new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 19

Injecting Domain Adaptation with Learning-to-hash for Effective and Efficient Zero-shot Dense Retrieval

Dense retrieval overcome the lexical gap and has shown great success in ad-hoc information retrieval (IR). Despite their success, dense retrievers are expensive to serve across practical use cases. For use cases requiring to search from millions of documents, the dense index becomes bulky and requires high memory usage for storing the index. More recently, learning-to-hash (LTH) techniques, for e.g., BPR and JPQ, produce binary document vectors, thereby reducing the memory requirement to efficiently store the dense index. LTH techniques are supervised and finetune the retriever using a ranking loss. They outperform their counterparts, i.e., traditional out-of-the-box vector compression techniques such as PCA or PQ. A missing piece from prior work is that existing techniques have been evaluated only in-domain, i.e., on a single dataset such as MS MARCO. In our work, we evaluate LTH and vector compression techniques for improving the downstream zero-shot retrieval accuracy of the TAS-B dense retriever while maintaining efficiency at inference. Our results demonstrate that, unlike prior work, LTH strategies when applied naively can underperform the zero-shot TAS-B dense retriever on average by up to 14% nDCG@10 on the BEIR benchmark. To solve this limitation, in our work, we propose an easy yet effective solution of injecting domain adaptation with existing supervised LTH techniques. We experiment with two well-known unsupervised domain adaptation techniques: GenQ and GPL. Our domain adaptation injection technique can improve the downstream zero-shot retrieval effectiveness for both BPR and JPQ variants of the TAS-B model by on average 11.5% and 8.2% nDCG@10 while both maintaining 32times memory efficiency and 14times and 2times speedup respectively in CPU retrieval latency on BEIR. All our code, models, and data are publicly available at https://github.com/thakur-nandan/income.

  • 3 authors
·
May 23, 2022

NL2Repo-Bench: Towards Long-Horizon Repository Generation Evaluation of Coding Agents

Recent advances in coding agents suggest rapid progress toward autonomous software development, yet existing benchmarks fail to rigorously evaluate the long-horizon capabilities required to build complete software systems. Most prior evaluations focus on localized code generation, scaffolded completion, or short-term repair tasks, leaving open the question of whether agents can sustain coherent reasoning, planning, and execution over the extended horizons demanded by real-world repository construction. To address this gap, we present NL2Repo Bench, a benchmark explicitly designed to evaluate the long-horizon repository generation ability of coding agents. Given only a single natural-language requirements document and an empty workspace, agents must autonomously design the architecture, manage dependencies, implement multi-module logic, and produce a fully installable Python library. Our experiments across state-of-the-art open- and closed-source models reveal that long-horizon repository generation remains largely unsolved: even the strongest agents achieve below 40% average test pass rates and rarely complete an entire repository correctly. Detailed analysis uncovers fundamental long-horizon failure modes, including premature termination, loss of global coherence, fragile cross-file dependencies, and inadequate planning over hundreds of interaction steps. NL2Repo Bench establishes a rigorous, verifiable testbed for measuring sustained agentic competence and highlights long-horizon reasoning as a central bottleneck for the next generation of autonomous coding agents.

  • 48 authors
·
Dec 14, 2025 2

Leveraging Graph-RAG and Prompt Engineering to Enhance LLM-Based Automated Requirement Traceability and Compliance Checks

Ensuring that Software Requirements Specifications (SRS) align with higher-level organizational or national requirements is vital, particularly in regulated environments such as finance and aerospace. In these domains, maintaining consistency, adhering to regulatory frameworks, minimizing errors, and meeting critical expectations are essential for the reliable functioning of systems. The widespread adoption of large language models (LLMs) highlights their immense potential, yet there remains considerable scope for improvement in retrieving relevant information and enhancing reasoning capabilities. This study demonstrates that integrating a robust Graph-RAG framework with advanced prompt engineering techniques, such as Chain of Thought and Tree of Thought, can significantly enhance performance. Compared to baseline RAG methods and simple prompting strategies, this approach delivers more accurate and context-aware results. While this method demonstrates significant improvements in performance, it comes with challenges. It is both costly and more complex to implement across diverse contexts, requiring careful adaptation to specific scenarios. Additionally, its effectiveness heavily relies on having complete and accurate input data, which may not always be readily available, posing further limitations to its scalability and practicality.

