- Koel-TTS: Enhancing LLM based Speech Generation with Preference Alignment and Classifier Free Guidance While autoregressive speech token generation models produce speech with remarkable variety and naturalness, their inherent lack of controllability often results in issues such as hallucinations and undesired vocalizations that do not conform to conditioning inputs. We introduce Koel-TTS, a suite of enhanced encoder-decoder Transformer TTS models that address these challenges by incorporating preference alignment techniques guided by automatic speech recognition and speaker verification models. Additionally, we incorporate classifier-free guidance to further improve synthesis adherence to the transcript and reference speaker audio. Our experiments demonstrate that these optimizations significantly enhance target speaker similarity, intelligibility, and naturalness of synthesized speech. Notably, Koel-TTS directly maps text and context audio to acoustic tokens, and on the aforementioned metrics, outperforms state-of-the-art TTS models, despite being trained on a significantly smaller dataset. Audio samples and demos are available on our website. 9 authors · Feb 7
- Neural Speech Synthesis with Transformer Network Although end-to-end neural text-to-speech (TTS) methods (such as Tacotron2) are proposed and achieve state-of-the-art performance, they still suffer from two problems: 1) low efficiency during training and inference; 2) hard to model long dependency using current recurrent neural networks (RNNs). Inspired by the success of Transformer network in neural machine translation (NMT), in this paper, we introduce and adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in Tacotron2. With the help of multi-head self-attention, the hidden states in the encoder and decoder are constructed in parallel, which improves the training efficiency. Meanwhile, any two inputs at different times are connected directly by self-attention mechanism, which solves the long range dependency problem effectively. Using phoneme sequences as input, our Transformer TTS network generates mel spectrograms, followed by a WaveNet vocoder to output the final audio results. Experiments are conducted to test the efficiency and performance of our new network. For the efficiency, our Transformer TTS network can speed up the training about 4.25 times faster compared with Tacotron2. For the performance, rigorous human tests show that our proposed model achieves state-of-the-art performance (outperforms Tacotron2 with a gap of 0.048) and is very close to human quality (4.39 vs 4.44 in MOS). 6 authors · Sep 19, 2018
- FastSpeech: Fast, Robust and Controllable Text to Speech Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech. 7 authors · May 22, 2019 1
- AlignTTS: Efficient Feed-Forward Text-to-Speech System without Explicit Alignment Targeting at both high efficiency and performance, we propose AlignTTS to predict the mel-spectrum in parallel. AlignTTS is based on a Feed-Forward Transformer which generates mel-spectrum from a sequence of characters, and the duration of each character is determined by a duration predictor.Instead of adopting the attention mechanism in Transformer TTS to align text to mel-spectrum, the alignment loss is presented to consider all possible alignments in training by use of dynamic programming. Experiments on the LJSpeech dataset show that our model achieves not only state-of-the-art performance which outperforms Transformer TTS by 0.03 in mean option score (MOS), but also a high efficiency which is more than 50 times faster than real-time. 5 authors · Mar 4, 2020
- Length-Aware Rotary Position Embedding for Text-Speech Alignment Many recent text-to-speech (TTS) systems are built on transformer architectures and employ cross-attention mechanisms for text-speech alignment. Within these systems, rotary position embedding (RoPE) is commonly used to encode positional information in text and speech representations. In this work, we introduce length-aware RoPE (LARoPE), a simple yet effective extension of RoPE that improves text-speech alignment. Unlike RoPE, which relies on absolute indices, LARoPE computes relative distances between query and key positions using length-normalized indices. Experimental results show that LARoPE consistently outperforms RoPE, offering faster loss convergence, more accurate text-speech alignment, and higher overall TTS quality. Furthermore, LARoPE demonstrates greater resilience to variations in utterance duration and maintains stable performance in extended speech generation up to 30 seconds, whereas RoPE suffers from notable degradation. Notably, our method achieves a state-of-the-art word error rate on a standard zero-shot TTS benchmark. 4 authors · Sep 14
132 MiniMax-Speech: Intrinsic Zero-Shot Text-to-Speech with a Learnable Speaker Encoder We introduce MiniMax-Speech, an autoregressive Transformer-based Text-to-Speech (TTS) model that generates high-quality speech. A key innovation is our learnable speaker encoder, which extracts timbre features from a reference audio without requiring its transcription. This enables MiniMax-Speech to produce highly expressive speech with timbre consistent with the reference in a zero-shot manner, while also supporting one-shot voice cloning with exceptionally high similarity to the reference voice. In addition, the overall quality of the synthesized audio is enhanced through the proposed Flow-VAE. Our model supports 32 languages and demonstrates excellent performance across multiple objective and subjective evaluations metrics. Notably, it achieves state-of-the-art (SOTA) results on objective voice cloning metrics (Word Error Rate and Speaker Similarity) and has secured the top position on the public TTS Arena leaderboard. Another key strength of MiniMax-Speech, granted by the robust and disentangled representations from the speaker encoder, is its extensibility without modifying the base model, enabling various applications such as: arbitrary voice emotion control via LoRA; text to voice (T2V) by synthesizing timbre features directly from text description; and professional voice cloning (PVC) by fine-tuning timbre features with additional data. We encourage readers to visit https://minimax-ai.github.io/tts_tech_report for more examples. 20 authors · May 12 4
- RWKVTTS: Yet another TTS based on RWKV-7 Human-AI interaction thrives on intuitive and efficient interfaces, among which voice stands out as a particularly natural and accessible modality. Recent advancements in transformer-based text-to-speech (TTS) systems, such as Fish-Speech, CosyVoice, and MegaTTS 3, have delivered remarkable improvements in quality and realism, driving a significant evolution in the TTS domain. In this paper, we introduce RWKV-7 peng2025rwkv, a cutting-edge RNN-based architecture tailored for TTS applications. Unlike traditional transformer models, RWKV-7 leverages the strengths of recurrent neural networks to achieve greater computational efficiency and scalability, while maintaining high-quality output. Our comprehensive benchmarks demonstrate that RWKV-7 outperforms transformer-based models across multiple key metrics, including synthesis speed, naturalness of speech, and resource efficiency. Furthermore, we explore its adaptability to diverse linguistic contexts and low-resource environments, showcasing its potential to democratize TTS technology. These findings position RWKV-7 as a powerful and innovative alternative, paving the way for more accessible and versatile voice synthesis solutions in real-world applications.Our code and weights are https://github.com/yynil/RWKVTTS, https://huggingface.co/spaces/RWKV-Red-Team 2 authors · Apr 4
- DiTTo-TTS: Efficient and Scalable Zero-Shot Text-to-Speech with Diffusion Transformer Large-scale diffusion models have shown outstanding generative abilities across multiple modalities including images, videos, and audio. However, text-to-speech (TTS) systems typically involve domain-specific modeling factors (e.g., phonemes and phoneme-level durations) to ensure precise temporal alignments between text and speech, which hinders the efficiency and scalability of diffusion models for TTS. In this work, we present an efficient and scalable Diffusion Transformer (DiT) that utilizes off-the-shelf pre-trained text and speech encoders. Our approach addresses the challenge of text-speech alignment via cross-attention mechanisms with the prediction of the total length of speech representations. To achieve this, we enhance the DiT architecture to suit TTS and improve the alignment by incorporating semantic guidance into the latent space of speech. We scale the training dataset and the model size to 82K hours and 790M parameters, respectively. Our extensive experiments demonstrate that the large-scale diffusion model for TTS without domain-specific modeling not only simplifies the training pipeline but also yields superior or comparable zero-shot performance to state-of-the-art TTS models in terms of naturalness, intelligibility, and speaker similarity. Our speech samples are available at https://ditto-tts.github.io. 4 authors · Jun 17, 2024
- ViT-TTS: Visual Text-to-Speech with Scalable Diffusion Transformer Text-to-speech(TTS) has undergone remarkable improvements in performance, particularly with the advent of Denoising Diffusion Probabilistic Models (DDPMs). However, the perceived quality of audio depends not solely on its content, pitch, rhythm, and energy, but also on the physical environment. In this work, we propose ViT-TTS, the first visual TTS model with scalable diffusion transformers. ViT-TTS complement the phoneme sequence with the visual information to generate high-perceived audio, opening up new avenues for practical applications of AR and VR to allow a more immersive and realistic audio experience. To mitigate the data scarcity in learning visual acoustic information, we 1) introduce a self-supervised learning framework to enhance both the visual-text encoder and denoiser decoder; 2) leverage the diffusion transformer scalable in terms of parameters and capacity to learn visual scene information. Experimental results demonstrate that ViT-TTS achieves new state-of-the-art results, outperforming cascaded systems and other baselines regardless of the visibility of the scene. With low-resource data (1h, 2h, 5h), ViT-TTS achieves comparative results with rich-resource baselines.~Audio samples are available at \url{https://ViT-TTS.github.io/.} 8 authors · May 22, 2023
62 BASE TTS: Lessons from building a billion-parameter Text-to-Speech model on 100K hours of data We introduce a text-to-speech (TTS) model called BASE TTS, which stands for Big Adaptive Streamable TTS with Emergent abilities. BASE TTS is the largest TTS model to-date, trained on 100K hours of public domain speech data, achieving a new state-of-the-art in speech naturalness. It deploys a 1-billion-parameter autoregressive Transformer that converts raw texts into discrete codes ("speechcodes") followed by a convolution-based decoder which converts these speechcodes into waveforms in an incremental, streamable manner. Further, our speechcodes are built using a novel speech tokenization technique that features speaker ID disentanglement and compression with byte-pair encoding. Echoing the widely-reported "emergent abilities" of large language models when trained on increasing volume of data, we show that BASE TTS variants built with 10K+ hours and 500M+ parameters begin to demonstrate natural prosody on textually complex sentences. We design and share a specialized dataset to measure these emergent abilities for text-to-speech. We showcase state-of-the-art naturalness of BASE TTS by evaluating against baselines that include publicly available large-scale text-to-speech systems: YourTTS, Bark and TortoiseTTS. Audio samples generated by the model can be heard at https://amazon-ltts-paper.com/. 19 authors · Feb 12, 2024 9
12 TTS-1 Technical Report We introduce Inworld TTS-1, a set of two Transformer-based autoregressive text-to-speech (TTS) models. Our largest model, TTS-1-Max, has 8.8B parameters and is designed for utmost quality and expressiveness in demanding applications. TTS-1 is our most efficient model, with 1.6B parameters, built for real-time speech synthesis and on-device use cases. By scaling train-time compute and applying a sequential process of pre-training, fine-tuning, and RL-alignment of the speech-language model (SpeechLM) component, both models achieve state-of-the-art performance on a variety of benchmarks, demonstrating exceptional quality relying purely on in-context learning of the speaker's voice. Inworld TTS-1 and TTS-1-Max can generate high-resolution 48 kHz speech with low latency, and support 11 languages with fine-grained emotional control and non-verbal vocalizations through audio markups. We additionally open-source our training and modeling code under an MIT license. 32 authors · Jul 22
- Robust and Unbounded Length Generalization in Autoregressive Transformer-Based Text-to-Speech Autoregressive (AR) Transformer-based sequence models are known to have difficulty generalizing to sequences longer than those seen during training. When applied to text-to-speech (TTS), these models tend to drop or repeat words or produce erratic output, especially for longer utterances. In this paper, we introduce enhancements aimed at AR Transformer-based encoder-decoder TTS systems that address these robustness and length generalization issues. Our approach uses an alignment mechanism to provide cross-attention operations with relative location information. The associated alignment position is learned as a latent property of the model via backpropagation and requires no external alignment information during training. While the approach is tailored to the monotonic nature of TTS input-output alignment, it is still able to benefit from the flexible modeling power of interleaved multi-head self- and cross-attention operations. A system incorporating these improvements, which we call Very Attentive Tacotron, matches the naturalness and expressiveness of a baseline T5-based TTS system, while eliminating problems with repeated or dropped words and enabling generalization to any practical utterance length. 7 authors · Oct 29, 2024
1 Autoregressive Diffusion Transformer for Text-to-Speech Synthesis Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ . 5 authors · Jun 8, 2024
16 MegaTTS 3: Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces MegaTTS 3, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to MegaTTS 3 to reduce the difficulty of alignment without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that MegaTTS 3 achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/. 14 authors · Feb 26 3
5 MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer The recent large-scale text-to-speech (TTS) systems are usually grouped as autoregressive and non-autoregressive systems. The autoregressive systems implicitly model duration but exhibit certain deficiencies in robustness and lack of duration controllability. Non-autoregressive systems require explicit alignment information between text and speech during training and predict durations for linguistic units (e.g. phone), which may compromise their naturalness. In this paper, we introduce Masked Generative Codec Transformer (MaskGCT), a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the mask-and-predict learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zero-shot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at https://maskgct.github.io/. 10 authors · Sep 1, 2024
- SimpleSpeech: Towards Simple and Efficient Text-to-Speech with Scalar Latent Transformer Diffusion Models In this study, we propose a simple and efficient Non-Autoregressive (NAR) text-to-speech (TTS) system based on diffusion, named SimpleSpeech. Its simpleness shows in three aspects: (1) It can be trained on the speech-only dataset, without any alignment information; (2) It directly takes plain text as input and generates speech through an NAR way; (3) It tries to model speech in a finite and compact latent space, which alleviates the modeling difficulty of diffusion. More specifically, we propose a novel speech codec model (SQ-Codec) with scalar quantization, SQ-Codec effectively maps the complex speech signal into a finite and compact latent space, named scalar latent space. Benefits from SQ-Codec, we apply a novel transformer diffusion model in the scalar latent space of SQ-Codec. We train SimpleSpeech on 4k hours of a speech-only dataset, it shows natural prosody and voice cloning ability. Compared with previous large-scale TTS models, it presents significant speech quality and generation speed improvement. Demos are released. 6 authors · Jun 4, 2024
46 F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching This paper introduces F5-TTS, a fully non-autoregressive text-to-speech system based on flow matching with Diffusion Transformer (DiT). Without requiring complex designs such as duration model, text encoder, and phoneme alignment, the text input is simply padded with filler tokens to the same length as input speech, and then the denoising is performed for speech generation, which was originally proved feasible by E2 TTS. However, the original design of E2 TTS makes it hard to follow due to its slow convergence and low robustness. To address these issues, we first model the input with ConvNeXt to refine the text representation, making it easy to align with the speech. We further propose an inference-time Sway Sampling strategy, which significantly improves our model's performance and efficiency. This sampling strategy for flow step can be easily applied to existing flow matching based models without retraining. Our design allows faster training and achieves an inference RTF of 0.15, which is greatly improved compared to state-of-the-art diffusion-based TTS models. Trained on a public 100K hours multilingual dataset, our Fairytaler Fakes Fluent and Faithful speech with Flow matching (F5-TTS) exhibits highly natural and expressive zero-shot ability, seamless code-switching capability, and speed control efficiency. Demo samples can be found at https://SWivid.github.io/F5-TTS. We release all code and checkpoints to promote community development. 8 authors · Oct 9, 2024 7
2 ArTST: Arabic Text and Speech Transformer We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use. 4 authors · Oct 25, 2023
- SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}. 8 authors · Aug 25, 2024
27 SpeechX: Neural Codec Language Model as a Versatile Speech Transformer Recent advancements in generative speech models based on audio-text prompts have enabled remarkable innovations like high-quality zero-shot text-to-speech. However, existing models still face limitations in handling diverse audio-text speech generation tasks involving transforming input speech and processing audio captured in adverse acoustic conditions. This paper introduces SpeechX, a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks, dealing with both clean and noisy signals. SpeechX combines neural codec language modeling with multi-task learning using task-dependent prompting, enabling unified and extensible modeling and providing a consistent way for leveraging textual input in speech enhancement and transformation tasks. Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise, achieving comparable or superior performance to specialized models across tasks. See https://aka.ms/speechx for demo samples. 10 authors · Aug 13, 2023 1
