pioneer generates responses based on queries, while the observer generates responses using both the queries and the pioneer's responses. The two agents are trained together. During training, the agents exchange roles periodically, fostering cooperation and coevolution between them. Experiments evaluate CORY's performance by fine-tuning GPT-2 and Llama-2 under subjective and objective reward functions on the IMDB Review and GSM8K datasets, respectively. Results show that CORY outperforms PPO in terms of policy optimality, resistance to distribution collapse, and training robustness, thereby underscoring its potential as a superior methodology for refining LLMs in real-world applications.
SiriuS: Self-improving Multi-agent Systems via Bootstrapped Reasoning
Multi-agent AI systems powered by large language models (LLMs) are increasingly applied to solve complex tasks. However, these systems often rely on fragile, manually designed prompts and heuristics, making optimization difficult. A key challenge in optimizing multi-agent systems is acquiring suitable training data for specialized agents. We introduce SiriuS, a self-improving, reasoning-driven optimization framework for multi-agent systems. Central to our approach is the construction of an experience library: a repository of high-quality reasoning trajectories. The library is built by retaining reasoning steps that lead to successful outcomes, providing a robust training set for optimizing multi-agent system. Additionally, we introduce a library augmentation procedure that refines unsuccessful trajectories, further enriching the library. SiriuS boosts performance by 2.86\% to 21.88\% on reasoning and biomedical QA and enhances agent negotiation in competitive settings. Our results show that SiriuS enhances multi-agent performance while generating reusable data for self-correction and self-play enhancement in the future.
Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.
Iterated Q-Network: Beyond One-Step Bellman Updates in Deep Reinforcement Learning
The vast majority of Reinforcement Learning methods is largely impacted by the computation effort and data requirements needed to obtain effective estimates of action-value functions, which in turn determine the quality of the overall performance and the sample-efficiency of the learning procedure. Typically, action-value functions are estimated through an iterative scheme that alternates the application of an empirical approximation of the Bellman operator and a subsequent projection step onto a considered function space. It has been observed that this scheme can be potentially generalized to carry out multiple iterations of the Bellman operator at once, benefiting the underlying learning algorithm. However, till now, it has been challenging to effectively implement this idea, especially in high-dimensional problems. In this paper, we introduce iterated Q-Network (i-QN), a novel principled approach that enables multiple consecutive Bellman updates by learning a tailored sequence of action-value functions where each serves as the target for the next. We show that i-QN is theoretically grounded and that it can be seamlessly used in value-based and actor-critic methods. We empirically demonstrate the advantages of i-QN in Atari 2600 games and MuJoCo continuous control problems.
Achieving Sample and Computational Efficient Reinforcement Learning by Action Space Reduction via Grouping
Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a surprising and counter-intuitive result: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.
Agents of Change: Self-Evolving LLM Agents for Strategic Planning
Recent advances in LLMs have enabled their use as autonomous agents across a range of tasks, yet they continue to struggle with formulating and adhering to coherent long-term strategies. In this paper, we investigate whether LLM agents can self-improve when placed in environments that explicitly challenge their strategic planning abilities. Using the board game Settlers of Catan, accessed through the open-source Catanatron framework, we benchmark a progression of LLM-based agents, from a simple game-playing agent to systems capable of autonomously rewriting their own prompts and their player agent's code. We introduce a multi-agent architecture in which specialized roles (Analyzer, Researcher, Coder, and Player) collaborate to iteratively analyze gameplay, research new strategies, and modify the agent's logic or prompt. By comparing manually crafted agents to those evolved entirely by LLMs, we evaluate how effectively these systems can diagnose failure and adapt over time. Our results show that self-evolving agents, particularly when powered by models like Claude 3.7 and GPT-4o, outperform static baselines by autonomously adopting their strategies, passing along sample behavior to game-playing agents, and demonstrating adaptive reasoning over multiple iterations.