  • 5 authors
·
Dec 11, 2024

Database Systems Course: Service Learning Project

This paper describes a service learning project used in an upper-level and graduate-level database systems course. Students complete a small database project for a real client. The final product must match the client specification and needs, and include the database design and the final working database system with embedded user documentation. The solution must be implemented in a way to make it as easy to use as possible for the client. Students are expected to conduct professional meetings with their clients to understand the project, analyze the project's requirements, as well as design and implement the solution to the project. Students must have each milestone approved before starting the next phase of the project. The student learning objectives of a database system semester project are to: analyze a client's information system problem and determine the requirements for the solution; design a suitable database solution to the problem; use software design and development tools to design and develop a solution to the problem; communicate and interact with a client on a professional level; prepare effective documentation for both non-technical and technical software users; and interact ethically with all persons involved with a project. The broader impact objectives of a database system semester project are to: provide needed database solutions for organizations and businesses in the local area; provide a resume and portfolio-building opportunity for the students; provide a measure for assessing how well the program meets it mission; provide a mechanism for implementing service-based learning; provide a mechanism for outreach to local-area organizations and businesses; and provide a starting-point for undergraduate research projects.

  • 1 authors
·
Jul 2, 2024

DesignQA: A Multimodal Benchmark for Evaluating Large Language Models' Understanding of Engineering Documentation

This research introduces DesignQA, a novel benchmark aimed at evaluating the proficiency of multimodal large language models (MLLMs) in comprehending and applying engineering requirements in technical documentation. Developed with a focus on real-world engineering challenges, DesignQA uniquely combines multimodal data-including textual design requirements, CAD images, and engineering drawings-derived from the Formula SAE student competition. Different from many existing MLLM benchmarks, DesignQA contains document-grounded visual questions where the input image and input document come from different sources. The benchmark features automatic evaluation metrics and is divided into segments-Rule Comprehension, Rule Compliance, and Rule Extraction-based on tasks that engineers perform when designing according to requirements. We evaluate state-of-the-art models like GPT4 and LLaVA against the benchmark, and our study uncovers the existing gaps in MLLMs' abilities to interpret complex engineering documentation. Key findings suggest that while MLLMs demonstrate potential in navigating technical documents, substantial limitations exist, particularly in accurately extracting and applying detailed requirements to engineering designs. This benchmark sets a foundation for future advancements in AI-supported engineering design processes. DesignQA is publicly available at: https://github.com/anniedoris/design_qa/.

  • 6 authors
·
Apr 11, 2024

Leveraging LLMs for User Stories in AI Systems: UStAI Dataset

AI systems are gaining widespread adoption across various sectors and domains. Creating high-quality AI system requirements is crucial for aligning the AI system with business goals and consumer values and for social responsibility. However, with the uncertain nature of AI systems and the heavy reliance on sensitive data, more research is needed to address the elicitation and analysis of AI systems requirements. With the proprietary nature of many AI systems, there is a lack of open-source requirements artifacts and technical requirements documents for AI systems, limiting broader research and investigation. With Large Language Models (LLMs) emerging as a promising alternative to human-generated text, this paper investigates the potential use of LLMs to generate user stories for AI systems based on abstracts from scholarly papers. We conducted an empirical evaluation using three LLMs and generated 1260 user stories from 42 abstracts from 26 domains. We assess their quality using the Quality User Story (QUS) framework. Moreover, we identify relevant non-functional requirements (NFRs) and ethical principles. Our analysis demonstrates that the investigated LLMs can generate user stories inspired by the needs of various stakeholders, offering a promising approach for generating user stories for research purposes and for aiding in the early requirements elicitation phase of AI systems. We have compiled and curated a collection of stories generated by various LLMs into a dataset (UStAI), which is now publicly available for use.

  • 3 authors
·
Apr 1, 2025

What do we know about Hugging Face? A systematic literature review and quantitative validation of qualitative claims

Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative claims lacking quantitative analysis. Our research fills these gaps by providing a knowledge synthesis and quantitative analyses. Methods: We first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our findings are: (1) PTMs have a much higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: We confirm qualitative research claims with concrete metrics, supporting prior qualitative and case study research. Our measures show further dynamics of PTM reuse, inspiring research infrastructure and new measures.