- This Paper Had the Smartest Reviewers -- Flattery Detection Utilising an Audio-Textual Transformer-Based Approach Flattery is an important aspect of human communication that facilitates social bonding, shapes perceptions, and influences behavior through strategic compliments and praise, leveraging the power of speech to build rapport effectively. Its automatic detection can thus enhance the naturalness of human-AI interactions. To meet this need, we present a novel audio textual dataset comprising 20 hours of speech and train machine learning models for automatic flattery detection. In particular, we employ pretrained AST, Wav2Vec2, and Whisper models for the speech modality, and Whisper TTS models combined with a RoBERTa text classifier for the textual modality. Subsequently, we build a multimodal classifier by combining text and audio representations. Evaluation on unseen test data demonstrates promising results, with Unweighted Average Recall scores reaching 82.46% in audio-only experiments, 85.97% in text-only experiments, and 87.16% using a multimodal approach. 8 authors · Jun 25, 2024
- Small-E: Small Language Model with Linear Attention for Efficient Speech Synthesis Recent advancements in text-to-speech (TTS) powered by language models have showcased remarkable capabilities in achieving naturalness and zero-shot voice cloning. Notably, the decoder-only transformer is the prominent architecture in this domain. However, transformers face challenges stemming from their quadratic complexity in sequence length, impeding training on lengthy sequences and resource-constrained hardware. Moreover they lack specific inductive bias with regards to the monotonic nature of TTS alignments. In response, we propose to replace transformers with emerging recurrent architectures and introduce specialized cross-attention mechanisms for reducing repeating and skipping issues. Consequently our architecture can be efficiently trained on long samples and achieve state-of-the-art zero-shot voice cloning against baselines of comparable size. Our implementation and demos are available at https://github.com/theodorblackbird/lina-speech. 3 authors · Jun 6, 2024
- VALL-T: Decoder-Only Generative Transducer for Robust and Decoding-Controllable Text-to-Speech Recent TTS models with decoder-only Transformer architecture, such as SPEAR-TTS and VALL-E, achieve impressive naturalness and demonstrate the ability for zero-shot adaptation given a speech prompt. However, such decoder-only TTS models lack monotonic alignment constraints, sometimes leading to hallucination issues such as mispronunciation, word skipping and repeating. To address this limitation, we propose VALL-T, a generative Transducer model that introduces shifting relative position embeddings for input phoneme sequence, explicitly indicating the monotonic generation process while maintaining the architecture of decoder-only Transformer. Consequently, VALL-T retains the capability of prompt-based zero-shot adaptation and demonstrates better robustness against hallucinations with a relative reduction of 28.3% in the word error rate. Furthermore, the controllability of alignment in VALL-T during decoding facilitates the use of untranscribed speech prompts, even in unknown languages. It also enables the synthesis of lengthy speech by utilizing an aligned context window. 9 authors · Jan 25, 2024
1 DurIAN-E: Duration Informed Attention Network For Expressive Text-to-Speech Synthesis This paper introduces an improved duration informed attention neural network (DurIAN-E) for expressive and high-fidelity text-to-speech (TTS) synthesis. Inherited from the original DurIAN model, an auto-regressive model structure in which the alignments between the input linguistic information and the output acoustic features are inferred from a duration model is adopted. Meanwhile the proposed DurIAN-E utilizes multiple stacked SwishRNN-based Transformer blocks as linguistic encoders. Style-Adaptive Instance Normalization (SAIN) layers are exploited into frame-level encoders to improve the modeling ability of expressiveness. A denoiser incorporating both denoising diffusion probabilistic model (DDPM) for mel-spectrograms and SAIN modules is conducted to further improve the synthetic speech quality and expressiveness. Experimental results prove that the proposed expressive TTS model in this paper can achieve better performance than the state-of-the-art approaches in both subjective mean opinion score (MOS) and preference tests. 5 authors · Sep 22, 2023
- dMel: Speech Tokenization made Simple Large language models have revolutionized natural language processing by leveraging self-supervised pretraining on vast textual data. Inspired by this success, researchers have investigated complicated speech tokenization methods to discretize continuous speech signals so that language modeling techniques can be applied to speech data. However, existing approaches either model semantic tokens, potentially losing acoustic information, or model acoustic tokens, risking the loss of semantic information. Having multiple token types also complicates the architecture and requires additional pretraining. Here we show that discretizing mel-filterbank channels into discrete intensity bins produces a simple representation (dMel), that performs better than other existing speech tokenization methods. Using a transformer decoder-only architecture for speech-text modeling, we comprehensively evaluate different speech tokenization methods on speech recognition (ASR), speech synthesis (TTS). Our results demonstrate the effectiveness of dMel in achieving high performance on both tasks within a unified framework, paving the way for efficient and effective joint modeling of speech and text. 6 authors · Jul 22, 2024
1 Towards Natural Bilingual and Code-Switched Speech Synthesis Based on Mix of Monolingual Recordings and Cross-Lingual Voice Conversion Recent state-of-the-art neural text-to-speech (TTS) synthesis models have dramatically improved intelligibility and naturalness of generated speech from text. However, building a good bilingual or code-switched TTS for a particular voice is still a challenge. The main reason is that it is not easy to obtain a bilingual corpus from a speaker who achieves native-level fluency in both languages. In this paper, we explore the use of Mandarin speech recordings from a Mandarin speaker, and English speech recordings from another English speaker to build high-quality bilingual and code-switched TTS for both speakers. A Tacotron2-based cross-lingual voice conversion system is employed to generate the Mandarin speaker's English speech and the English speaker's Mandarin speech, which show good naturalness and speaker similarity. The obtained bilingual data are then augmented with code-switched utterances synthesized using a Transformer model. With these data, three neural TTS models -- Tacotron2, Transformer and FastSpeech are applied for building bilingual and code-switched TTS. Subjective evaluation results show that all the three systems can produce (near-)native-level speech in both languages for each of the speaker. 4 authors · Oct 15, 2020
2 VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a dynamic look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream. 3 authors · Sep 19
- EfficientSpeech: An On-Device Text to Speech Model State of the art (SOTA) neural text to speech (TTS) models can generate natural-sounding synthetic voices. These models are characterized by large memory footprints and substantial number of operations due to the long-standing focus on speech quality with cloud inference in mind. Neural TTS models are generally not designed to perform standalone speech syntheses on resource-constrained and no Internet access edge devices. In this work, an efficient neural TTS called EfficientSpeech that synthesizes speech on an ARM CPU in real-time is proposed. EfficientSpeech uses a shallow non-autoregressive pyramid-structure transformer forming a U-Network. EfficientSpeech has 266k parameters and consumes 90 MFLOPS only or about 1% of the size and amount of computation in modern compact models such as Mixer-TTS. EfficientSpeech achieves an average mel generation real-time factor of 104.3 on an RPi4. Human evaluation shows only a slight degradation in audio quality as compared to FastSpeech2. 1 authors · May 23, 2023 1
- External Knowledge Augmented Polyphone Disambiguation Using Large Language Model One of the key issues in Mandarin Chinese text-to-speech (TTS) systems is polyphone disambiguation when doing grapheme-to-phoneme (G2P) conversion. In this paper, we introduce a novel method to solve the problem as a generation task. Following the trending research of large language models (LLM) and prompt learning, the proposed method consists of three modules. Retrieval module incorporates external knowledge which is a multi-level semantic dictionary of Chinese polyphonic characters to format the sentence into a prompt. Generation module adopts the decoder-only Transformer architecture to induce the target text. Postprocess module corrects the generated text into a valid result if needed. Experimental results show that our method outperforms the existing methods on a public dataset called CPP. We also empirically study the impacts of different templates of the prompt, different sizes of training data, and whether to incorporate external knowledge. 1 authors · Dec 19, 2023
- MARS6: A Small and Robust Hierarchical-Codec Text-to-Speech Model Codec-based text-to-speech (TTS) models have shown impressive quality with zero-shot voice cloning abilities. However, they often struggle with more expressive references or complex text inputs. We present MARS6, a robust encoder-decoder transformer for rapid, expressive TTS. MARS6 is built on recent improvements in spoken language modelling. Utilizing a hierarchical setup for its decoder, new speech tokens are processed at a rate of only 12 Hz, enabling efficient modelling of long-form text while retaining reconstruction quality. We combine several recent training and inference techniques to reduce repetitive generation and improve output stability and quality. This enables the 70M-parameter MARS6 to achieve similar performance to models many times larger. We show this in objective and subjective evaluations, comparing TTS output quality and reference speaker cloning ability. Project page: https://camb-ai.github.io/mars6-turbo/ 6 authors · Jan 10
4 IndexTTS: An Industrial-Level Controllable and Efficient Zero-Shot Text-To-Speech System Recently, large language model (LLM) based text-to-speech (TTS) systems have gradually become the mainstream in the industry due to their high naturalness and powerful zero-shot voice cloning capabilities.Here, we introduce the IndexTTS system, which is mainly based on the XTTS and Tortoise model. We add some novel improvements. Specifically, in Chinese scenarios, we adopt a hybrid modeling method that combines characters and pinyin, making the pronunciations of polyphonic characters and long-tail characters controllable. We also performed a comparative analysis of the Vector Quantization (VQ) with Finite-Scalar Quantization (FSQ) for codebook utilization of acoustic speech tokens. To further enhance the effect and stability of voice cloning, we introduce a conformer-based speech conditional encoder and replace the speechcode decoder with BigVGAN2. Compared with XTTS, it has achieved significant improvements in naturalness, content consistency, and zero-shot voice cloning. As for the popular TTS systems in the open-source, such as Fish-Speech, CosyVoice2, FireRedTTS and F5-TTS, IndexTTS has a relatively simple training process, more controllable usage, and faster inference speed. Moreover, its performance surpasses that of these systems. Our demos are available at https://index-tts.github.io. 5 authors · Feb 8
- Transformers in Speech Processing: A Survey The remarkable success of transformers in the field of natural language processing has sparked the interest of the speech-processing community, leading to an exploration of their potential for modeling long-range dependencies within speech sequences. Recently, transformers have gained prominence across various speech-related domains, including automatic speech recognition, speech synthesis, speech translation, speech para-linguistics, speech enhancement, spoken dialogue systems, and numerous multimodal applications. In this paper, we present a comprehensive survey that aims to bridge research studies from diverse subfields within speech technology. By consolidating findings from across the speech technology landscape, we provide a valuable resource for researchers interested in harnessing the power of transformers to advance the field. We identify the challenges encountered by transformers in speech processing while also offering insights into potential solutions to address these issues. 6 authors · Mar 21, 2023
14 PromptTTS 2: Describing and Generating Voices with Text Prompt Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2. 15 authors · Sep 5, 2023 2
6 Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS. 25 authors · Mar 3 1
- Towards Controllable Speech Synthesis in the Era of Large Language Models: A Systematic Survey Text-to-speech (TTS) has advanced from generating natural-sounding speech to enabling fine-grained control over attributes like emotion, timbre, and style. Driven by rising industrial demand and breakthroughs in deep learning, e.g., diffusion and large language models (LLMs), controllable TTS has become a rapidly growing research area. This survey provides the first comprehensive review of controllable TTS methods, from traditional control techniques to emerging approaches using natural language prompts. We categorize model architectures, control strategies, and feature representations, while also summarizing challenges, datasets, and evaluations in controllable TTS. This survey aims to guide researchers and practitioners by offering a clear taxonomy and highlighting future directions in this fast-evolving field. One can visit https://github.com/imxtx/awesome-controllabe-speech-synthesis for a comprehensive paper list and updates. 5 authors · Dec 9, 2024
- S2ST-Omni: An Efficient Multilingual Speech-to-Speech Translation Framework via Seamless Speech-Text Alignment and Progressive Fine-tuning Despite recent advances in multilingual speech-to-speech translation (S2ST), several critical challenges persist: 1) achieving high-quality translation remains a major hurdle, and 2) most existing methods heavily rely on large-scale parallel speech corpora, which are costly and difficult to obtain. To address these issues, we propose S2ST-Omni, an efficient and scalable framework for multilingual S2ST. Specifically, we decompose the S2ST task into speech-to-text translation (S2TT) and text-to-speech synthesis (TTS). For S2TT, we propose an effective speech language model that integrates the pretrained Whisper encoder for robust audio understanding and Qwen 3.0 for advanced text comprehension. A lightweight speech adapter is employed to bridge the modality gap between speech and text representations. To further facilitate the multimodal knowledge learning, a two-stage fine-tuning strategy is introduced. In the TTS stage, we adopt a streaming autoregressive generation approach to produce natural and fluent target speech. Experiments on the CVSS benchmark show that S2ST-Omni consistently outperforms existing state-of-the-art S2ST systems in translation quality, highlighting its effectiveness and superiority. 8 authors · Jun 11
1 FireRedTTS-2: Towards Long Conversational Speech Generation for Podcast and Chatbot Current dialogue generation approaches typically require the complete dialogue text before synthesis and produce a single, inseparable speech containing all voices, making them unsuitable for interactive chat; moreover, they suffer from unstable synthesis, inaccurate speaker transitions, and incoherent prosody. In this work, we present FireRedTTS-2, a long-form streaming TTS system for multi-speaker dialogue generation, delivering stable, natural speech with reliable speaker switching and context-aware prosody. A new 12.5Hz streaming speech tokenizer accelerates training and inference, extends maximum dialogue length, encodes richer semantics to stabilize text-to-token modeling and supports high-fidelity streaming generation for real-time applications. We adopt a text-speech interleaved format, concatenating speaker-labeled text with aligned speech tokens in chronological order, and model it with a dual-transformer: a large decoder-only transformer predicts tokens at the first layer, and a smaller one completes subsequent layers. Experimental results show that FireRedTTS-2 integrates seamlessly with chat frameworks and, with minimal fine-tuning, produces emotionally expressive speech guided by implicit contextual cues. In podcast generation, it surpasses existing systems including MoonCast, Zipvoice-Dialogue, and MOSS-TTSD in objective intelligibility, speaker-turn reliability, and perceived naturalness with context-consistent prosody. Our demos are available at https://fireredteam.github.io/demos/firered_tts_2. 6 authors · Sep 2
9 XTTS: a Massively Multilingual Zero-Shot Text-to-Speech Model Most Zero-shot Multi-speaker TTS (ZS-TTS) systems support only a single language. Although models like YourTTS, VALL-E X, Mega-TTS 2, and Voicebox explored Multilingual ZS-TTS they are limited to just a few high/medium resource languages, limiting the applications of these models in most of the low/medium resource languages. In this paper, we aim to alleviate this issue by proposing and making publicly available the XTTS system. Our method builds upon the Tortoise model and adds several novel modifications to enable multilingual training, improve voice cloning, and enable faster training and inference. XTTS was trained in 16 languages and achieved state-of-the-art (SOTA) results in most of them. 11 authors · Jun 7, 2024 2
- ZMM-TTS: Zero-shot Multilingual and Multispeaker Speech Synthesis Conditioned on Self-supervised Discrete Speech Representations Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language. 8 authors · Dec 21, 2023