TD-MPC2: Scalable, Robust World Models for Continuous Control
TD-MPC is a model-based reinforcement learning (RL) algorithm that performs local trajectory optimization in the latent space of a learned implicit (decoder-free) world model. In this work, we present TD-MPC2: a series of improvements upon the TD-MPC algorithm. We demonstrate that TD-MPC2 improves significantly over baselines across 104 online RL tasks spanning 4 diverse task domains, achieving consistently strong results with a single set of hyperparameters. We further show that agent capabilities increase with model and data size, and successfully train a single 317M parameter agent to perform 80 tasks across multiple task domains, embodiments, and action spaces. We conclude with an account of lessons, opportunities, and risks associated with large TD-MPC2 agents. Explore videos, models, data, code, and more at https://nicklashansen.github.io/td-mpc2
Neural MMO: A Massively Multiagent Game Environment for Training and Evaluating Intelligent Agents
The emergence of complex life on Earth is often attributed to the arms race that ensued from a huge number of organisms all competing for finite resources. We present an artificial intelligence research environment, inspired by the human game genre of MMORPGs (Massively Multiplayer Online Role-Playing Games, a.k.a. MMOs), that aims to simulate this setting in microcosm. As with MMORPGs and the real world alike, our environment is persistent and supports a large and variable number of agents. Our environment is well suited to the study of large-scale multiagent interaction: it requires that agents learn robust combat and navigation policies in the presence of large populations attempting to do the same. Baseline experiments reveal that population size magnifies and incentivizes the development of skillful behaviors and results in agents that outcompete agents trained in smaller populations. We further show that the policies of agents with unshared weights naturally diverge to fill different niches in order to avoid competition.
Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning
We apply multi-agent deep reinforcement learning (RL) to train end-to-end robot soccer policies with fully onboard computation and sensing via egocentric RGB vision. This setting reflects many challenges of real-world robotics, including active perception, agile full-body control, and long-horizon planning in a dynamic, partially-observable, multi-agent domain. We rely on large-scale, simulation-based data generation to obtain complex behaviors from egocentric vision which can be successfully transferred to physical robots using low-cost sensors. To achieve adequate visual realism, our simulation combines rigid-body physics with learned, realistic rendering via multiple Neural Radiance Fields (NeRFs). We combine teacher-based multi-agent RL and cross-experiment data reuse to enable the discovery of sophisticated soccer strategies. We analyze active-perception behaviors including object tracking and ball seeking that emerge when simply optimizing perception-agnostic soccer play. The agents display equivalent levels of performance and agility as policies with access to privileged, ground-truth state. To our knowledge, this paper constitutes a first demonstration of end-to-end training for multi-agent robot soccer, mapping raw pixel observations to joint-level actions, that can be deployed in the real world. Videos of the game-play and analyses can be seen on our website https://sites.google.com/view/vision-soccer .
MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
Multi-agent pathfinding (MAPF) is a challenging computational problem that typically requires to find collision-free paths for multiple agents in a shared environment. Solving MAPF optimally is NP-hard, yet efficient solutions are critical for numerous applications, including automated warehouses and transportation systems. Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning. Following current trends in machine learning, we have created a foundation model for the MAPF problems called MAPF-GPT. Using imitation learning, we have trained a policy on a set of pre-collected sub-optimal expert trajectories that can generate actions in conditions of partial observability without additional heuristics, reward functions, or communication with other agents. The resulting MAPF-GPT model demonstrates zero-shot learning abilities when solving the MAPF problem instances that were not present in the training dataset. We show that MAPF-GPT notably outperforms the current best-performing learnable-MAPF solvers on a diverse range of problem instances and is efficient in terms of computation (in the inference mode).
Language-Guided Multi-Agent Learning in Simulations: A Unified Framework and Evaluation
This paper introduces LLM-MARL, a unified framework that incorporates large language models (LLMs) into multi-agent reinforcement learning (MARL) to enhance coordination, communication, and generalization in simulated game environments. The framework features three modular components of Coordinator, Communicator, and Memory, which dynamically generate subgoals, facilitate symbolic inter-agent messaging, and support episodic recall. Training combines PPO with a language-conditioned loss and LLM query gating. LLM-MARL is evaluated in Google Research Football, MAgent Battle, and StarCraft II. Results show consistent improvements over MAPPO and QMIX in win rate, coordination score, and zero-shot generalization. Ablation studies demonstrate that subgoal generation and language-based messaging each contribute significantly to performance gains. Qualitative analysis reveals emergent behaviors such as role specialization and communication-driven tactics. By bridging language modeling and policy learning, this work contributes to the design of intelligent, cooperative agents in interactive simulations. It offers a path forward for leveraging LLMs in multi-agent systems used for training, games, and human-AI collaboration.