  • 5 authors
·
Jun 12, 2024

Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce

In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.

  • 5 authors
·
Oct 23, 2023

Enhancing Automated Software Traceability by Transfer Learning from Open-World Data

Software requirements traceability is a critical component of the software engineering process, enabling activities such as requirements validation, compliance verification, and safety assurance. However, the cost and effort of manually creating a complete set of trace links across natural language artifacts such as requirements, design, and test-cases can be prohibitively expensive. Researchers have therefore proposed automated link-generation solutions primarily based on information-retrieval (IR) techniques; however, these solutions have failed to deliver the accuracy needed for full adoption in industrial projects. Improvements can be achieved using deep-learning traceability models; however, their efficacy is impeded by the limited size and availability of project-level artifacts and links to serve as training data. In this paper, we address this problem by proposing and evaluating several deep-learning approaches for text-to-text traceability. Our method, named NLTrace, explores three transfer learning strategies that use datasets mined from open world platforms. Through pretraining Language Models (LMs) and leveraging adjacent tracing tasks, we demonstrate that NLTrace can significantly improve the performance of LM based trace models when training links are available. In such scenarios NLTrace outperforms the best performing classical IR method with an 188% improvement in F2 score and 94.01% in Mean Average Precision (MAP). It also outperforms the general LM based trace model by 7% and 23% for F2 and MAP respectively. In addition, NLTrace can adapt to low-resource tracing scenarios where other LM models can not. The knowledge learned from adjacent tasks enables NLTrace to outperform VSM models by 28% F2 on generation challenges when presented with a small number of training examples.

  • 6 authors
·
Jul 3, 2022

Automotive Perception Software Development: An Empirical Investigation into Data, Annotation, and Ecosystem Challenges

Software that contains machine learning algorithms is an integral part of automotive perception, for example, in driving automation systems. The development of such software, specifically the training and validation of the machine learning components, require large annotated datasets. An industry of data and annotation services has emerged to serve the development of such data-intensive automotive software components. Wide-spread difficulties to specify data and annotation needs challenge collaborations between OEMs (Original Equipment Manufacturers) and their suppliers of software components, data, and annotations. This paper investigates the reasons for these difficulties for practitioners in the Swedish automotive industry to arrive at clear specifications for data and annotations. The results from an interview study show that a lack of effective metrics for data quality aspects, ambiguities in the way of working, unclear definitions of annotation quality, and deficits in the business ecosystems are causes for the difficulty in deriving the specifications. We provide a list of recommendations that can mitigate challenges when deriving specifications and we propose future research opportunities to overcome these challenges. Our work contributes towards the on-going research on accountability of machine learning as applied to complex software systems, especially for high-stake applications such as automated driving.

  • 7 authors
·
Mar 10, 2023

Compliance Cards: Computational Artifacts for Automated AI Regulation Compliance

As the artificial intelligence (AI) supply chain grows more complex, AI systems and models are increasingly likely to incorporate externally-sourced ingredients such as datasets and other models. In such cases, determining whether or not an AI system or model complies with the EU AI Act will require gathering compliance-related metadata about both the AI system or model at-large as well as those externally-supplied ingredients. There must then be an analysis that looks across all of this metadata to render a prediction about the compliance of the overall AI system or model. Up until now, this process has not been automated. Thus, it has not been possible to make real-time compliance determinations in scenarios where doing so would be advantageous, such as the iterative workflows of today's AI developers, search and acquisition of AI ingredients on communities like Hugging Face, federated and continuous learning, and more. To address this shortcoming, we introduce a highly automated system for AI Act compliance analysis. This system has two key elements. First is an interlocking set of computational artifacts that capture compliance-related metadata about both: (1) the AI system or model at-large; (2) any constituent ingredients such as datasets and models. Second is an automated analysis algorithm that operates across those computational artifacts to render a run-time prediction about whether or not the overall AI system or model complies with the AI Act. Working together, these elements promise to enhance and accelerate AI Act compliance assessments.