110 One-Minute Video Generation with Test-Time Training Transformers today still struggle to generate one-minute videos because self-attention layers are inefficient for long context. Alternatives such as Mamba layers struggle with complex multi-scene stories because their hidden states are less expressive. We experiment with Test-Time Training (TTT) layers, whose hidden states themselves can be neural networks, therefore more expressive. Adding TTT layers into a pre-trained Transformer enables it to generate one-minute videos from text storyboards. For proof of concept, we curate a dataset based on Tom and Jerry cartoons. Compared to baselines such as Mamba~2, Gated DeltaNet, and sliding-window attention layers, TTT layers generate much more coherent videos that tell complex stories, leading by 34 Elo points in a human evaluation of 100 videos per method. Although promising, results still contain artifacts, likely due to the limited capability of the pre-trained 5B model. The efficiency of our implementation can also be improved. We have only experimented with one-minute videos due to resource constraints, but the approach can be extended to longer videos and more complex stories. Sample videos, code and annotations are available at: https://test-time-training.github.io/video-dit 15 authors · Apr 7 7
- Balancing Speech Understanding and Generation Using Continual Pre-training for Codec-based Speech LLM Recent efforts have extended textual LLMs to the speech domain. Yet, a key challenge remains, which is balancing speech understanding and generation while avoiding catastrophic forgetting when integrating acoustically rich codec-based representations into models originally trained on text. In this work, we propose a novel approach that leverages continual pre-training (CPT) on a pre-trained textual LLM to create a codec-based speech language model. This strategy mitigates the modality gap between text and speech, preserving the linguistic reasoning of the original model while enabling high-fidelity speech synthesis. We validate our approach with extensive experiments across multiple tasks, including automatic speech recognition, text-to-speech, speech-to-text translation, and speech-to-speech translation (S2ST), demonstrating that our model achieves superior TTS performance and, notably, the first end-to-end S2ST system based on neural codecs. 7 authors · Feb 24
- ClArTTS: An Open-Source Classical Arabic Text-to-Speech Corpus At present, Text-to-speech (TTS) systems that are trained with high-quality transcribed speech data using end-to-end neural models can generate speech that is intelligible, natural, and closely resembles human speech. These models are trained with relatively large single-speaker professionally recorded audio, typically extracted from audiobooks. Meanwhile, due to the scarcity of freely available speech corpora of this kind, a larger gap exists in Arabic TTS research and development. Most of the existing freely available Arabic speech corpora are not suitable for TTS training as they contain multi-speaker casual speech with variations in recording conditions and quality, whereas the corpus curated for speech synthesis are generally small in size and not suitable for training state-of-the-art end-to-end models. In a move towards filling this gap in resources, we present a speech corpus for Classical Arabic Text-to-Speech (ClArTTS) to support the development of end-to-end TTS systems for Arabic. The speech is extracted from a LibriVox audiobook, which is then processed, segmented, and manually transcribed and annotated. The final ClArTTS corpus contains about 12 hours of speech from a single male speaker sampled at 40100 kHz. In this paper, we describe the process of corpus creation and provide details of corpus statistics and a comparison with existing resources. Furthermore, we develop two TTS systems based on Grad-TTS and Glow-TTS and illustrate the performance of the resulting systems via subjective and objective evaluations. The corpus will be made publicly available at www.clartts.com for research purposes, along with the baseline TTS systems demo. 4 authors · Feb 28, 2023
2 BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus BibleTTS is a large, high-quality, open speech dataset for ten languages spoken in Sub-Saharan Africa. The corpus contains up to 86 hours of aligned, studio quality 48kHz single speaker recordings per language, enabling the development of high-quality text-to-speech models. The ten languages represented are: Akuapem Twi, Asante Twi, Chichewa, Ewe, Hausa, Kikuyu, Lingala, Luganda, Luo, and Yoruba. This corpus is a derivative work of Bible recordings made and released by the Open.Bible project from Biblica. We have aligned, cleaned, and filtered the original recordings, and additionally hand-checked a subset of the alignments for each language. We present results for text-to-speech models with Coqui TTS. The data is released under a commercial-friendly CC-BY-SA license. 19 authors · Jul 7, 2022
23 E2 TTS: Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS This paper introduces Embarrassingly Easy Text-to-Speech (E2 TTS), a fully non-autoregressive zero-shot text-to-speech system that offers human-level naturalness and state-of-the-art speaker similarity and intelligibility. In the E2 TTS framework, the text input is converted into a character sequence with filler tokens. The flow-matching-based mel spectrogram generator is then trained based on the audio infilling task. Unlike many previous works, it does not require additional components (e.g., duration model, grapheme-to-phoneme) or complex techniques (e.g., monotonic alignment search). Despite its simplicity, E2 TTS achieves state-of-the-art zero-shot TTS capabilities that are comparable to or surpass previous works, including Voicebox and NaturalSpeech 3. The simplicity of E2 TTS also allows for flexibility in the input representation. We propose several variants of E2 TTS to improve usability during inference. See https://aka.ms/e2tts/ for demo samples. 13 authors · Jun 25, 2024 4
- Speechformer: Reducing Information Loss in Direct Speech Translation Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer's quadratic complexity with respect to the input sequence length prevents its adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en->de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario. 4 authors · Sep 9, 2021
- Glow-TTS: A Generative Flow for Text-to-Speech via Monotonic Alignment Search Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been proposed to generate mel-spectrograms from text in parallel. Despite the advantage, the parallel TTS models cannot be trained without guidance from autoregressive TTS models as their external aligners. In this work, we propose Glow-TTS, a flow-based generative model for parallel TTS that does not require any external aligner. By combining the properties of flows and dynamic programming, the proposed model searches for the most probable monotonic alignment between text and the latent representation of speech on its own. We demonstrate that enforcing hard monotonic alignments enables robust TTS, which generalizes to long utterances, and employing generative flows enables fast, diverse, and controllable speech synthesis. Glow-TTS obtains an order-of-magnitude speed-up over the autoregressive model, Tacotron 2, at synthesis with comparable speech quality. We further show that our model can be easily extended to a multi-speaker setting. 4 authors · May 22, 2020
5 Better speech synthesis through scaling In recent years, the field of image generation has been revolutionized by the application of autoregressive transformers and DDPMs. These approaches model the process of image generation as a step-wise probabilistic processes and leverage large amounts of compute and data to learn the image distribution. This methodology of improving performance need not be confined to images. This paper describes a way to apply advances in the image generative domain to speech synthesis. The result is TorToise -- an expressive, multi-voice text-to-speech system. All model code and trained weights have been open-sourced at https://github.com/neonbjb/tortoise-tts. 1 authors · May 12, 2023
- Fast Streaming Transducer ASR Prototyping via Knowledge Distillation with Whisper The training of automatic speech recognition (ASR) with little to no supervised data remains an open question. In this work, we demonstrate that streaming Transformer-Transducer (TT) models can be trained from scratch in consumer and accessible GPUs in their entirety with pseudo-labeled (PL) speech from foundational speech models (FSM). This allows training a robust ASR model just in one stage and does not require large data and computational budget compared to the two-step scenario with pre-training and fine-tuning. We perform a comprehensive ablation on different aspects of PL-based streaming TT models such as the impact of (1) shallow fusion of n-gram LMs, (2) contextual biasing with named entities, (3) chunk-wise decoding for low-latency streaming applications, and (4) TT overall performance as the function of the FSM size. Our results demonstrate that TT can be trained from scratch without supervised data, even with very noisy PLs. We validate the proposed framework on 6 languages from CommonVoice and propose multiple heuristics to filter out hallucinated PLs. 9 authors · Sep 20, 2024
- LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search Text to speech (TTS) has been broadly used to synthesize natural and intelligible speech in different scenarios. Deploying TTS in various end devices such as mobile phones or embedded devices requires extremely small memory usage and inference latency. While non-autoregressive TTS models such as FastSpeech have achieved significantly faster inference speed than autoregressive models, their model size and inference latency are still large for the deployment in resource constrained devices. In this paper, we propose LightSpeech, which leverages neural architecture search~(NAS) to automatically design more lightweight and efficient models based on FastSpeech. We first profile the components of current FastSpeech model and carefully design a novel search space containing various lightweight and potentially effective architectures. Then NAS is utilized to automatically discover well performing architectures within the search space. Experiments show that the model discovered by our method achieves 15x model compression ratio and 6.5x inference speedup on CPU with on par voice quality. Audio demos are provided at https://speechresearch.github.io/lightspeech. 8 authors · Feb 8, 2021
- Style-Talker: Finetuning Audio Language Model and Style-Based Text-to-Speech Model for Fast Spoken Dialogue Generation The rapid advancement of large language models (LLMs) has significantly propelled the development of text-based chatbots, demonstrating their capability to engage in coherent and contextually relevant dialogues. However, extending these advancements to enable end-to-end speech-to-speech conversation bots remains a formidable challenge, primarily due to the extensive dataset and computational resources required. The conventional approach of cascading automatic speech recognition (ASR), LLM, and text-to-speech (TTS) models in a pipeline, while effective, suffers from unnatural prosody because it lacks direct interactions between the input audio and its transcribed text and the output audio. These systems are also limited by their inherent latency from the ASR process for real-time applications. This paper introduces Style-Talker, an innovative framework that fine-tunes an audio LLM alongside a style-based TTS model for fast spoken dialog generation. Style-Talker takes user input audio and uses transcribed chat history and speech styles to generate both the speaking style and text for the response. Subsequently, the TTS model synthesizes the speech, which is then played back to the user. While the response speech is being played, the input speech undergoes ASR processing to extract the transcription and speaking style, serving as the context for the ensuing dialogue turn. This novel pipeline accelerates the traditional cascade ASR-LLM-TTS systems while integrating rich paralinguistic information from input speech. Our experimental results show that Style-Talker significantly outperforms the conventional cascade and speech-to-speech baselines in terms of both dialogue naturalness and coherence while being more than 50% faster. 5 authors · Aug 13, 2024
- Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention This paper describes a novel text-to-speech (TTS) technique based on deep convolutional neural networks (CNN), without use of any recurrent units. Recurrent neural networks (RNN) have become a standard technique to model sequential data recently, and this technique has been used in some cutting-edge neural TTS techniques. However, training RNN components often requires a very powerful computer, or a very long time, typically several days or weeks. Recent other studies, on the other hand, have shown that CNN-based sequence synthesis can be much faster than RNN-based techniques, because of high parallelizability. The objective of this paper is to show that an alternative neural TTS based only on CNN alleviate these economic costs of training. In our experiment, the proposed Deep Convolutional TTS was sufficiently trained overnight (15 hours), using an ordinary gaming PC equipped with two GPUs, while the quality of the synthesized speech was almost acceptable. 3 authors · Oct 24, 2017
- Utilizing Neural Transducers for Two-Stage Text-to-Speech via Semantic Token Prediction We propose a novel text-to-speech (TTS) framework centered around a neural transducer. Our approach divides the whole TTS pipeline into semantic-level sequence-to-sequence (seq2seq) modeling and fine-grained acoustic modeling stages, utilizing discrete semantic tokens obtained from wav2vec2.0 embeddings. For a robust and efficient alignment modeling, we employ a neural transducer named token transducer for the semantic token prediction, benefiting from its hard monotonic alignment constraints. Subsequently, a non-autoregressive (NAR) speech generator efficiently synthesizes waveforms from these semantic tokens. Additionally, a reference speech controls temporal dynamics and acoustic conditions at each stage. This decoupled framework reduces the training complexity of TTS while allowing each stage to focus on semantic and acoustic modeling. Our experimental results on zero-shot adaptive TTS demonstrate that our model surpasses the baseline in terms of speech quality and speaker similarity, both objectively and subjectively. We also delve into the inference speed and prosody control capabilities of our approach, highlighting the potential of neural transducers in TTS frameworks. 6 authors · Jan 2, 2024
- Enhancing Speech-to-Speech Translation with Multiple TTS Targets It has been known that direct speech-to-speech translation (S2ST) models usually suffer from the data scarcity issue because of the limited existing parallel materials for both source and target speech. Therefore to train a direct S2ST system, previous works usually utilize text-to-speech (TTS) systems to generate samples in the target language by augmenting the data from speech-to-text translation (S2TT). However, there is a limited investigation into how the synthesized target speech would affect the S2ST models. In this work, we analyze the effect of changing synthesized target speech for direct S2ST models. We find that simply combining the target speech from different TTS systems can potentially improve the S2ST performances. Following that, we also propose a multi-task framework that jointly optimizes the S2ST system with multiple targets from different TTS systems. Extensive experiments demonstrate that our proposed framework achieves consistent improvements (2.8 BLEU) over the baselines on the Fisher Spanish-English dataset. 7 authors · Apr 10, 2023
1 CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens Recent years have witnessed a trend that large language model (LLM) based text-to-speech (TTS) emerges into the mainstream due to their high naturalness and zero-shot capacity. In this paradigm, speech signals are discretized into token sequences, which are modeled by an LLM with text as prompts and reconstructed by a token-based vocoder to waveforms. Obviously, speech tokens play a critical role in LLM-based TTS models. Current speech tokens are learned in an unsupervised manner, which lacks explicit semantic information and alignment to the text. In this paper, we propose to represent speech with supervised semantic tokens, which are derived from a multilingual speech recognition model by inserting vector quantization into the encoder. Based on the tokens, we further propose a scalable zero-shot TTS synthesizer, CosyVoice, which consists of an LLM for text-to-token generation and a conditional flow matching model for token-to-speech synthesis. Experimental results show that supervised semantic tokens significantly outperform existing unsupervised tokens in terms of content consistency and speaker similarity for zero-shot voice cloning. Moreover, we find that utilizing large-scale data further improves the synthesis performance, indicating the scalable capacity of CosyVoice. To the best of our knowledge, this is the first attempt to involve supervised speech tokens into TTS models. 12 authors · Jul 7, 2024
- Neural HMMs are all you need (for high-quality attention-free TTS) Neural sequence-to-sequence TTS has achieved significantly better output quality than statistical speech synthesis using HMMs. However, neural TTS is generally not probabilistic and uses non-monotonic attention. Attention failures increase training time and can make synthesis babble incoherently. This paper describes how the old and new paradigms can be combined to obtain the advantages of both worlds, by replacing attention in neural TTS with an autoregressive left-right no-skip hidden Markov model defined by a neural network. Based on this proposal, we modify Tacotron 2 to obtain an HMM-based neural TTS model with monotonic alignment, trained to maximise the full sequence likelihood without approximation. We also describe how to combine ideas from classical and contemporary TTS for best results. The resulting example system is smaller and simpler than Tacotron 2, and learns to speak with fewer iterations and less data, whilst achieving comparable naturalness prior to the post-net. Our approach also allows easy control over speaking rate. 4 authors · Aug 30, 2021
- Zero-Shot Text-to-Speech from Continuous Text Streams Existing zero-shot text-to-speech (TTS) systems are typically designed to process complete sentences and are constrained by the maximum duration for which they have been trained. However, in many streaming applications, texts arrive continuously in short chunks, necessitating instant responses from the system. We identify the essential capabilities required for chunk-level streaming and introduce LiveSpeech 2, a stream-aware model that supports infinitely long speech generation, text-audio stream synchronization, and seamless transitions between short speech chunks. To achieve these, we propose (1) adopting Mamba, a class of sequence modeling distinguished by linear-time decoding, which is augmented by cross-attention mechanisms for conditioning, (2) utilizing rotary positional embeddings in the computation of cross-attention, enabling the model to process an infinite text stream by sliding a window, and (3) decoding with semantic guidance, a technique that aligns speech with the transcript during inference with minimal overhead. Experimental results demonstrate that our models are competitive with state-of-the-art language model-based zero-shot TTS models, while also providing flexibility to support a wide range of streaming scenarios. 5 authors · Oct 1, 2024