CRAFT-GUI: Curriculum-Reinforced Agent For GUI Tasks
As autonomous agents become adept at understanding and interacting with graphical user interface (GUI) environments, a new era of automated task execution is emerging. Recent studies have demonstrated that Reinforcement Learning (RL) can effectively enhance agents' performance in dynamic interactive GUI environments. However, these methods face two key limitations: (1) they overlook the significant variation in difficulty across different GUI tasks by treating the entire training data as a uniform set, which hampers the agent's ability to adapt its learning process; and (2) most approaches collapse task-specific nuances into a single, coarse reward, leaving the agent with a uniform signal that yields inefficient policy updates. To address these limitations, we propose CRAFT-GUI, a curriculum learning framework based on Group Relative Policy Optimization (GRPO) that explicitly accounts for the varying difficulty across trajectories. To enable more fine-grained policy optimization, we design a reward function that combines simple rule-based signals with model-judged evaluation, providing richer and more nuanced feedback during training. Experimental results demonstrate that our method achieves significant improvements over previous state-of-the-art approaches, outperforming them by 5.6% on public benchmarks Android Control and 10.3% on our internal online benchmarks, respectively. These findings empirically validate the effectiveness of integrating reinforcement learning with curriculum learning in GUI interaction tasks.
RODE: Learning Roles to Decompose Multi-Agent Tasks
Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles. However, it is largely unclear how to efficiently discover such a set of roles. To solve this problem, we propose to first decompose joint action spaces into restricted role action spaces by clustering actions according to their effects on the environment and other agents. Learning a role selector based on action effects makes role discovery much easier because it forms a bi-level learning hierarchy -- the role selector searches in a smaller role space and at a lower temporal resolution, while role policies learn in significantly reduced primitive action-observation spaces. We further integrate information about action effects into the role policies to boost learning efficiency and policy generalization. By virtue of these advances, our method (1) outperforms the current state-of-the-art MARL algorithms on 10 of the 14 scenarios that comprise the challenging StarCraft II micromanagement benchmark and (2) achieves rapid transfer to new environments with three times the number of agents. Demonstrative videos are available at https://sites.google.com/view/rode-marl .
Free Agent in Agent-Based Mixture-of-Experts Generative AI Framework
Multi-agent systems commonly distribute tasks among specialized, autonomous agents, yet they often lack mechanisms to replace or reassign underperforming agents in real time. Inspired by the free-agency model of Major League Baseball, the Reinforcement Learning Free Agent (RLFA) algorithm introduces a reward-based mechanism to detect and remove agents exhibiting persistent underperformance and seamlessly insert more capable ones. Each agent internally uses a mixture-of-experts (MoE) approach, delegating incoming tasks to specialized sub-models under the guidance of a gating function. A primary use case is fraud detection, where RLFA promptly swaps out an agent whose detection accuracy dips below a preset threshold. A new agent is tested in a probationary mode, and upon demonstrating superior performance, fully replaces the underperformer. This dynamic, free-agency cycle ensures sustained accuracy, quicker adaptation to emerging threats, and minimal disruption to ongoing operations. By continually refreshing its roster of agents, the system fosters ongoing improvements and more resilient collaboration in multi-agent Generative AI environments.
Using Offline Data to Speed-up Reinforcement Learning in Procedurally Generated Environments
One of the key challenges of Reinforcement Learning (RL) is the ability of agents to generalise their learned policy to unseen settings. Moreover, training RL agents requires large numbers of interactions with the environment. Motivated by the recent success of Offline RL and Imitation Learning (IL), we conduct a study to investigate whether agents can leverage offline data in the form of trajectories to improve the sample-efficiency in procedurally generated environments. We consider two settings of using IL from offline data for RL: (1) pre-training a policy before online RL training and (2) concurrently training a policy with online RL and IL from offline data. We analyse the impact of the quality (optimality of trajectories) and diversity (number of trajectories and covered level) of available offline trajectories on the effectiveness of both approaches. Across four well-known sparse reward tasks in the MiniGrid environment, we find that using IL for pre-training and concurrently during online RL training both consistently improve the sample-efficiency while converging to optimal policies. Furthermore, we show that pre-training a policy from as few as two trajectories can make the difference between learning an optimal policy at the end of online training and not learning at all. Our findings motivate the widespread adoption of IL for pre-training and concurrent IL in procedurally generated environments whenever offline trajectories are available or can be generated.