  • 7 authors
·
Jun 20, 2024

Documenting Ethical Considerations in Open Source AI Models

Background: The development of AI-enabled software heavily depends on AI model documentation, such as model cards, due to different domain expertise between software engineers and model developers. From an ethical standpoint, AI model documentation conveys critical information on ethical considerations along with mitigation strategies for downstream developers to ensure the delivery of ethically compliant software. However, knowledge on such documentation practice remains scarce. Aims: The objective of our study is to investigate how developers document ethical aspects of open source AI models in practice, aiming at providing recommendations for future documentation endeavours. Method: We selected three sources of documentation on GitHub and Hugging Face, and developed a keyword set to identify ethics-related documents systematically. After filtering an initial set of 2,347 documents, we identified 265 relevant ones and performed thematic analysis to derive the themes of ethical considerations. Results: Six themes emerge, with the three largest ones being model behavioural risks, model use cases, and model risk mitigation. Conclusions: Our findings reveal that open source AI model documentation focuses on articulating ethical problem statements and use case restrictions. We further provide suggestions to various stakeholders for improving documentation practice regarding ethical considerations.

  • 5 authors
·
Jun 26, 2024

Using LLMs for the Extraction and Normalization of Product Attribute Values

Product offers on e-commerce websites often consist of a product title and a textual product description. In order to enable features such as faceted product search or to generate product comparison tables, it is necessary to extract structured attribute-value pairs from the unstructured product titles and descriptions and to normalize the extracted values to a single, unified scale for each attribute. This paper explores the potential of using large language models (LLMs), such as GPT-3.5 and GPT-4, to extract and normalize attribute values from product titles and descriptions. We experiment with different zero-shot and few-shot prompt templates for instructing LLMs to extract and normalize attribute-value pairs. We introduce the Web Data Commons - Product Attribute Value Extraction (WDC-PAVE) benchmark dataset for our experiments. WDC-PAVE consists of product offers from 59 different websites which provide schema.org annotations. The offers belong to five different product categories, each with a specific set of attributes. The dataset provides manually verified attribute-value pairs in two forms: (i) directly extracted values and (ii) normalized attribute values. The normalization of the attribute values requires systems to perform the following types of operations: name expansion, generalization, unit of measurement conversion, and string wrangling. Our experiments demonstrate that GPT-4 outperforms the PLM-based extraction methods SU-OpenTag, AVEQA, and MAVEQA by 10%, achieving an F1-score of 91%. For the extraction and normalization of product attribute values, GPT-4 achieves a similar performance to the extraction scenario, while being particularly strong at string wrangling and name expansion.

  • 3 authors
·
Mar 4, 2024

A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment

The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.

  • 82 authors
·
Apr 22, 2025 2

ProMap: Datasets for Product Mapping in E-commerce

The goal of product mapping is to decide, whether two listings from two different e-shops describe the same products. Existing datasets of matching and non-matching pairs of products, however, often suffer from incomplete product information or contain only very distant non-matching products. Therefore, while predictive models trained on these datasets achieve good results on them, in practice, they are unusable as they cannot distinguish very similar but non-matching pairs of products. This paper introduces two new datasets for product mapping: ProMapCz consisting of 1,495 Czech product pairs and ProMapEn consisting of 1,555 English product pairs of matching and non-matching products manually scraped from two pairs of e-shops. The datasets contain both images and textual descriptions of the products, including their specifications, making them one of the most complete datasets for product mapping. Additionally, the non-matching products were selected in two phases, creating two types of non-matches -- close non-matches and medium non-matches. Even the medium non-matches are pairs of products that are much more similar than non-matches in other datasets -- for example, they still need to have the same brand and similar name and price. After simple data preprocessing, several machine learning algorithms were trained on these and two the other datasets to demonstrate the complexity and completeness of ProMap datasets. ProMap datasets are presented as a golden standard for further research of product mapping filling the gaps in existing ones.