- One TTS Alignment To Rule Them All Speech-to-text alignment is a critical component of neural textto-speech (TTS) models. Autoregressive TTS models typically use an attention mechanism to learn these alignments on-line. However, these alignments tend to be brittle and often fail to generalize to long utterances and out-of-domain text, leading to missing or repeating words. Most non-autoregressive endto-end TTS models rely on durations extracted from external sources. In this paper we leverage the alignment mechanism proposed in RAD-TTS as a generic alignment learning framework, easily applicable to a variety of neural TTS models. The framework combines forward-sum algorithm, the Viterbi algorithm, and a simple and efficient static prior. In our experiments, the alignment learning framework improves all tested TTS architectures, both autoregressive (Flowtron, Tacotron 2) and non-autoregressive (FastPitch, FastSpeech 2, RAD-TTS). Specifically, it improves alignment convergence speed of existing attention-based mechanisms, simplifies the training pipeline, and makes the models more robust to errors on long utterances. Most importantly, the framework improves the perceived speech synthesis quality, as judged by human evaluators. 6 authors · Aug 23, 2021 1
2 Improving Language Model-Based Zero-Shot Text-to-Speech Synthesis with Multi-Scale Acoustic Prompts Zero-shot text-to-speech (TTS) synthesis aims to clone any unseen speaker's voice without adaptation parameters. By quantizing speech waveform into discrete acoustic tokens and modeling these tokens with the language model, recent language model-based TTS models show zero-shot speaker adaptation capabilities with only a 3-second acoustic prompt of an unseen speaker. However, they are limited by the length of the acoustic prompt, which makes it difficult to clone personal speaking style. In this paper, we propose a novel zero-shot TTS model with the multi-scale acoustic prompts based on a neural codec language model VALL-E. A speaker-aware text encoder is proposed to learn the personal speaking style at the phoneme-level from the style prompt consisting of multiple sentences. Following that, a VALL-E based acoustic decoder is utilized to model the timbre from the timbre prompt at the frame-level and generate speech. The experimental results show that our proposed method outperforms baselines in terms of naturalness and speaker similarity, and can achieve better performance by scaling out to a longer style prompt. 11 authors · Sep 21, 2023
- Fast Tree-Field Integrators: From Low Displacement Rank to Topological Transformers We present a new class of fast polylog-linear algorithms based on the theory of structured matrices (in particular low displacement rank) for integrating tensor fields defined on weighted trees. Several applications of the resulting fast tree-field integrators (FTFIs) are presented, including (a) approximation of graph metrics with tree metrics, (b) graph classification, (c) modeling on meshes, and finally (d) Topological Transformers (TTs) (Choromanski et al., 2022) for images. For Topological Transformers, we propose new relative position encoding (RPE) masking mechanisms with as few as three extra learnable parameters per Transformer layer, leading to 1.0-1.5%+ accuracy gains. Importantly, most of FTFIs are exact methods, thus numerically equivalent to their brute-force counterparts. When applied to graphs with thousands of nodes, those exact algorithms provide 5.7-13x speedups. We also provide an extensive theoretical analysis of our methods. 7 authors · Jun 22, 2024
- FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications This work proposes FireRedTTS, a foundation text-to-speech framework, to meet the growing demands for personalized and diverse generative speech applications. The framework comprises three parts: data processing, foundation system, and downstream applications. First, we comprehensively present our data processing pipeline, which transforms massive raw audio into a large-scale high-quality TTS dataset with rich annotations and a wide coverage of content, speaking style, and timbre. Then, we propose a language-model-based foundation TTS system. The speech signal is compressed into discrete semantic tokens via a semantic-aware speech tokenizer, and can be generated by a language model from the prompt text and audio. Then, a two-stage waveform generator is proposed to decode them to the high-fidelity waveform. We present two applications of this system: voice cloning for dubbing and human-like speech generation for chatbots. The experimental results demonstrate the solid in-context learning capability of FireRedTTS, which can stably synthesize high-quality speech consistent with the prompt text and audio. For dubbing, FireRedTTS can clone target voices in a zero-shot way for the UGC scenario and adapt to studio-level expressive voice characters in the PUGC scenario via few-shot fine-tuning with 1-hour recording. Moreover, FireRedTTS achieves controllable human-like speech generation in a casual style with paralinguistic behaviors and emotions via instruction tuning, to better serve spoken chatbots. 7 authors · Sep 5, 2024 1
- ESPnet2-TTS: Extending the Edge of TTS Research This paper describes ESPnet2-TTS, an end-to-end text-to-speech (E2E-TTS) toolkit. ESPnet2-TTS extends our earlier version, ESPnet-TTS, by adding many new features, including: on-the-fly flexible pre-processing, joint training with neural vocoders, and state-of-the-art TTS models with extensions like full-band E2E text-to-waveform modeling, which simplify the training pipeline and further enhance TTS performance. The unified design of our recipes enables users to quickly reproduce state-of-the-art E2E-TTS results. We also provide many pre-trained models in a unified Python interface for inference, offering a quick means for users to generate baseline samples and build demos. Experimental evaluations with English and Japanese corpora demonstrate that our provided models synthesize utterances comparable to ground-truth ones, achieving state-of-the-art TTS performance. The toolkit is available online at https://github.com/espnet/espnet. 10 authors · Oct 14, 2021
- A Vector Quantized Approach for Text to Speech Synthesis on Real-World Spontaneous Speech Recent Text-to-Speech (TTS) systems trained on reading or acted corpora have achieved near human-level naturalness. The diversity of human speech, however, often goes beyond the coverage of these corpora. We believe the ability to handle such diversity is crucial for AI systems to achieve human-level communication. Our work explores the use of more abundant real-world data for building speech synthesizers. We train TTS systems using real-world speech from YouTube and podcasts. We observe the mismatch between training and inference alignments in mel-spectrogram based autoregressive models, leading to unintelligible synthesis, and demonstrate that learned discrete codes within multiple code groups effectively resolves this issue. We introduce our MQTTS system whose architecture is designed for multiple code generation and monotonic alignment, along with the use of a clean silence prompt to improve synthesis quality. We conduct ablation analyses to identify the efficacy of our methods. We show that MQTTS outperforms existing TTS systems in several objective and subjective measures. 3 authors · Feb 8, 2023
- SupertonicTTS: Towards Highly Scalable and Efficient Text-to-Speech System We present a novel text-to-speech (TTS) system, namely SupertonicTTS, for improved scalability and efficiency in speech synthesis. SupertonicTTS is comprised of three components: a speech autoencoder for continuous latent representation, a text-to-latent module leveraging flow-matching for text-to-latent mapping, and an utterance-level duration predictor. To enable a lightweight architecture, we employ a low-dimensional latent space, temporal compression of latents, and ConvNeXt blocks. We further simplify the TTS pipeline by operating directly on raw character-level text and employing cross-attention for text-speech alignment, thus eliminating the need for grapheme-to-phoneme (G2P) modules and external aligners. In addition, we introduce context-sharing batch expansion that accelerates loss convergence and stabilizes text-speech alignment. Experimental results demonstrate that SupertonicTTS achieves competitive performance while significantly reducing architectural complexity and computational overhead compared to contemporary TTS models. Audio samples demonstrating the capabilities of SupertonicTTS are available at: https://supertonictts.github.io/. 8 authors · Mar 29
1 Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called Vall-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. Vall-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that Vall-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find Vall-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis. See https://aka.ms/valle for demos of our work. 13 authors · Jan 5, 2023
- FLY-TTS: Fast, Lightweight and High-Quality End-to-End Text-to-Speech Synthesis While recent advances in Text-To-Speech synthesis have yielded remarkable improvements in generating high-quality speech, research on lightweight and fast models is limited. This paper introduces FLY-TTS, a new fast, lightweight and high-quality speech synthesis system based on VITS. Specifically, 1) We replace the decoder with ConvNeXt blocks that generate Fourier spectral coefficients followed by the inverse short-time Fourier transform to synthesize waveforms; 2) To compress the model size, we introduce the grouped parameter-sharing mechanism to the text encoder and flow-based model; 3) We further employ the large pre-trained WavLM model for adversarial training to improve synthesis quality. Experimental results show that our model achieves a real-time factor of 0.0139 on an Intel Core i9 CPU, 8.8x faster than the baseline (0.1221), with a 1.6x parameter compression. Objective and subjective evaluations indicate that FLY-TTS exhibits comparable speech quality to the strong baseline. 5 authors · Jun 30, 2024
- AdaVITS: Tiny VITS for Low Computing Resource Speaker Adaptation Speaker adaptation in text-to-speech synthesis (TTS) is to finetune a pre-trained TTS model to adapt to new target speakers with limited data. While much effort has been conducted towards this task, seldom work has been performed for low computational resource scenarios due to the challenges raised by the requirement of the lightweight model and less computational complexity. In this paper, a tiny VITS-based TTS model, named AdaVITS, for low computing resource speaker adaptation is proposed. To effectively reduce parameters and computational complexity of VITS, an iSTFT-based wave construction decoder is proposed to replace the upsampling-based decoder which is resource-consuming in the original VITS. Besides, NanoFlow is introduced to share the density estimate across flow blocks to reduce the parameters of the prior encoder. Furthermore, to reduce the computational complexity of the textual encoder, scaled-dot attention is replaced with linear attention. To deal with the instability caused by the simplified model, instead of using the original text encoder, phonetic posteriorgram (PPG) is utilized as linguistic feature via a text-to-PPG module, which is then used as input for the encoder. Experiment shows that AdaVITS can generate stable and natural speech in speaker adaptation with 8.97M model parameters and 0.72GFlops computational complexity. 9 authors · May 31, 2022
18 Pheme: Efficient and Conversational Speech Generation In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online. 4 authors · Jan 5, 2024 2
1 StreamMel: Real-Time Zero-shot Text-to-Speech via Interleaved Continuous Autoregressive Modeling Recent advances in zero-shot text-to-speech (TTS) synthesis have achieved high-quality speech generation for unseen speakers, but most systems remain unsuitable for real-time applications because of their offline design. Current streaming TTS paradigms often rely on multi-stage pipelines and discrete representations, leading to increased computational cost and suboptimal system performance. In this work, we propose StreamMel, a pioneering single-stage streaming TTS framework that models continuous mel-spectrograms. By interleaving text tokens with acoustic frames, StreamMel enables low-latency, autoregressive synthesis while preserving high speaker similarity and naturalness. Experiments on LibriSpeech demonstrate that StreamMel outperforms existing streaming TTS baselines in both quality and latency. It even achieves performance comparable to offline systems while supporting efficient real-time generation, showcasing broad prospects for integration with real-time speech large language models. Audio samples are available at: https://aka.ms/StreamMel. 10 authors · Jun 14
8 Lina-Speech: Gated Linear Attention is a Fast and Parameter-Efficient Learner for text-to-speech synthesis Neural codec language models have achieved state-of-the-art performance in text-to-speech (TTS) synthesis, leveraging scalable architectures like autoregressive transformers and large-scale speech datasets. By framing voice cloning as a prompt continuation task, these models excel at cloning voices from short audio samples. However, this approach is limited in its ability to handle numerous or lengthy speech excerpts, since the concatenation of source and target speech must fall within the maximum context length which is determined during training. In this work, we introduce Lina-Speech, a model that replaces traditional self-attention mechanisms with emerging recurrent architectures like Gated Linear Attention (GLA). Building on the success of initial-state tuning on RWKV, we extend this technique to voice cloning, enabling the use of multiple speech samples and full utilization of the context window in synthesis. This approach is fast, easy to deploy, and achieves performance comparable to fine-tuned baselines when the dataset size ranges from 3 to 15 minutes. Notably, Lina-Speech matches or outperforms state-of-the-art baseline models, including some with a parameter count up to four times higher or trained in an end-to-end style. We release our code and checkpoints. Audio samples are available at https://theodorblackbird.github.io/blog/demo_lina/. 5 authors · Oct 30, 2024
- Leveraging Timestamp Information for Serialized Joint Streaming Recognition and Translation The growing need for instant spoken language transcription and translation is driven by increased global communication and cross-lingual interactions. This has made offering translations in multiple languages essential for user applications. Traditional approaches to automatic speech recognition (ASR) and speech translation (ST) have often relied on separate systems, leading to inefficiencies in computational resources, and increased synchronization complexity in real time. In this paper, we propose a streaming Transformer-Transducer (T-T) model able to jointly produce many-to-one and one-to-many transcription and translation using a single decoder. We introduce a novel method for joint token-level serialized output training based on timestamp information to effectively produce ASR and ST outputs in the streaming setting. Experiments on {it,es,de}->en prove the effectiveness of our approach, enabling the generation of one-to-many joint outputs with a single decoder for the first time. 7 authors · Oct 23, 2023
1 Nix-TTS: Lightweight and End-to-End Text-to-Speech via Module-wise Distillation Several solutions for lightweight TTS have shown promising results. Still, they either rely on a hand-crafted design that reaches non-optimum size or use a neural architecture search but often suffer training costs. We present Nix-TTS, a lightweight TTS achieved via knowledge distillation to a high-quality yet large-sized, non-autoregressive, and end-to-end (vocoder-free) TTS teacher model. Specifically, we offer module-wise distillation, enabling flexible and independent distillation to the encoder and decoder module. The resulting Nix-TTS inherited the advantageous properties of being non-autoregressive and end-to-end from the teacher, yet significantly smaller in size, with only 5.23M parameters or up to 89.34% reduction of the teacher model; it also achieves over 3.04x and 8.36x inference speedup on Intel-i7 CPU and Raspberry Pi 3B respectively and still retains a fair voice naturalness and intelligibility compared to the teacher model. We provide pretrained models and audio samples of Nix-TTS. 5 authors · Mar 29, 2022 1
- Recent Developments on ESPnet Toolkit Boosted by Conformer In this study, we present recent developments on ESPnet: End-to-End Speech Processing toolkit, which mainly involves a recently proposed architecture called Conformer, Convolution-augmented Transformer. This paper shows the results for a wide range of end-to-end speech processing applications, such as automatic speech recognition (ASR), speech translations (ST), speech separation (SS) and text-to-speech (TTS). Our experiments reveal various training tips and significant performance benefits obtained with the Conformer on different tasks. These results are competitive or even outperform the current state-of-art Transformer models. We are preparing to release all-in-one recipes using open source and publicly available corpora for all the above tasks with pre-trained models. Our aim for this work is to contribute to our research community by reducing the burden of preparing state-of-the-art research environments usually requiring high resources. 15 authors · Oct 26, 2020
- Forward-Backward Decoding for Regularizing End-to-End TTS Neural end-to-end TTS can generate very high-quality synthesized speech, and even close to human recording within similar domain text. However, it performs unsatisfactory when scaling it to challenging test sets. One concern is that the encoder-decoder with attention-based network adopts autoregressive generative sequence model with the limitation of "exposure bias" To address this issue, we propose two novel methods, which learn to predict future by improving agreement between forward and backward decoding sequence. The first one is achieved by introducing divergence regularization terms into model training objective to reduce the mismatch between two directional models, namely L2R and R2L (which generates targets from left-to-right and right-to-left, respectively). While the second one operates on decoder-level and exploits the future information during decoding. In addition, we employ a joint training strategy to allow forward and backward decoding to improve each other in an interactive process. Experimental results show our proposed methods especially the second one (bidirectional decoder regularization), leads a significantly improvement on both robustness and overall naturalness, as outperforming baseline (the revised version of Tacotron2) with a MOS gap of 0.14 in a challenging test, and achieving close to human quality (4.42 vs. 4.49 in MOS) on general test. 7 authors · Jul 18, 2019