MUA-RL: Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use
With the recent rapid advancement of Agentic Intelligence, agentic tool use in LLMs has become increasingly important. During multi-turn interactions between agents and users, the dynamic, uncertain, and stochastic nature of user demands poses significant challenges to the agent's tool invocation capabilities. Agents are no longer expected to simply call tools to deliver a result; rather, they must iteratively refine their understanding of user needs through communication while simultaneously invoking tools to resolve user queries. Existing reinforcement learning (RL) approaches for tool use lack the integration of genuinely dynamic users during the RL training process. To bridge this gap, we introduce MUA-RL (Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use), a novel reinforcement learning framework that, for the first time in the field of agentic tool use, integrates LLM-simulated users into the reinforcement learning loop. MUA-RL aims to enable autonomous learning of models to communicate with users efficiently and use various tools to solve practical problems in dynamic multi-turn interactions. Evaluations are done on several multi-turn tool-using benchmarks (see Figure 1). Specifically, MUA-RL-32B achieves 67.3 on TAU2 Retail, 45.4 on TAU2 Airline, 28.3 on TAU2 Telecom, 28.4 on BFCL-V3 Multi Turn, and 82.5 on ACEBench Agent -- outperforming or matching the performance of larger open-source models such as DeepSeek-V3-0324 and Qwen3-235B-A22B in non-thinking settings.
FlickerFusion: Intra-trajectory Domain Generalizing Multi-Agent RL
Multi-agent reinforcement learning has demonstrated significant potential in addressing complex cooperative tasks across various real-world applications. However, existing MARL approaches often rely on the restrictive assumption that the number of entities (e.g., agents, obstacles) remains constant between training and inference. This overlooks scenarios where entities are dynamically removed or added during the inference trajectory -- a common occurrence in real-world environments like search and rescue missions and dynamic combat situations. In this paper, we tackle the challenge of intra-trajectory dynamic entity composition under zero-shot out-of-domain (OOD) generalization, where such dynamic changes cannot be anticipated beforehand. Our empirical studies reveal that existing MARL methods suffer significant performance degradation and increased uncertainty in these scenarios. In response, we propose FlickerFusion, a novel OOD generalization method that acts as a universally applicable augmentation technique for MARL backbone methods. FlickerFusion stochastically drops out parts of the observation space, emulating being in-domain when inferenced OOD. The results show that FlickerFusion not only achieves superior inference rewards but also uniquely reduces uncertainty vis-\`a-vis the backbone, compared to existing methods. Benchmarks, implementations, and model weights are organized and open-sourced at flickerfusion305.github.io, accompanied by ample demo video renderings.
SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
Society of Mind Meets Real-Time Strategy: A Hierarchical Multi-Agent Framework for Strategic Reasoning
Large Language Models (LLMs) have recently demonstrated impressive action sequence prediction capabilities but often struggle with dynamic, long-horizon tasks such as real-time strategic games. In a game such as StarCraftII (SC2), agents need to manage resource constraints and adapt to evolving battlefield situations in a partially observable environment. This often overwhelms exisiting LLM-based approaches. To address these challenges, we propose a hierarchical multi-agent framework that employs specialized imitation learning agents under a meta-controller called Strategic Planner (SP). By expert demonstrations, each specialized agent learns a distinctive strategy, such as aerial support or defensive maneuvers, and produces coherent, structured multistep action sequences. The SP then orchestrates these proposals into a single, environmentally adaptive plan that ensures local decisions aligning with long-term strategies. We call this HIMA (Hierarchical Imitation Multi-Agent). We also present TEXTSCII-ALL, a comprehensive SC2 testbed that encompasses all race match combinations in SC2. Our empirical results show that HIMA outperforms state of the arts in strategic clarity, adaptability, and computational efficiency, underscoring the potential of combining specialized imitation modules with meta-level orchestration to develop more robust, general-purpose AI agents.