  • 2 authors
·
Sep 13, 2023

Incorporating Customer Reviews in Size and Fit Recommendation systems for Fashion E-Commerce

With the huge growth in e-commerce domain, product recommendations have become an increasing field of interest amongst e-commerce companies. One of the more difficult tasks in product recommendations is size and fit predictions. There are a lot of size related returns and refunds in e-fashion domain which causes inconvenience to the customers as well as costs the company. Thus having a good size and fit recommendation system, which can predict the correct sizes for the customers will not only reduce size related returns and refunds but also improve customer experience. Early works in this field used traditional machine learning approaches to estimate customer and product sizes from purchase history. These methods suffered from cold start problem due to huge sparsity in the customer-product data. More recently, people have used deep learning to address this problem by embedding customer and product features. But none of them incorporates valuable customer feedback present on product pages along with the customer and product features. We propose a novel approach which can use information from customer reviews along with customer and product features for size and fit predictions. We demonstrate the effectiveness of our approach compared to using just product and customer features on 4 datasets. Our method shows an improvement of 1.37% - 4.31% in F1 (macro) score over the baseline across the 4 different datasets.

  • 3 authors
·
Aug 11, 2022

Red Teaming for Generative AI, Report on a Copyright-Focused Exercise Completed in an Academic Medical Center

Background: Generative artificial intelligence (AI) deployment in academic medical settings raises copyright compliance concerns. Dana-Farber Cancer Institute implemented GPT4DFCI, an internal generative AI tool utilizing OpenAI models, that is approved for enterprise use in research and operations. Given (1) the exceptionally broad adoption of the tool in our organization, (2) our research mission, and (3) the shared responsibility model required to benefit from Customer Copyright Commitment in Azure OpenAI Service products, we deemed rigorous copyright compliance testing necessary. Case Description: We conducted a structured red teaming exercise in Nov. 2024, with 42 participants from academic, industry, and government institutions. Four teams attempted to extract copyrighted content from GPT4DFCI across four domains: literary works, news articles, scientific publications, and access-restricted clinical notes. Teams successfully extracted verbatim book dedications and near-exact passages through various strategies. News article extraction failed despite jailbreak attempts. Scientific article reproduction yielded only high-level summaries. Clinical note testing revealed appropriate privacy safeguards. Discussion: The successful extraction of literary content indicates potential copyrighted material presence in training data, necessitating inference-time filtering. Differential success rates across content types suggest varying protective mechanisms. The event led to implementation of a copyright-specific meta-prompt in GPT4DFCI; this mitigation has been in production since Jan. 2025. Conclusion: Systematic red teaming revealed specific vulnerabilities in generative AI copyright compliance, leading to concrete mitigation strategies. Academic medical institutions deploying generative AI should implement continuous testing protocols to ensure legal and ethical compliance.

  • 41 authors
·
Jun 26, 2025

Inteligencia Artificial jurídica y el desafío de la veracidad: análisis de alucinaciones, optimización de RAG y principios para una integración responsable

This technical report analyzes the challenge of "hallucinations" (false information) in LLMs applied to law. It examines their causes, manifestations, and the effectiveness of the RAG mitigation strategy, highlighting its limitations and proposing holistic optimizations. The paper explores the ethical and regulatory implications, emphasizing human oversight as an irreplaceable role. It concludes that the solution lies not in incrementally improving generative models, but in adopting a "consultative" AI paradigm that prioritizes veracity and traceability, acting as a tool to amplify, not replace, professional judgment. -- Este informe t\'ecnico analiza el desaf\'io de las "alucinaciones" (informaci\'on falsa) en los LLMs aplicados al derecho. Se examinan sus causas, manifestaciones y la efectividad de la estrategia de mitigaci\'on RAG, exponiendo sus limitaciones y proponiendo optimizaciones hol\'isticas. Se exploran las implicaciones \'eticas y regulatorias, enfatizando la supervisi\'on humana como un rol insustituible. El documento concluye que la soluci\'on no reside en mejorar incrementalmente los modelos generativos, sino en adoptar un paradigma de IA "consultiva" que priorice la veracidad y la trazabilidad, actuando como una herramienta para amplificar, y no sustituir, el juicio profesional.