- Generic Indic Text-to-speech Synthesisers with Rapid Adaptation in an End-to-end Framework Building text-to-speech (TTS) synthesisers for Indian languages is a difficult task owing to a large number of active languages. Indian languages can be classified into a finite set of families, prominent among them, Indo-Aryan and Dravidian. The proposed work exploits this property to build a generic TTS system using multiple languages from the same family in an end-to-end framework. Generic systems are quite robust as they are capable of capturing a variety of phonotactics across languages. These systems are then adapted to a new language in the same family using small amounts of adaptation data. Experiments indicate that good quality TTS systems can be built using only 7 minutes of adaptation data. An average degradation mean opinion score of 3.98 is obtained for the adapted TTSes. Extensive analysis of systematic interactions between languages in the generic TTSes is carried out. x-vectors are included as speaker embedding to synthesise text in a particular speaker's voice. An interesting observation is that the prosody of the target speaker's voice is preserved. These results are quite promising as they indicate the capability of generic TTSes to handle speaker and language switching seamlessly, along with the ease of adaptation to a new language. 2 authors · Jun 12, 2020
- Token-Level Serialized Output Training for Joint Streaming ASR and ST Leveraging Textual Alignments In real-world applications, users often require both translations and transcriptions of speech to enhance their comprehension, particularly in streaming scenarios where incremental generation is necessary. This paper introduces a streaming Transformer-Transducer that jointly generates automatic speech recognition (ASR) and speech translation (ST) outputs using a single decoder. To produce ASR and ST content effectively with minimal latency, we propose a joint token-level serialized output training method that interleaves source and target words by leveraging an off-the-shelf textual aligner. Experiments in monolingual (it-en) and multilingual (\{de,es,it\}-en) settings demonstrate that our approach achieves the best quality-latency balance. With an average ASR latency of 1s and ST latency of 1.3s, our model shows no degradation or even improves output quality compared to separate ASR and ST models, yielding an average improvement of 1.1 WER and 0.4 BLEU in the multilingual case. 6 authors · Jul 6, 2023
1 Can We Achieve High-quality Direct Speech-to-Speech Translation without Parallel Speech Data? Recently proposed two-pass direct speech-to-speech translation (S2ST) models decompose the task into speech-to-text translation (S2TT) and text-to-speech (TTS) within an end-to-end model, yielding promising results. However, the training of these models still relies on parallel speech data, which is extremely challenging to collect. In contrast, S2TT and TTS have accumulated a large amount of data and pretrained models, which have not been fully utilized in the development of S2ST models. Inspired by this, in this paper, we first introduce a composite S2ST model named ComSpeech, which can seamlessly integrate any pretrained S2TT and TTS models into a direct S2ST model. Furthermore, to eliminate the reliance on parallel speech data, we propose a novel training method ComSpeech-ZS that solely utilizes S2TT and TTS data. It aligns representations in the latent space through contrastive learning, enabling the speech synthesis capability learned from the TTS data to generalize to S2ST in a zero-shot manner. Experimental results on the CVSS dataset show that when the parallel speech data is available, ComSpeech surpasses previous two-pass models like UnitY and Translatotron 2 in both translation quality and decoding speed. When there is no parallel speech data, ComSpeech-ZS lags behind \name by only 0.7 ASR-BLEU and outperforms the cascaded models. 5 authors · Jun 11, 2024
- Towards Building Text-To-Speech Systems for the Next Billion Users Deep learning based text-to-speech (TTS) systems have been evolving rapidly with advances in model architectures, training methodologies, and generalization across speakers and languages. However, these advances have not been thoroughly investigated for Indian language speech synthesis. Such investigation is computationally expensive given the number and diversity of Indian languages, relatively lower resource availability, and the diverse set of advances in neural TTS that remain untested. In this paper, we evaluate the choice of acoustic models, vocoders, supplementary loss functions, training schedules, and speaker and language diversity for Dravidian and Indo-Aryan languages. Based on this, we identify monolingual models with FastPitch and HiFi-GAN V1, trained jointly on male and female speakers to perform the best. With this setup, we train and evaluate TTS models for 13 languages and find our models to significantly improve upon existing models in all languages as measured by mean opinion scores. We open-source all models on the Bhashini platform. 5 authors · Nov 17, 2022
- PromptTTS: Controllable Text-to-Speech with Text Descriptions Using a text description as prompt to guide the generation of text or images (e.g., GPT-3 or DALLE-2) has drawn wide attention recently. Beyond text and image generation, in this work, we explore the possibility of utilizing text descriptions to guide speech synthesis. Thus, we develop a text-to-speech (TTS) system (dubbed as PromptTTS) that takes a prompt with both style and content descriptions as input to synthesize the corresponding speech. Specifically, PromptTTS consists of a style encoder and a content encoder to extract the corresponding representations from the prompt, and a speech decoder to synthesize speech according to the extracted style and content representations. Compared with previous works in controllable TTS that require users to have acoustic knowledge to understand style factors such as prosody and pitch, PromptTTS is more user-friendly since text descriptions are a more natural way to express speech style (e.g., ''A lady whispers to her friend slowly''). Given that there is no TTS dataset with prompts, to benchmark the task of PromptTTS, we construct and release a dataset containing prompts with style and content information and the corresponding speech. Experiments show that PromptTTS can generate speech with precise style control and high speech quality. Audio samples and our dataset are publicly available. 5 authors · Nov 22, 2022
- Interleaved Speech-Text Language Models are Simple Streaming Text to Speech Synthesizers This paper introduces Interleaved Speech-Text Language Model (IST-LM) for streaming zero-shot Text-to-Speech (TTS). Unlike many previous approaches, IST-LM is directly trained on interleaved sequences of text and speech tokens with a fixed ratio, eliminating the need for additional efforts in duration prediction and grapheme-to-phoneme alignment. The ratio of text chunk size to speech chunk size is crucial for the performance of IST-LM. To explore this, we conducted a comprehensive series of statistical analyses on the training data and performed correlation analysis with the final performance, uncovering several key factors: 1) the distance between speech tokens and their corresponding text tokens, 2) the number of future text tokens accessible to each speech token, and 3) the frequency of speech tokens precedes their corresponding text tokens. Experimental results demonstrate how to achieve an optimal streaming TTS system without complicated engineering optimization, which has a limited gap with the non-streaming system. IST-LM is conceptually simple and empirically powerful, paving the way for streaming TTS with minimal overhead while largely maintaining performance, showcasing broad prospects coupled with real-time text stream from LLMs. 13 authors · Dec 20, 2024
10 RALL-E: Robust Codec Language Modeling with Chain-of-Thought Prompting for Text-to-Speech Synthesis We present RALL-E, a robust language modeling method for text-to-speech (TTS) synthesis. While previous work based on large language models (LLMs) shows impressive performance on zero-shot TTS, such methods often suffer from poor robustness, such as unstable prosody (weird pitch and rhythm/duration) and a high word error rate (WER), due to the autoregressive prediction style of language models. The core idea behind RALL-E is chain-of-thought (CoT) prompting, which decomposes the task into simpler steps to enhance the robustness of LLM-based TTS. To accomplish this idea, RALL-E first predicts prosody features (pitch and duration) of the input text and uses them as intermediate conditions to predict speech tokens in a CoT style. Second, RALL-E utilizes the predicted duration prompt to guide the computing of self-attention weights in Transformer to enforce the model to focus on the corresponding phonemes and prosody features when predicting speech tokens. Results of comprehensive objective and subjective evaluations demonstrate that, compared to a powerful baseline method VALL-E, RALL-E significantly improves the WER of zero-shot TTS from 6.3% (without reranking) and 2.1% (with reranking) to 2.8% and 1.0%, respectively. Furthermore, we demonstrate that RALL-E correctly synthesizes sentences that are hard for VALL-E and reduces the error rate from 68% to 4%. 11 authors · Apr 4, 2024
- LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech This paper introduces a new speech corpus called "LibriTTS" designed for text-to-speech use. It is derived from the original audio and text materials of the LibriSpeech corpus, which has been used for training and evaluating automatic speech recognition systems. The new corpus inherits desired properties of the LibriSpeech corpus while addressing a number of issues which make LibriSpeech less than ideal for text-to-speech work. The released corpus consists of 585 hours of speech data at 24kHz sampling rate from 2,456 speakers and the corresponding texts. Experimental results show that neural end-to-end TTS models trained from the LibriTTS corpus achieved above 4.0 in mean opinion scores in naturalness in five out of six evaluation speakers. The corpus is freely available for download from http://www.openslr.org/60/. 8 authors · Apr 5, 2019
1 GOAT-TTS: LLM-based Text-To-Speech Generation Optimized via A Dual-Branch Architecture While large language models (LLMs) have revolutionized text-to-speech (TTS) synthesis through discrete tokenization paradigms, current architectures exhibit fundamental tensions between three critical dimensions: 1) irreversible loss of acoustic characteristics caused by quantization of speech prompts; 2) stringent dependence on precisely aligned prompt speech-text pairs that limit real-world deployment; and 3) catastrophic forgetting of the LLM's native text comprehension during optimization for speech token generation. To address these challenges, we propose an LLM-based text-to-speech Generation approach Optimized via a novel dual-branch ArchiTecture (GOAT-TTS). Our framework introduces two key innovations: (1) The modality-alignment branch combines a speech encoder and projector to capture continuous acoustic embeddings, enabling bidirectional correlation between paralinguistic features (language, timbre, emotion) and semantic text representations without transcript dependency; (2) The speech-generation branch employs modular fine-tuning on top-k layers of an LLM for speech token prediction while freezing the bottom-k layers to preserve foundational linguistic knowledge. Moreover, multi-token prediction is introduced to support real-time streaming TTS synthesis. Experimental results demonstrate that our GOAT-TTS achieves performance comparable to state-of-the-art TTS models while validating the efficacy of synthesized dialect speech data. 10 authors · Apr 14
- Transformer-based language modeling and decoding for conversational speech recognition We propose a way to use a transformer-based language model in conversational speech recognition. Specifically, we focus on decoding efficiently in a weighted finite-state transducer framework. We showcase an approach to lattice re-scoring that allows for longer range history captured by a transfomer-based language model and takes advantage of a transformer's ability to avoid computing sequentially. 1 authors · Jan 4, 2020
16 E3 TTS: Easy End-to-End Diffusion-based Text to Speech We propose Easy End-to-End Diffusion-based Text to Speech, a simple and efficient end-to-end text-to-speech model based on diffusion. E3 TTS directly takes plain text as input and generates an audio waveform through an iterative refinement process. Unlike many prior work, E3 TTS does not rely on any intermediate representations like spectrogram features or alignment information. Instead, E3 TTS models the temporal structure of the waveform through the diffusion process. Without relying on additional conditioning information, E3 TTS could support flexible latent structure within the given audio. This enables E3 TTS to be easily adapted for zero-shot tasks such as editing without any additional training. Experiments show that E3 TTS can generate high-fidelity audio, approaching the performance of a state-of-the-art neural TTS system. Audio samples are available at https://e3tts.github.io. 4 authors · Nov 1, 2023 1
- Fine-grained style control in Transformer-based Text-to-speech Synthesis In this paper, we present a novel architecture to realize fine-grained style control on the transformer-based text-to-speech synthesis (TransformerTTS). Specifically, we model the speaking style by extracting a time sequence of local style tokens (LST) from the reference speech. The existing content encoder in TransformerTTS is then replaced by our designed cross-attention blocks for fusion and alignment between content and style. As the fusion is performed along with the skip connection, our cross-attention block provides a good inductive bias to gradually infuse the phoneme representation with a given style. Additionally, we prevent the style embedding from encoding linguistic content by randomly truncating LST during training and using wav2vec 2.0 features. Experiments show that with fine-grained style control, our system performs better in terms of naturalness, intelligibility, and style transferability. Our code and samples are publicly available. 2 authors · Oct 12, 2021
13 Matcha-TTS: A fast TTS architecture with conditional flow matching We introduce Matcha-TTS, a new encoder-decoder architecture for speedy TTS acoustic modelling, trained using optimal-transport conditional flow matching (OT-CFM). This yields an ODE-based decoder capable of high output quality in fewer synthesis steps than models trained using score matching. Careful design choices additionally ensure each synthesis step is fast to run. The method is probabilistic, non-autoregressive, and learns to speak from scratch without external alignments. Compared to strong pre-trained baseline models, the Matcha-TTS system has the smallest memory footprint, rivals the speed of the fastest models on long utterances, and attains the highest mean opinion score in a listening test. Please see https://shivammehta25.github.io/Matcha-TTS/ for audio examples, code, and pre-trained models. 5 authors · Sep 6, 2023
- TouchTTS: An Embarrassingly Simple TTS Framework that Everyone Can Touch It is well known that LLM-based systems are data-hungry. Recent LLM-based TTS works typically employ complex data processing pipelines to obtain high-quality training data. These sophisticated pipelines require excellent models at each stage (e.g., speech denoising, speech enhancement, speaker diarization, and punctuation models), which themselves demand high-quality training data and are rarely open-sourced. Even with state-of-the-art models, issues persist, such as incomplete background noise removal and misalignment between punctuation and actual speech pauses. Moreover, the stringent filtering strategies often retain only 10-30\% of the original data, significantly impeding data scaling efforts. In this work, we leverage a noise-robust audio tokenizer (S3Tokenizer) to design a simplified yet effective TTS data processing pipeline that maintains data quality while substantially reducing data acquisition costs, achieving a data retention rate of over 50\%. Beyond data scaling challenges, LLM-based TTS systems also incur higher deployment costs compared to conventional approaches. Current systems typically use LLMs solely for text-to-token generation, while requiring separate models (e.g., flow matching models) for token-to-waveform generation, which cannot be directly executed by LLM inference engines, further complicating deployment. To address these challenges, we eliminate redundant modules in both LLM and flow components, replacing the flow model backbone with an LLM architecture. Building upon this simplified flow backbone, we propose a unified architecture for both streaming and non-streaming inference, significantly reducing deployment costs. Finally, we explore the feasibility of unifying TTS and ASR tasks using the same data for training, thanks to the simplified pipeline and the S3Tokenizer that reduces the quality requirements for TTS training data. 12 authors · Dec 11, 2024
- NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is important to capture the diversity in human speech such as speaker identities, prosodies, and styles (e.g., singing). Current large TTS systems usually quantize speech into discrete tokens and use language models to generate these tokens one by one, which suffer from unstable prosody, word skipping/repeating issue, and poor voice quality. In this paper, we develop NaturalSpeech 2, a TTS system that leverages a neural audio codec with residual vector quantizers to get the quantized latent vectors and uses a diffusion model to generate these latent vectors conditioned on text input. To enhance the zero-shot capability that is important to achieve diverse speech synthesis, we design a speech prompting mechanism to facilitate in-context learning in the diffusion model and the duration/pitch predictor. We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers. NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, robustness, and voice quality in a zero-shot setting, and performs novel zero-shot singing synthesis with only a speech prompt. Audio samples are available at https://speechresearch.github.io/naturalspeech2. 9 authors · Apr 18, 2023 2