A Theoretical Analysis of Deep Q-Learning
Despite the great empirical success of deep reinforcement learning, its theoretical foundation is less well understood. In this work, we make the first attempt to theoretically understand the deep Q-network (DQN) algorithm (Mnih et al., 2015) from both algorithmic and statistical perspectives. In specific, we focus on a slight simplification of DQN that fully captures its key features. Under mild assumptions, we establish the algorithmic and statistical rates of convergence for the action-value functions of the iterative policy sequence obtained by DQN. In particular, the statistical error characterizes the bias and variance that arise from approximating the action-value function using deep neural network, while the algorithmic error converges to zero at a geometric rate. As a byproduct, our analysis provides justifications for the techniques of experience replay and target network, which are crucial to the empirical success of DQN. Furthermore, as a simple extension of DQN, we propose the Minimax-DQN algorithm for zero-sum Markov game with two players. Borrowing the analysis of DQN, we also quantify the difference between the policies obtained by Minimax-DQN and the Nash equilibrium of the Markov game in terms of both the algorithmic and statistical rates of convergence.
Everyone Contributes! Incentivizing Strategic Cooperation in Multi-LLM Systems via Sequential Public Goods Games
Coordinating multiple large language models (LLMs) to solve complex tasks collaboratively poses a fundamental trade-off between the computation costs and collective performance compared with individual model. We introduce a novel, game-theoretically grounded reinforcement learning (RL) framework, the Multi-Agent Cooperation Sequential Public Goods Game (MAC-SPGG), to systematically incentivize cooperation in multi-LLM ensembles. In MAC-SPGG, LLM agents move in sequence, observing predecessors' outputs and updating beliefs to condition their own contributions. By redesigning the public-goods reward, effortful contributions become the unique Subgame Perfect Nash Equilibrium (SPNE), which eliminates free-riding under traditional SPGG or PGG. Its sequential protocol replaces costly round-based information exchanges with a streamlined decision flow, cutting communication overhead while retaining strategic depth. We prove the existence and uniqueness of the SPNE under realistic parameters, and empirically show that MAC-SPGG-trained ensembles outperform single-agent baselines, chain-of-thought prompting, and other cooperative methods, even achieving comparable performance to large-scale models across reasoning, math, code generation, and NLP tasks. Our results highlight the power of structured, incentive-aligned MAC-SPGG cooperation for scalable and robust multi-agent language generation.
Learning to Play Imperfect-Information Games by Imitating an Oracle Planner
We consider learning to play multiplayer imperfect-information games with simultaneous moves and large state-action spaces. Previous attempts to tackle such challenging games have largely focused on model-free learning methods, often requiring hundreds of years of experience to produce competitive agents. Our approach is based on model-based planning. We tackle the problem of partial observability by first building an (oracle) planner that has access to the full state of the environment and then distilling the knowledge of the oracle to a (follower) agent which is trained to play the imperfect-information game by imitating the oracle's choices. We experimentally show that planning with naive Monte Carlo tree search does not perform very well in large combinatorial action spaces. We therefore propose planning with a fixed-depth tree search and decoupled Thompson sampling for action selection. We show that the planner is able to discover efficient playing strategies in the games of Clash Royale and Pommerman and the follower policy successfully learns to implement them by training on a few hundred battles.
Learning to Fly -- a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control
Robotic simulators are crucial for academic research and education as well as the development of safety-critical applications. Reinforcement learning environments -- simple simulations coupled with a problem specification in the form of a reward function -- are also important to standardize the development (and benchmarking) of learning algorithms. Yet, full-scale simulators typically lack portability and parallelizability. Vice versa, many reinforcement learning environments trade-off realism for high sample throughputs in toy-like problems. While public data sets have greatly benefited deep learning and computer vision, we still lack the software tools to simultaneously develop -- and fairly compare -- control theory and reinforcement learning approaches. In this paper, we propose an open-source OpenAI Gym-like environment for multiple quadcopters based on the Bullet physics engine. Its multi-agent and vision based reinforcement learning interfaces, as well as the support of realistic collisions and aerodynamic effects, make it, to the best of our knowledge, a first of its kind. We demonstrate its use through several examples, either for control (trajectory tracking with PID control, multi-robot flight with downwash, etc.) or reinforcement learning (single and multi-agent stabilization tasks), hoping to inspire future research that combines control theory and machine learning.