  • 1 authors
·
Sep 11, 2025

The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry

With most technical fields, there exists a delay between fundamental academic research and practical industrial uptake. Whilst some sciences have robust and well-established processes for commercialisation, such as the pharmaceutical practice of regimented drug trials, other fields face transitory periods in which fundamental academic advancements diffuse gradually into the space of commerce and industry. For the still relatively young field of Automated/Autonomous Machine Learning (AutoML/AutonoML), that transitory period is under way, spurred on by a burgeoning interest from broader society. Yet, to date, little research has been undertaken to assess the current state of this dissemination and its uptake. Thus, this review makes two primary contributions to knowledge around this topic. Firstly, it provides the most up-to-date and comprehensive survey of existing AutoML tools, both open-source and commercial. Secondly, it motivates and outlines a framework for assessing whether an AutoML solution designed for real-world application is 'performant'; this framework extends beyond the limitations of typical academic criteria, considering a variety of stakeholder needs and the human-computer interactions required to service them. Thus, additionally supported by an extensive assessment and comparison of academic and commercial case-studies, this review evaluates mainstream engagement with AutoML in the early 2020s, identifying obstacles and opportunities for accelerating future uptake.

  • 4 authors
·
Nov 8, 2022

A Multimodal In-Context Tuning Approach for E-Commerce Product Description Generation

In this paper, we propose a new setting for generating product descriptions from images, augmented by marketing keywords. It leverages the combined power of visual and textual information to create descriptions that are more tailored to the unique features of products. For this setting, previous methods utilize visual and textual encoders to encode the image and keywords and employ a language model-based decoder to generate the product description. However, the generated description is often inaccurate and generic since same-category products have similar copy-writings, and optimizing the overall framework on large-scale samples makes models concentrate on common words yet ignore the product features. To alleviate the issue, we present a simple and effective Multimodal In-Context Tuning approach, named ModICT, which introduces a similar product sample as the reference and utilizes the in-context learning capability of language models to produce the description. During training, we keep the visual encoder and language model frozen, focusing on optimizing the modules responsible for creating multimodal in-context references and dynamic prompts. This approach preserves the language generation prowess of large language models (LLMs), facilitating a substantial increase in description diversity. To assess the effectiveness of ModICT across various language model scales and types, we collect data from three distinct product categories within the E-commerce domain. Extensive experiments demonstrate that ModICT significantly improves the accuracy (by up to 3.3% on Rouge-L) and diversity (by up to 9.4% on D-5) of generated results compared to conventional methods. Our findings underscore the potential of ModICT as a valuable tool for enhancing automatic generation of product descriptions in a wide range of applications.

  • 6 authors
·
Feb 21, 2024

Novice Developers' Perspectives on Adopting LLMs for Software Development: A Systematic Literature Review

Following the rise of large language models (LLMs), many studies have emerged in recent years focusing on exploring the adoption of LLM-based tools for software development by novice developers: computer science/software engineering students and early-career industry developers with two years or less of professional experience. These studies have sought to understand the perspectives of novice developers on using these tools, a critical aspect of the successful adoption of LLMs in software engineering. To systematically collect and summarise these studies, we conducted a systematic literature review (SLR) following the guidelines by Kitchenham et al. on 80 primary studies published between April 2022 and June 2025 to answer four research questions (RQs). In answering RQ1, we categorised the study motivations and methodological approaches. In RQ2, we identified the software development tasks for which novice developers use LLMs. In RQ3, we categorised the advantages, challenges, and recommendations discussed in the studies. Finally, we discuss the study limitations and future research needs suggested in the primary studies in answering RQ4. Throughout the paper, we also indicate directions for future work and implications for software engineering researchers, educators, and developers. Our research artifacts are publicly available at https://github.com/Samuellucas97/SupplementaryInfoPackage-SLR.

  • 4 authors
·
Mar 10, 2025

Enhancing Large Language Models for Text-to-Testcase Generation

Context: Test-driven development (TDD) is a widely employed software development practice that involves developing test cases based on requirements prior to writing the code. Although various methods for automated test case generation have been proposed, they are not specifically tailored for TDD, where requirements instead of code serve as input. Objective: In this paper, we introduce a text-to-testcase generation approach based on a large language model (GPT-3.5) that is fine-tuned on our curated dataset with an effective prompt design. Method: Our approach involves enhancing the capabilities of basic GPT-3.5 for text-to-testcase generation task that is fine-tuned on our curated dataset with an effective prompting design. We evaluated the effectiveness of our approach using a span of five large-scale open-source software projects. Results: Our approach generated 7k test cases for open source projects, achieving 78.5% syntactic correctness, 67.09% requirement alignment, and 61.7% code coverage, which substantially outperforms all other LLMs (basic GPT-3.5, Bloom, and CodeT5). In addition, our ablation study demonstrates the substantial performance improvement of the fine-tuning and prompting components of the GPT-3.5 model. Conclusions: These findings lead us to conclude that fine-tuning and prompting should be considered in the future when building a language model for the text-to-testcase generation task