- An investigation of phrase break prediction in an End-to-End TTS system Purpose: This work explores the use of external phrase break prediction models to enhance listener comprehension in End-to-End Text-to-Speech (TTS) systems. Methods: The effectiveness of these models is evaluated based on listener preferences in subjective tests. Two approaches are explored: (1) a bidirectional LSTM model with task-specific embeddings trained from scratch, and (2) a pre-trained BERT model fine-tuned on phrase break prediction. Both models are trained on a multi-speaker English corpus to predict phrase break locations in text. The End-to-End TTS system used comprises a Tacotron2 model with Dynamic Convolutional Attention for mel spectrogram prediction and a WaveRNN vocoder for waveform generation. Results: The listening tests show a clear preference for text synthesized with predicted phrase breaks over text synthesized without them. Conclusion: These results confirm the value of incorporating external phrasing models within End-to-End TTS to enhance listener comprehension. 1 authors · Apr 9, 2023
1 DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021 This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test and 4.35 in SMOS test, which indicates the effectiveness of our proposed system 9 authors · Oct 24, 2021
- MobileSpeech: A Fast and High-Fidelity Framework for Mobile Zero-Shot Text-to-Speech Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at https://mobilespeech.github.io/ . 5 authors · Feb 14, 2024
- WenetSpeech4TTS: A 12,800-hour Mandarin TTS Corpus for Large Speech Generation Model Benchmark With the development of large text-to-speech (TTS) models and scale-up of the training data, state-of-the-art TTS systems have achieved impressive performance. In this paper, we present WenetSpeech4TTS, a multi-domain Mandarin corpus derived from the open-sourced WenetSpeech dataset. Tailored for the text-to-speech tasks, we refined WenetSpeech by adjusting segment boundaries, enhancing the audio quality, and eliminating speaker mixing within each segment. Following a more accurate transcription process and quality-based data filtering process, the obtained WenetSpeech4TTS corpus contains 12,800 hours of paired audio-text data. Furthermore, we have created subsets of varying sizes, categorized by segment quality scores to allow for TTS model training and fine-tuning. VALL-E and NaturalSpeech 2 systems are trained and fine-tuned on these subsets to validate the usability of WenetSpeech4TTS, establishing baselines on benchmark for fair comparison of TTS systems. The corpus and corresponding benchmarks are publicly available on huggingface. 10 authors · Jun 9, 2024
- TDASS: Target Domain Adaptation Speech Synthesis Framework for Multi-speaker Low-Resource TTS Recently, synthesizing personalized speech by text-to-speech (TTS) application is highly demanded. But the previous TTS models require a mass of target speaker speeches for training. It is a high-cost task, and hard to record lots of utterances from the target speaker. Data augmentation of the speeches is a solution but leads to the low-quality synthesis speech problem. Some multi-speaker TTS models are proposed to address the issue. But the quantity of utterances of each speaker imbalance leads to the voice similarity problem. We propose the Target Domain Adaptation Speech Synthesis Network (TDASS) to address these issues. Based on the backbone of the Tacotron2 model, which is the high-quality TTS model, TDASS introduces a self-interested classifier for reducing the non-target influence. Besides, a special gradient reversal layer with different operations for target and non-target is added to the classifier. We evaluate the model on a Chinese speech corpus, the experiments show the proposed method outperforms the baseline method in terms of voice quality and voice similarity. 4 authors · May 24, 2022
- A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology. 7 authors · Jun 11, 2023
- Conformer: Convolution-augmented Transformer for Speech Recognition Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters. 11 authors · May 16, 2020
2 Fewer-token Neural Speech Codec with Time-invariant Codes Language model based text-to-speech (TTS) models, like VALL-E, have gained attention for their outstanding in-context learning capability in zero-shot scenarios. Neural speech codec is a critical component of these models, which can convert speech into discrete token representations. However, excessive token sequences from the codec may negatively affect prediction accuracy and restrict the progression of Language model based TTS models. To address this issue, this paper proposes a novel neural speech codec with time-invariant codes named TiCodec. By encoding and quantizing time-invariant information into a separate code, TiCodec can reduce the amount of frame-level information that needs encoding, effectively decreasing the number of tokens as codes of speech. Furthermore, this paper introduces a time-invariant encoding consistency loss to enhance the consistency of time-invariant code within an utterance and force it to capture more global information, which can benefit the zero-shot TTS task. Experimental results demonstrate that TiCodec can not only enhance the quality of reconstruction speech with fewer tokens but also increase the similarity and naturalness, as well as reduce the word error rate of the synthesized speech by the TTS model. 7 authors · Sep 15, 2023
- Text-aware and Context-aware Expressive Audiobook Speech Synthesis Recent advances in text-to-speech have significantly improved the expressiveness of synthetic speech. However, a major challenge remains in generating speech that captures the diverse styles exhibited by professional narrators in audiobooks without relying on manually labeled data or reference speech.To address this problem, we propose a text-aware and context-aware(TACA) style modeling approach for expressive audiobook speech synthesis. We first establish a text-aware style space to cover diverse styles via contrastive learning with the supervision of the speech style. Meanwhile, we adopt a context encoder to incorporate cross-sentence information and the style embedding obtained from text. Finally, we introduce the context encoder to two typical TTS models, VITS-based TTS and language model-based TTS. Experimental results demonstrate that our proposed approach can effectively capture diverse styles and coherent prosody, and consequently improves naturalness and expressiveness in audiobook speech synthesis. 6 authors · Jun 9, 2024
11 Fish-Speech: Leveraging Large Language Models for Advanced Multilingual Text-to-Speech Synthesis Text-to-Speech (TTS) systems face ongoing challenges in processing complex linguistic features, handling polyphonic expressions, and producing natural-sounding multilingual speech - capabilities that are crucial for future AI applications. In this paper, we present Fish-Speech, a novel framework that implements a serial fast-slow Dual Autoregressive (Dual-AR) architecture to enhance the stability of Grouped Finite Scalar Vector Quantization (GFSQ) in sequence generation tasks. This architecture improves codebook processing efficiency while maintaining high-fidelity outputs, making it particularly effective for AI interactions and voice cloning. Fish-Speech leverages Large Language Models (LLMs) for linguistic feature extraction, eliminating the need for traditional grapheme-to-phoneme (G2P) conversion and thereby streamlining the synthesis pipeline and enhancing multilingual support. Additionally, we developed FF-GAN through GFSQ to achieve superior compression ratios and near 100\% codebook utilization. Our approach addresses key limitations of current TTS systems while providing a foundation for more sophisticated, context-aware speech synthesis. Experimental results show that Fish-Speech significantly outperforms baseline models in handling complex linguistic scenarios and voice cloning tasks, demonstrating its potential to advance TTS technology in AI applications. The implementation is open source at https://github.com/fishaudio/fish-speech{https://github.com/fishaudio/fish-speech}. 7 authors · Nov 2, 2024 1
1 PSST! Prosodic Speech Segmentation with Transformers Self-attention mechanisms have enabled transformers to achieve superhuman-level performance on many speech-to-text (STT) tasks, yet the challenge of automatic prosodic segmentation has remained unsolved. In this paper we finetune Whisper, a pretrained STT model, to annotate intonation unit (IU) boundaries by repurposing low-frequency tokens. Our approach achieves an accuracy of 95.8%, outperforming previous methods without the need for large-scale labeled data or enterprise grade compute resources. We also diminish input signals by applying a series of filters, finding that low pass filters at a 3.2 kHz level improve segmentation performance in out of sample and out of distribution contexts. We release our model as both a transcription tool and a baseline for further improvements in prosodic segmentation. 3 authors · Feb 3, 2023
- Bayesian Speech synthesizers Can Learn from Multiple Teachers Codec-based text-to-speech (TTS) models have recently gained traction for their efficiency and strong performance in voice cloning. However, codec-based TTS faces limitations due to the challenges of pretraining robust speech codecs and the quality degradation introduced by quantization errors. Emerging evidence suggests that continuous-valued generative models can alleviate these issues and serve as a promising alternative. Yet, effectively modelling diverse speech patterns and developing reliable sampling strategies for continuous-valued autoregressive (AR) TTS remains underexplored. In this work, we propose BELLE, Bayesian evidential learning with language modelling for TTS, a novel continuous-valued AR framework that directly predicts mel-spectrograms from textual input. BELLE treats each mel-spectrogram frame as a Gaussian distribution sampled from a learned hyper distribution, enabling principled uncertainty estimation, particularly in scenarios with parallel data (i.e., one text-audio prompt paired with multiple speech samples). To obtain such data, diverse speech samples are synthesized using multiple pre-trained TTS models given the same text-audio prompts, which are distilled into BELLE via Bayesian evidential learning. Experimental results indicate that BELLE demonstrates highly competitive performance compared with the current best open-source TTS models, even though BELLE is trained on a large amount of synthetic data and uses only approximately one-tenth of their training data. Audio samples generated by BELLE are available at https://belletts.github.io/Belle/. The code, checkpoints, and synthetic data will be released after the paper is accepted. 6 authors · Oct 28
1 Learning to Speak Fluently in a Foreign Language: Multilingual Speech Synthesis and Cross-Language Voice Cloning We present a multispeaker, multilingual text-to-speech (TTS) synthesis model based on Tacotron that is able to produce high quality speech in multiple languages. Moreover, the model is able to transfer voices across languages, e.g. synthesize fluent Spanish speech using an English speaker's voice, without training on any bilingual or parallel examples. Such transfer works across distantly related languages, e.g. English and Mandarin. Critical to achieving this result are: 1. using a phonemic input representation to encourage sharing of model capacity across languages, and 2. incorporating an adversarial loss term to encourage the model to disentangle its representation of speaker identity (which is perfectly correlated with language in the training data) from the speech content. Further scaling up the model by training on multiple speakers of each language, and incorporating an autoencoding input to help stabilize attention during training, results in a model which can be used to consistently synthesize intelligible speech for training speakers in all languages seen during training, and in native or foreign accents. 9 authors · Jul 9, 2019
- Generalized Multilingual Text-to-Speech Generation with Language-Aware Style Adaptation Text-to-Speech (TTS) models can generate natural, human-like speech across multiple languages by transforming phonemes into waveforms. However, multilingual TTS remains challenging due to discrepancies in phoneme vocabularies and variations in prosody and speaking style across languages. Existing approaches either train separate models for each language, which achieve high performance at the cost of increased computational resources, or use a unified model for multiple languages that struggles to capture fine-grained, language-specific style variations. In this work, we propose LanStyleTTS, a non-autoregressive, language-aware style adaptive TTS framework that standardizes phoneme representations and enables fine-grained, phoneme-level style control across languages. This design supports a unified multilingual TTS model capable of producing accurate and high-quality speech without the need to train language-specific models. We evaluate LanStyleTTS by integrating it with several state-of-the-art non-autoregressive TTS architectures. Results show consistent performance improvements across different model backbones. Furthermore, we investigate a range of acoustic feature representations, including mel-spectrograms and autoencoder-derived latent features. Our experiments demonstrate that latent encodings can significantly reduce model size and computational cost while preserving high-quality speech generation. 5 authors · Apr 11
2 InstructTTSEval: Benchmarking Complex Natural-Language Instruction Following in Text-to-Speech Systems In modern speech synthesis, paralinguistic information--such as a speaker's vocal timbre, emotional state, and dynamic prosody--plays a critical role in conveying nuance beyond mere semantics. Traditional Text-to-Speech (TTS) systems rely on fixed style labels or inserting a speech prompt to control these cues, which severely limits flexibility. Recent attempts seek to employ natural-language instructions to modulate paralinguistic features, substantially improving the generalization of instruction-driven TTS models. Although many TTS systems now support customized synthesis via textual description, their actual ability to interpret and execute complex instructions remains largely unexplored. In addition, there is still a shortage of high-quality benchmarks and automated evaluation metrics specifically designed for instruction-based TTS, which hinders accurate assessment and iterative optimization of these models. To address these limitations, we introduce InstructTTSEval, a benchmark for measuring the capability of complex natural-language style control. We introduce three tasks, namely Acoustic-Parameter Specification, Descriptive-Style Directive, and Role-Play, including English and Chinese subsets, each with 1k test cases (6k in total) paired with reference audio. We leverage Gemini as an automatic judge to assess their instruction-following abilities. Our evaluation of accessible instruction-following TTS systems highlights substantial room for further improvement. We anticipate that InstructTTSEval will drive progress toward more powerful, flexible, and accurate instruction-following TTS. 9 authors · Jun 19
- Sparks of Large Audio Models: A Survey and Outlook This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, Large Audio Models, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding Foundational Large Audio Models, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of Large Audio Models with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models. 11 authors · Aug 24, 2023
- Improved Child Text-to-Speech Synthesis through Fastpitch-based Transfer Learning Speech synthesis technology has witnessed significant advancements in recent years, enabling the creation of natural and expressive synthetic speech. One area of particular interest is the generation of synthetic child speech, which presents unique challenges due to children's distinct vocal characteristics and developmental stages. This paper presents a novel approach that leverages the Fastpitch text-to-speech (TTS) model for generating high-quality synthetic child speech. This study uses the transfer learning training pipeline. The approach involved finetuning a multi-speaker TTS model to work with child speech. We use the cleaned version of the publicly available MyST dataset (55 hours) for our finetuning experiments. We also release a prototype dataset of synthetic speech samples generated from this research together with model code to support further research. By using a pretrained MOSNet, we conducted an objective assessment that showed a significant correlation between real and synthetic child voices. Additionally, to validate the intelligibility of the generated speech, we employed an automatic speech recognition (ASR) model to compare the word error rates (WER) of real and synthetic child voices. The speaker similarity between the real and generated speech is also measured using a pretrained speaker encoder. 2 authors · Nov 7, 2023
27 Llasa: Scaling Train-Time and Inference-Time Compute for Llama-based Speech Synthesis Recent advances in text-based large language models (LLMs), particularly in the GPT series and the o1 model, have demonstrated the effectiveness of scaling both training-time and inference-time compute. However, current state-of-the-art TTS systems leveraging LLMs are often multi-stage, requiring separate models (e.g., diffusion models after LLM), complicating the decision of whether to scale a particular model during training or testing. This work makes the following contributions: First, we explore the scaling of train-time and inference-time compute for speech synthesis. Second, we propose a simple framework Llasa for speech synthesis that employs a single-layer vector quantizer (VQ) codec and a single Transformer architecture to fully align with standard LLMs such as Llama. Our experiments reveal that scaling train-time compute for Llasa consistently improves the naturalness of synthesized speech and enables the generation of more complex and accurate prosody patterns. Furthermore, from the perspective of scaling inference-time compute, we employ speech understanding models as verifiers during the search, finding that scaling inference-time compute shifts the sampling modes toward the preferences of specific verifiers, thereby improving emotional expressiveness, timbre consistency, and content accuracy. In addition, we released the checkpoint and training code for our TTS model (1B, 3B, 8B) and codec model publicly available. 20 authors · Feb 6 4