Playing games with Large language models: Randomness and strategy
Playing games has a long history of describing intricate interactions in simplified forms. In this paper we explore if large language models (LLMs) can play games, investigating their capabilities for randomisation and strategic adaptation through both simultaneous and sequential game interactions. We focus on GPT-4o-Mini-2024-08-17 and test two games between LLMs: Rock Paper Scissors (RPS) and games of strategy (Prisoners Dilemma PD). LLMs are often described as stochastic parrots, and while they may indeed be parrots, our results suggest that they are not very stochastic in the sense that their outputs - when prompted to be random - are often very biased. Our research reveals that LLMs appear to develop loss aversion strategies in repeated games, with RPS converging to stalemate conditions while PD shows systematic shifts between cooperative and competitive outcomes based on prompt design. We detail programmatic tools for independent agent interactions and the Agentic AI challenges faced in implementation. We show that LLMs can indeed play games, just not very well. These results have implications for the use of LLMs in multi-agent LLM systems and showcase limitations in current approaches to model output for strategic decision-making.
iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed Multi-Agent Reinforcement Learning
Navigating safely and efficiently in dense and heterogeneous traffic scenarios is challenging for autonomous vehicles (AVs) due to their inability to infer the behaviors or intentions of nearby drivers. In this work, we introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios. Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations. We model two distinct incentives for agents' strategies: Behavioral Incentive for high-level decision-making based on their driving behavior or personality and Instant Incentive for motion planning for collision avoidance based on the current traffic state. Our approach enables agents to infer their opponents' behavior incentives and integrate this inferred information into their decision-making and motion-planning processes. We perform experiments on two simulation environments, Non-Cooperative Navigation and Heterogeneous Highway. In Heterogeneous Highway, results show that, compared with centralized training decentralized execution (CTDE) MARL baselines such as QMIX and MAPPO, our method yields a 4.3% and 38.4% higher episodic reward in mild and chaotic traffic, with 48.1% higher success rate and 80.6% longer survival time in chaotic traffic. We also compare with a decentralized training decentralized execution (DTDE) baseline IPPO and demonstrate a higher episodic reward of 12.7% and 6.3% in mild traffic and chaotic traffic, 25.3% higher success rate, and 13.7% longer survival time.
DIAMBRA Arena: a New Reinforcement Learning Platform for Research and Experimentation
The recent advances in reinforcement learning have led to effective methods able to obtain above human-level performances in very complex environments. However, once solved, these environments become less valuable, and new challenges with different or more complex scenarios are needed to support research advances. This work presents DIAMBRA Arena, a new platform for reinforcement learning research and experimentation, featuring a collection of high-quality environments exposing a Python API fully compliant with OpenAI Gym standard. They are episodic tasks with discrete actions and observations composed by raw pixels plus additional numerical values, all supporting both single player and two players mode, allowing to work on standard reinforcement learning, competitive multi-agent, human-agent competition, self-play, human-in-the-loop training and imitation learning. Software capabilities are demonstrated by successfully training multiple deep reinforcement learning agents with proximal policy optimization obtaining human-like behavior. Results confirm the utility of DIAMBRA Arena as a reinforcement learning research tool, providing environments designed to study some of the most challenging topics in the field.
Evolving Reinforcement Learning Algorithms
We propose a method for meta-learning reinforcement learning algorithms by searching over the space of computational graphs which compute the loss function for a value-based model-free RL agent to optimize. The learned algorithms are domain-agnostic and can generalize to new environments not seen during training. Our method can both learn from scratch and bootstrap off known existing algorithms, like DQN, enabling interpretable modifications which improve performance. Learning from scratch on simple classical control and gridworld tasks, our method rediscovers the temporal-difference (TD) algorithm. Bootstrapped from DQN, we highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games. The analysis of the learned algorithm behavior shows resemblance to recently proposed RL algorithms that address overestimation in value-based methods.