  • 4 authors
·
Feb 19, 2024

Towards an Approach for Evaluating the Impact of AI Standards

There have been multiple calls for investments in the development of AI standards that both preserve the transformative potential and minimize the risks of AI. The goals of AI standards, particularly with respect to AI data, performance, and governance, are to promote innovation and public trust in systems that use AI. However, there is a lack of a formal or shared method to measure the impact of these standardization activities on the goals of innovation and trust. This concept paper proposes an analytical approach that could inform the evaluation of the impact of AI standards. The proposed approach could be used to measure, assess, and eventually evaluate the extent to which AI standards achieve their stated goals, since most Standards Development Organizationss do not track the impact of their standards once completed. It is intended to stimulate discussions with a wide variety of stakeholders, including academia and the standards community, about the potential for the approach to evaluate the effectiveness, utility, and relative value of AI standards. The document draws on successful and well-tested evaluation frameworks, tools, and metrics that are used for monitoring and assessing the effect of programmatic interventions in other domains to describe a possible approach. It begins by describing the context within which an evaluation would be designed, and then introduces a standard evaluation framework. These sections are followed by a description of what outputs and outcomes might result from the adoption and implementation of AI standards and the process whereby those AI standards are developed . Subsequent sections provide an overview of how the effectiveness of AI standards might be assessed and a conclusion.

  • 1 authors
·
Jun 16, 2025

RAGent: Retrieval-based Access Control Policy Generation

Manually generating access control policies from an organization's high-level requirement specifications poses significant challenges. It requires laborious efforts to sift through multiple documents containing such specifications and translate their access requirements into access control policies. Also, the complexities and ambiguities of these specifications often result in errors by system administrators during the translation process, leading to data breaches. However, the automated policy generation frameworks designed to help administrators in this process are unreliable due to limitations, such as the lack of domain adaptation. Therefore, to improve the reliability of access control policy generation, we propose RAGent, a novel retrieval-based access control policy generation framework based on language models. RAGent identifies access requirements from high-level requirement specifications with an average state-of-the-art F1 score of 87.9%. Through retrieval augmented generation, RAGent then translates the identified access requirements into access control policies with an F1 score of 77.9%. Unlike existing frameworks, RAGent generates policies with complex components like purposes and conditions, in addition to subjects, actions, and resources. Moreover, RAGent automatically verifies the generated policies and iteratively refines them through a novel verification-refinement mechanism, further improving the reliability of the process by 3%, reaching the F1 score of 80.6%. We also introduce three annotated datasets for developing access control policy generation frameworks in the future, addressing the data scarcity of the domain.

  • 3 authors
·
Sep 7, 2024

Product Attribute Value Extraction using Large Language Models

E-commerce applications such as faceted product search or product comparison are based on structured product descriptions like attribute/value pairs. The vendors on e-commerce platforms do not provide structured product descriptions but describe offers using titles or descriptions. To process such offers, it is necessary to extract attribute/value pairs from textual product attributes. State-of-the-art attribute/value extraction techniques rely on pre-trained language models (PLMs), such as BERT. Two major drawbacks of these models for attribute/value extraction are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models face challenges in generalizing to attribute values not included in the training data. This paper explores the potential of large language models (LLMs) as a training data-efficient and robust alternative to PLM-based attribute/value extraction methods. We consider hosted LLMs, such as GPT-3.5 and GPT-4, as well as open-source LLMs based on Llama2. We evaluate the models in a zero-shot scenario and in a scenario where task-specific training data is available. In the zero-shot scenario, we compare various prompt designs for representing information about the target attributes of the extraction. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, and (iii) the fine-tuning of GPT-3.5. Our experiments show that GPT-4 achieves an average F1-score of 85% on the two evaluation datasets while the best PLM-based techniques perform on average 5% worse using the same amount of training data. GPT-4 achieves a 10% higher F1-score than the best open-source LLM. The fine-tuned GPT-3.5 model reaches a similar performance as GPT-4 while being significantly more cost-efficient.

  • 3 authors
·
Oct 19, 2023