- AdaSpeech: Adaptive Text to Speech for Custom Voice Custom voice, a specific text to speech (TTS) service in commercial speech platforms, aims to adapt a source TTS model to synthesize personal voice for a target speaker using few speech data. Custom voice presents two unique challenges for TTS adaptation: 1) to support diverse customers, the adaptation model needs to handle diverse acoustic conditions that could be very different from source speech data, and 2) to support a large number of customers, the adaptation parameters need to be small enough for each target speaker to reduce memory usage while maintaining high voice quality. In this work, we propose AdaSpeech, an adaptive TTS system for high-quality and efficient customization of new voices. We design several techniques in AdaSpeech to address the two challenges in custom voice: 1) To handle different acoustic conditions, we use two acoustic encoders to extract an utterance-level vector and a sequence of phoneme-level vectors from the target speech during training; in inference, we extract the utterance-level vector from a reference speech and use an acoustic predictor to predict the phoneme-level vectors. 2) To better trade off the adaptation parameters and voice quality, we introduce conditional layer normalization in the mel-spectrogram decoder of AdaSpeech, and fine-tune this part in addition to speaker embedding for adaptation. We pre-train the source TTS model on LibriTTS datasets and fine-tune it on VCTK and LJSpeech datasets (with different acoustic conditions from LibriTTS) with few adaptation data, e.g., 20 sentences, about 1 minute speech. Experiment results show that AdaSpeech achieves much better adaptation quality than baseline methods, with only about 5K specific parameters for each speaker, which demonstrates its effectiveness for custom voice. Audio samples are available at https://speechresearch.github.io/adaspeech/. 7 authors · Mar 1, 2021
3 BreezyVoice: Adapting TTS for Taiwanese Mandarin with Enhanced Polyphone Disambiguation -- Challenges and Insights We present BreezyVoice, a Text-to-Speech (TTS) system specifically adapted for Taiwanese Mandarin, highlighting phonetic control abilities to address the unique challenges of polyphone disambiguation in the language. Building upon CosyVoice, we incorporate a S^{3} tokenizer, a large language model (LLM), an optimal-transport conditional flow matching model (OT-CFM), and a grapheme to phoneme prediction model, to generate realistic speech that closely mimics human utterances. Our evaluation demonstrates BreezyVoice's superior performance in both general and code-switching contexts, highlighting its robustness and effectiveness in generating high-fidelity speech. Additionally, we address the challenges of generalizability in modeling long-tail speakers and polyphone disambiguation. Our approach significantly enhances performance and offers valuable insights into the workings of neural codec TTS systems. 13 authors · Jan 29 1
- Hard-Synth: Synthesizing Diverse Hard Samples for ASR using Zero-Shot TTS and LLM Text-to-speech (TTS) models have been widely adopted to enhance automatic speech recognition (ASR) systems using text-only corpora, thereby reducing the cost of labeling real speech data. Existing research primarily utilizes additional text data and predefined speech styles supported by TTS models. In this paper, we propose Hard-Synth, a novel ASR data augmentation method that leverages large language models (LLMs) and advanced zero-shot TTS. Our approach employs LLMs to generate diverse in-domain text through rewriting, without relying on additional text data. Rather than using predefined speech styles, we introduce a hard prompt selection method with zero-shot TTS to clone speech styles that the ASR model finds challenging to recognize. Experiments demonstrate that Hard-Synth significantly enhances the Conformer model, achieving relative word error rate (WER) reductions of 6.5\%/4.4\% on LibriSpeech dev/test-other subsets. Additionally, we show that Hard-Synth is data-efficient and capable of reducing bias in ASR. 9 authors · Nov 20, 2024
- HAM-TTS: Hierarchical Acoustic Modeling for Token-Based Zero-Shot Text-to-Speech with Model and Data Scaling Token-based text-to-speech (TTS) models have emerged as a promising avenue for generating natural and realistic speech, yet they grapple with low pronunciation accuracy, speaking style and timbre inconsistency, and a substantial need for diverse training data. In response, we introduce a novel hierarchical acoustic modeling approach complemented by a tailored data augmentation strategy and train it on the combination of real and synthetic data, scaling the data size up to 650k hours, leading to the zero-shot TTS model with 0.8B parameters. Specifically, our method incorporates a latent variable sequence containing supplementary acoustic information based on refined self-supervised learning (SSL) discrete units into the TTS model by a predictor. This significantly mitigates pronunciation errors and style mutations in synthesized speech. During training, we strategically replace and duplicate segments of the data to enhance timbre uniformity. Moreover, a pretrained few-shot voice conversion model is utilized to generate a plethora of voices with identical content yet varied timbres. This facilitates the explicit learning of utterance-level one-to-many mappings, enriching speech diversity and also ensuring consistency in timbre. Comparative experiments (Demo page: https://anonymous.4open.science/w/ham-tts/)demonstrate our model's superiority over VALL-E in pronunciation precision and maintaining speaking style, as well as timbre continuity. 9 authors · Mar 9, 2024
1 SNIPER Training: Single-Shot Sparse Training for Text-to-Speech Text-to-speech (TTS) models have achieved remarkable naturalness in recent years, yet like most deep neural models, they have more parameters than necessary. Sparse TTS models can improve on dense models via pruning and extra retraining, or converge faster than dense models with some performance loss. Thus, we propose training TTS models using decaying sparsity, i.e. a high initial sparsity to accelerate training first, followed by a progressive rate reduction to obtain better eventual performance. This decremental approach differs from current methods of incrementing sparsity to a desired target, which costs significantly more time than dense training. We call our method SNIPER training: Single-shot Initialization Pruning Evolving-Rate training. Our experiments on FastSpeech2 show that we were able to obtain better losses in the first few training epochs with SNIPER, and that the final SNIPER-trained models outperformed constant-sparsity models and edged out dense models, with negligible difference in training time. 5 authors · Nov 14, 2022
- Guided-TTS: A Diffusion Model for Text-to-Speech via Classifier Guidance We propose Guided-TTS, a high-quality text-to-speech (TTS) model that does not require any transcript of target speaker using classifier guidance. Guided-TTS combines an unconditional diffusion probabilistic model with a separately trained phoneme classifier for classifier guidance. Our unconditional diffusion model learns to generate speech without any context from untranscribed speech data. For TTS synthesis, we guide the generative process of the diffusion model with a phoneme classifier trained on a large-scale speech recognition dataset. We present a norm-based scaling method that reduces the pronunciation errors of classifier guidance in Guided-TTS. We show that Guided-TTS achieves a performance comparable to that of the state-of-the-art TTS model, Grad-TTS, without any transcript for LJSpeech. We further demonstrate that Guided-TTS performs well on diverse datasets including a long-form untranscribed dataset. 3 authors · Nov 23, 2021
1 Text-only Domain Adaptation using Unified Speech-Text Representation in Transducer Domain adaptation using text-only corpus is challenging in end-to-end(E2E) speech recognition. Adaptation by synthesizing audio from text through TTS is resource-consuming. We present a method to learn Unified Speech-Text Representation in Conformer Transducer(USTR-CT) to enable fast domain adaptation using the text-only corpus. Different from the previous textogram method, an extra text encoder is introduced in our work to learn text representation and is removed during inference, so there is no modification for online deployment. To improve the efficiency of adaptation, single-step and multi-step adaptations are also explored. The experiments on adapting LibriSpeech to SPGISpeech show the proposed method reduces the word error rate(WER) by relatively 44% on the target domain, which is better than those of TTS method and textogram method. Also, it is shown the proposed method can be combined with internal language model estimation(ILME) to further improve the performance. 5 authors · Jun 6, 2023
1 StyleFusion TTS: Multimodal Style-control and Enhanced Feature Fusion for Zero-shot Text-to-speech Synthesis We introduce StyleFusion-TTS, a prompt and/or audio referenced, style and speaker-controllable, zero-shot text-to-speech (TTS) synthesis system designed to enhance the editability and naturalness of current research literature. We propose a general front-end encoder as a compact and effective module to utilize multimodal inputs including text prompts, audio references, and speaker timbre references in a fully zero-shot manner and produce disentangled style and speaker control embeddings. Our novel approach also leverages a hierarchical conformer structure for the fusion of style and speaker control embeddings, aiming to achieve optimal feature fusion within the current advanced TTS architecture. StyleFusion-TTS is evaluated through multiple metrics, both subjectively and objectively. The system shows promising performance across our evaluations, suggesting its potential to contribute to the advancement of the field of zero-shot text-to-speech synthesis. 4 authors · Sep 24, 2024
- Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss In this paper we present an end-to-end speech recognition model with Transformer encoders that can be used in a streaming speech recognition system. Transformer computation blocks based on self-attention are used to encode both audio and label sequences independently. The activations from both audio and label encoders are combined with a feed-forward layer to compute a probability distribution over the label space for every combination of acoustic frame position and label history. This is similar to the Recurrent Neural Network Transducer (RNN-T) model, which uses RNNs for information encoding instead of Transformer encoders. The model is trained with the RNN-T loss well-suited to streaming decoding. We present results on the LibriSpeech dataset showing that limiting the left context for self-attention in the Transformer layers makes decoding computationally tractable for streaming, with only a slight degradation in accuracy. We also show that the full attention version of our model beats the-state-of-the art accuracy on the LibriSpeech benchmarks. Our results also show that we can bridge the gap between full attention and limited attention versions of our model by attending to a limited number of future frames. 7 authors · Feb 6, 2020
- E1 TTS: Simple and Fast Non-Autoregressive TTS This paper introduces Easy One-Step Text-to-Speech (E1 TTS), an efficient non-autoregressive zero-shot text-to-speech system based on denoising diffusion pretraining and distribution matching distillation. The training of E1 TTS is straightforward; it does not require explicit monotonic alignment between the text and audio pairs. The inference of E1 TTS is efficient, requiring only one neural network evaluation for each utterance. Despite its sampling efficiency, E1 TTS achieves naturalness and speaker similarity comparable to various strong baseline models. Audio samples are available at http://e1tts.github.io/ . 5 authors · Sep 14, 2024
20 HuggingFace's Transformers: State-of-the-art Natural Language Processing Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. Transformers is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. Transformers is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at https://github.com/huggingface/transformers. Hugging Face · Oct 8, 2019
- Efficient Speech Translation with Dynamic Latent Perceivers Transformers have been the dominant architecture for Speech Translation in recent years, achieving significant improvements in translation quality. Since speech signals are longer than their textual counterparts, and due to the quadratic complexity of the Transformer, a down-sampling step is essential for its adoption in Speech Translation. Instead, in this research, we propose to ease the complexity by using a Perceiver encoder to map the speech inputs to a fixed-length latent representation. Furthermore, we introduce a novel way of training Perceivers, with Dynamic Latent Access (DLA), unlocking larger latent spaces without any additional computational overhead. Speech-to-Text Perceivers with DLA can match the performance of Transformer baselines across three language pairs in MuST-C. Finally, a DLA-trained model is easily adaptable to DLA at inference, and can be flexibly deployed with various computational budgets, without significant drops in translation quality. 4 authors · Oct 28, 2022
- ZipVoice: Fast and High-Quality Zero-Shot Text-to-Speech with Flow Matching Existing large-scale zero-shot text-to-speech (TTS) models deliver high speech quality but suffer from slow inference speeds due to massive parameters. To address this issue, this paper introduces ZipVoice, a high-quality flow-matching-based zero-shot TTS model with a compact model size and fast inference speed. Key designs include: 1) a Zipformer-based flow-matching decoder to maintain adequate modeling capabilities under constrained size; 2) Average upsampling-based initial speech-text alignment and Zipformer-based text encoder to improve speech intelligibility; 3) A flow distillation method to reduce sampling steps and eliminate the inference overhead associated with classifier-free guidance. Experiments on 100k hours multilingual datasets show that ZipVoice matches state-of-the-art models in speech quality, while being 3 times smaller and up to 30 times faster than a DiT-based flow-matching baseline. Codes, model checkpoints and demo samples are publicly available. 9 authors · Jun 15
- UtterTune: LoRA-Based Target-Language Pronunciation Edit and Control in Multilingual Text-to-Speech We propose UtterTune, a lightweight adaptation method that fine-tunes a multilingual text-to-speech (TTS) system based on a large language model (LLM) architecture, designed to enhance the controllability of pronunciation in a target language while preserving performance in others. While LLM architectures have enabled TTS models to achieve remarkable naturalness, accurately modeling grapheme-to-phoneme (G2P) mapping and prosody remains challenging, especially when the model omits an explicit G2P module and directly processes minimally encoded text (e.g., byte-pair encoding). UtterTune leverages low-rank adaptation to enable the control of segmental pronunciation and pitch accent at the phoneme level for Japanese speech, the target language in this paper, while maintaining naturalness and speaker similarity in a zero-shot setting. Objective and subjective evaluations confirm its effectiveness. 1 authors · Aug 13
- StyleTTS: A Style-Based Generative Model for Natural and Diverse Text-to-Speech Synthesis Text-to-Speech (TTS) has recently seen great progress in synthesizing high-quality speech owing to the rapid development of parallel TTS systems, but producing speech with naturalistic prosodic variations, speaking styles and emotional tones remains challenging. Moreover, since duration and speech are generated separately, parallel TTS models still have problems finding the best monotonic alignments that are crucial for naturalistic speech synthesis. Here, we propose StyleTTS, a style-based generative model for parallel TTS that can synthesize diverse speech with natural prosody from a reference speech utterance. With novel Transferable Monotonic Aligner (TMA) and duration-invariant data augmentation schemes, our method significantly outperforms state-of-the-art models on both single and multi-speaker datasets in subjective tests of speech naturalness and speaker similarity. Through self-supervised learning of the speaking styles, our model can synthesize speech with the same prosodic and emotional tone as any given reference speech without the need for explicitly labeling these categories. 3 authors · May 30, 2022
4 Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth. 3 authors · Jun 10, 2021 3
1 Accent Conversion in Text-To-Speech Using Multi-Level VAE and Adversarial Training With rapid globalization, the need to build inclusive and representative speech technology cannot be overstated. Accent is an important aspect of speech that needs to be taken into consideration while building inclusive speech synthesizers. Inclusive speech technology aims to erase any biases towards specific groups, such as people of certain accent. We note that state-of-the-art Text-to-Speech (TTS) systems may currently not be suitable for all people, regardless of their background, as they are designed to generate high-quality voices without focusing on accent. In this paper, we propose a TTS model that utilizes a Multi-Level Variational Autoencoder with adversarial learning to address accented speech synthesis and conversion in TTS, with a vision for more inclusive systems in the future. We evaluate the performance through both objective metrics and subjective listening tests. The results show an improvement in accent conversion ability compared to the baseline. 4 authors · Jun 3, 2024
- Get Large Language Models Ready to Speak: A Late-fusion Approach for Speech Generation Large language models (LLMs) have revolutionized natural language processing (NLP) with impressive performance across various text-based tasks. However, the extension of text-dominant LLMs to with speech generation tasks remains under-explored. In this work, we introduce a text-to-speech (TTS) system powered by a fine-tuned Llama model, named TTS-Llama, that achieves state-of-the-art speech synthesis performance. Building on TTS-Llama, we further propose MoLE-Llama, a text-and-speech multimodal LLM developed through purely late-fusion parameter-efficient fine-tuning (PEFT) and a mixture-of-expert architecture. Extensive empirical results demonstrate MoLE-Llama's competitive performance on both text-only question-answering (QA) and TTS tasks, mitigating catastrophic forgetting issue in either modality. Finally, we further explore MoLE-Llama in text-in-speech-out QA tasks, demonstrating its great potential as a multimodal dialog system capable of speech generation. 8 authors · Oct 27, 2024
- Model-Generated Pretraining Signals Improves Zero-Shot Generalization of Text-to-Text Transformers This paper explores the effectiveness of model-generated signals in improving zero-shot generalization of text-to-text Transformers such as T5. We study various designs to pretrain T5 using an auxiliary model to construct more challenging token replacements for the main model to denoise. Key aspects under study include the decoding target, the location of the RTD head, and the masking pattern. Based on these studies, we develop a new model, METRO-T0, which is pretrained using the redesigned ELECTRA-Style pretraining strategies and then prompt-finetuned on a mixture of NLP tasks. METRO-T0 outperforms all similar-sized baselines on prompted NLP benchmarks, such as T0 Eval and MMLU, and rivals the state-of-the-art T0-11B model with only 8% of its parameters. Our analysis on model's neural activation and parameter sensitivity reveals that the effectiveness of METRO-T0 stems from more balanced contribution of parameters and better utilization of their capacity. The code and model checkpoints are available at https://github.com/gonglinyuan/metro_t0. 8 authors · May 21, 2023
- CLaM-TTS: Improving Neural Codec Language Model for Zero-Shot Text-to-Speech With the emergence of neural audio codecs, which encode multiple streams of discrete tokens from audio, large language models have recently gained attention as a promising approach for zero-shot Text-to-Speech (TTS) synthesis. Despite the ongoing rush towards scaling paradigms, audio tokenization ironically amplifies the scalability challenge, stemming from its long sequence length and the complexity of modelling the multiple sequences. To mitigate these issues, we present CLaM-TTS that employs a probabilistic residual vector quantization to (1) achieve superior compression in the token length, and (2) allow a language model to generate multiple tokens at once, thereby eliminating the need for cascaded modeling to handle the number of token streams. Our experimental results demonstrate that CLaM-TTS is better than or comparable to state-of-the-art neural codec-based TTS models regarding naturalness, intelligibility, speaker similarity, and inference speed. In addition, we examine the impact of the pretraining extent of the language models and their text tokenization strategies on performances. 4 authors · Apr 3, 2024
- Zero-Shot Streaming Text to Speech Synthesis with Transducer and Auto-Regressive Modeling Zero-shot streaming text-to-speech is an important research topic in human-computer interaction. Existing methods primarily use a lookahead mechanism, relying on future text to achieve natural streaming speech synthesis, which introduces high processing latency. To address this issue, we propose SMLLE, a streaming framework for generating high-quality speech frame-by-frame. SMLLE employs a Transducer to convert text into semantic tokens in real time while simultaneously obtaining duration alignment information. The combined outputs are then fed into a fully autoregressive (AR) streaming model to reconstruct mel-spectrograms. To further stabilize the generation process, we design a Delete < Bos > Mechanism that allows the AR model to access future text introducing as minimal delay as possible. Experimental results suggest that the SMLLE outperforms current streaming TTS methods and achieves comparable performance over sentence-level TTS systems. Samples are available on https://anonymous.4open.science/w/demo_page-48B7/. 11 authors · May 26
5 Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive Bias Scaling text-to-speech to a large and wild dataset has been proven to be highly effective in achieving timbre and speech style generalization, particularly in zero-shot TTS. However, previous works usually encode speech into latent using audio codec and use autoregressive language models or diffusion models to generate it, which ignores the intrinsic nature of speech and may lead to inferior or uncontrollable results. We argue that speech can be decomposed into several attributes (e.g., content, timbre, prosody, and phase) and each of them should be modeled using a module with appropriate inductive biases. From this perspective, we carefully design a novel and large zero-shot TTS system called Mega-TTS, which is trained with large-scale wild data and models different attributes in different ways: 1) Instead of using latent encoded by audio codec as the intermediate feature, we still choose spectrogram as it separates the phase and other attributes very well. Phase can be appropriately constructed by the GAN-based vocoder and does not need to be modeled by the language model. 2) We model the timbre using global vectors since timbre is a global attribute that changes slowly over time. 3) We further use a VQGAN-based acoustic model to generate the spectrogram and a latent code language model to fit the distribution of prosody, since prosody changes quickly over time in a sentence, and language models can capture both local and long-range dependencies. We scale Mega-TTS to multi-domain datasets with 20K hours of speech and evaluate its performance on unseen speakers. Experimental results demonstrate that Mega-TTS surpasses state-of-the-art TTS systems on zero-shot TTS, speech editing, and cross-lingual TTS tasks, with superior naturalness, robustness, and speaker similarity due to the proper inductive bias of each module. Audio samples are available at https://mega-tts.github.io/demo-page. 12 authors · Jun 6, 2023 4
2 Layer-wise Minimal Pair Probing Reveals Contextual Grammatical-Conceptual Hierarchy in Speech Representations Transformer-based speech language models (SLMs) have significantly improved neural speech recognition and understanding. While existing research has examined how well SLMs encode shallow acoustic and phonetic features, the extent to which SLMs encode nuanced syntactic and conceptual features remains unclear. By drawing parallels with linguistic competence assessments for large language models, this study is the first to systematically evaluate the presence of contextual syntactic and semantic features across SLMs for self-supervised learning (S3M), automatic speech recognition (ASR), speech compression (codec), and as the encoder for auditory large language models (AudioLLMs). Through minimal pair designs and diagnostic feature analysis across 71 tasks spanning diverse linguistic levels, our layer-wise and time-resolved analysis uncovers that 1) all speech encode grammatical features more robustly than conceptual ones. 4 authors · Sep 19
27 Mega-TTS 2: Zero-Shot Text-to-Speech with Arbitrary Length Speech Prompts Zero-shot text-to-speech aims at synthesizing voices with unseen speech prompts. Previous large-scale multispeaker TTS models have successfully achieved this goal with an enrolled recording within 10 seconds. However, most of them are designed to utilize only short speech prompts. The limited information in short speech prompts significantly hinders the performance of fine-grained identity imitation. In this paper, we introduce Mega-TTS 2, a generic zero-shot multispeaker TTS model that is capable of synthesizing speech for unseen speakers with arbitrary-length prompts. Specifically, we 1) design a multi-reference timbre encoder to extract timbre information from multiple reference speeches; 2) and train a prosody language model with arbitrary-length speech prompts; With these designs, our model is suitable for prompts of different lengths, which extends the upper bound of speech quality for zero-shot text-to-speech. Besides arbitrary-length prompts, we introduce arbitrary-source prompts, which leverages the probabilities derived from multiple P-LLM outputs to produce expressive and controlled prosody. Furthermore, we propose a phoneme-level auto-regressive duration model to introduce in-context learning capabilities to duration modeling. Experiments demonstrate that our method could not only synthesize identity-preserving speech with a short prompt of an unseen speaker but also achieve improved performance with longer speech prompts. Audio samples can be found in https://mega-tts.github.io/mega2_demo/. 11 authors · Jul 14, 2023 10
4 YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone YourTTS brings the power of a multilingual approach to the task of zero-shot multi-speaker TTS. Our method builds upon the VITS model and adds several novel modifications for zero-shot multi-speaker and multilingual training. We achieved state-of-the-art (SOTA) results in zero-shot multi-speaker TTS and results comparable to SOTA in zero-shot voice conversion on the VCTK dataset. Additionally, our approach achieves promising results in a target language with a single-speaker dataset, opening possibilities for zero-shot multi-speaker TTS and zero-shot voice conversion systems in low-resource languages. Finally, it is possible to fine-tune the YourTTS model with less than 1 minute of speech and achieve state-of-the-art results in voice similarity and with reasonable quality. This is important to allow synthesis for speakers with a very different voice or recording characteristics from those seen during training. 6 authors · Dec 4, 2021
- PortaSpeech: Portable and High-Quality Generative Text-to-Speech Non-autoregressive text-to-speech (NAR-TTS) models such as FastSpeech 2 and Glow-TTS can synthesize high-quality speech from the given text in parallel. After analyzing two kinds of generative NAR-TTS models (VAE and normalizing flow), we find that: VAE is good at capturing the long-range semantics features (e.g., prosody) even with small model size but suffers from blurry and unnatural results; and normalizing flow is good at reconstructing the frequency bin-wise details but performs poorly when the number of model parameters is limited. Inspired by these observations, to generate diverse speech with natural details and rich prosody using a lightweight architecture, we propose PortaSpeech, a portable and high-quality generative text-to-speech model. Specifically, 1) to model both the prosody and mel-spectrogram details accurately, we adopt a lightweight VAE with an enhanced prior followed by a flow-based post-net with strong conditional inputs as the main architecture. 2) To further compress the model size and memory footprint, we introduce the grouped parameter sharing mechanism to the affine coupling layers in the post-net. 3) To improve the expressiveness of synthesized speech and reduce the dependency on accurate fine-grained alignment between text and speech, we propose a linguistic encoder with mixture alignment combining hard inter-word alignment and soft intra-word alignment, which explicitly extracts word-level semantic information. Experimental results show that PortaSpeech outperforms other TTS models in both voice quality and prosody modeling in terms of subjective and objective evaluation metrics, and shows only a slight performance degradation when reducing the model parameters to 6.7M (about 4x model size and 3x runtime memory compression ratio compared with FastSpeech 2). Our extensive ablation studies demonstrate that each design in PortaSpeech is effective. 3 authors · Sep 30, 2021
- Guided-TTS 2: A Diffusion Model for High-quality Adaptive Text-to-Speech with Untranscribed Data We propose Guided-TTS 2, a diffusion-based generative model for high-quality adaptive TTS using untranscribed data. Guided-TTS 2 combines a speaker-conditional diffusion model with a speaker-dependent phoneme classifier for adaptive text-to-speech. We train the speaker-conditional diffusion model on large-scale untranscribed datasets for a classifier-free guidance method and further fine-tune the diffusion model on the reference speech of the target speaker for adaptation, which only takes 40 seconds. We demonstrate that Guided-TTS 2 shows comparable performance to high-quality single-speaker TTS baselines in terms of speech quality and speaker similarity with only a ten-second untranscribed data. We further show that Guided-TTS 2 outperforms adaptive TTS baselines on multi-speaker datasets even with a zero-shot adaptation setting. Guided-TTS 2 can adapt to a wide range of voices only using untranscribed speech, which enables adaptive TTS with the voice of non-human characters such as Gollum in "The Lord of the Rings". 3 authors · May 30, 2022
8 DubWise: Video-Guided Speech Duration Control in Multimodal LLM-based Text-to-Speech for Dubbing Audio-visual alignment after dubbing is a challenging research problem. To this end, we propose a novel method, DubWise Multi-modal Large Language Model (LLM)-based Text-to-Speech (TTS), which can control the speech duration of synthesized speech in such a way that it aligns well with the speakers lip movements given in the reference video even when the spoken text is different or in a different language. To accomplish this, we propose to utilize cross-modal attention techniques in a pre-trained GPT-based TTS. We combine linguistic tokens from text, speaker identity tokens via a voice cloning network, and video tokens via a proposed duration controller network. We demonstrate the effectiveness of our system on the Lip2Wav-Chemistry and LRS2 datasets. Also, the proposed method achieves improved lip sync and naturalness compared to the SOTAs for the same language but different text (i.e., non-parallel) and the different language, different text (i.e., cross-lingual) scenarios. 5 authors · Jun 13, 2024 1
- Exact Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech The cloning of a speaker's voice using an untranscribed reference sample is one of the great advances of modern neural text-to-speech (TTS) methods. Approaches for mimicking the prosody of a transcribed reference audio have also been proposed recently. In this work, we bring these two tasks together for the first time through utterance level normalization in conjunction with an utterance level speaker embedding. We further introduce a lightweight aligner for extracting fine-grained prosodic features, that can be finetuned on individual samples within seconds. We show that it is possible to clone the voice of a speaker as well as the prosody of a spoken reference independently without any degradation in quality and high similarity to both original voice and prosody, as our objective evaluation and human study show. All of our code and trained models are available, alongside static and interactive demos. 3 authors · Jun 24, 2022
- SSL-TTS: Leveraging Self-Supervised Embeddings and kNN Retrieval for Zero-Shot Multi-speaker TTS While recent zero-shot multispeaker text-to-speech (TTS) models achieve impressive results, they typically rely on extensive transcribed speech datasets from numerous speakers and intricate training pipelines. Meanwhile, self-supervised learning (SSL) speech features have emerged as effective intermediate representations for TTS. It was also observed that SSL features from different speakers that are linearly close share phonetic information while maintaining individual speaker identity, which enables straight-forward and robust voice cloning. In this study, we introduce SSL-TTS, a lightweight and efficient zero-shot TTS framework trained on transcribed speech from a single speaker. SSL-TTS leverages SSL features and retrieval methods for simple and robust zero-shot multi-speaker synthesis. Objective and subjective evaluations show that our approach achieves performance comparable to state-of-the-art models that require significantly larger training datasets. The low training data requirements mean that SSL-TTS is well suited for the development of multi-speaker TTS systems for low-resource domains and languages. We also introduce an interpolation parameter which enables fine control over the output speech by blending voices. Demo samples are available at https://idiap.github.io/ssl-tts 4 authors · Aug 20, 2024
- LibriQuote: A Speech Dataset of Fictional Character Utterances for Expressive Zero-Shot Speech Synthesis Text-to-speech (TTS) systems have recently achieved more expressive and natural speech synthesis by scaling to large speech datasets. However, the proportion of expressive speech in such large-scale corpora is often unclear. Besides, existing expressive speech corpora are typically smaller in scale and primarily used for benchmarking TTS systems. In this paper, we introduce the LibriQuote dataset, an English corpus derived from read audiobooks, designed for both fine-tuning and benchmarking expressive zero-shot TTS system. The training dataset includes 12.7K hours of read, non-expressive speech and 5.3K hours of mostly expressive speech drawn from character quotations. Each utterance in the expressive subset is supplemented with the context in which it was written, along with pseudo-labels of speech verbs and adverbs used to describe the quotation (e.g. ``he whispered softly''). Additionally, we provide a challenging 7.5 hour test set intended for benchmarking TTS systems: given a neutral reference speech as input, we evaluate system's ability to synthesize an expressive utterance while preserving reference timbre. We validate qualitatively the test set by showing that it covers a wide range of emotions compared to non-expressive speech, along with various accents. Extensive subjective and objective evaluations show that fine-tuning a baseline TTS system on LibriQuote significantly improves its synthesized speech intelligibility, and that recent systems fail to synthesize speech as expressive and natural as the ground-truth utterances. The dataset and evaluation code are freely available. Audio samples can be found at https://libriquote.github.io/. 3 authors · Sep 4
1 Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision We introduce SPEAR-TTS, a multi-speaker text-to-speech (TTS) system that can be trained with minimal supervision. By combining two types of discrete speech representations, we cast TTS as a composition of two sequence-to-sequence tasks: from text to high-level semantic tokens (akin to "reading") and from semantic tokens to low-level acoustic tokens ("speaking"). Decoupling these two tasks enables training of the "speaking" module using abundant audio-only data, and unlocks the highly efficient combination of pretraining and backtranslation to reduce the need for parallel data when training the "reading" component. To control the speaker identity, we adopt example prompting, which allows SPEAR-TTS to generalize to unseen speakers using only a short sample of 3 seconds, without any explicit speaker representation or speaker-id labels. Our experiments demonstrate that SPEAR-TTS achieves a character error rate that is competitive with state-of-the-art methods using only 15 minutes of parallel data, while matching ground-truth speech in terms of naturalness and acoustic quality, as measured in subjective tests. 9 authors · Feb 7, 2023
- Stable-TTS: Stable Speaker-Adaptive Text-to-Speech Synthesis via Prosody Prompting Speaker-adaptive Text-to-Speech (TTS) synthesis has attracted considerable attention due to its broad range of applications, such as personalized voice assistant services. While several approaches have been proposed, they often exhibit high sensitivity to either the quantity or the quality of target speech samples. To address these limitations, we introduce Stable-TTS, a novel speaker-adaptive TTS framework that leverages a small subset of a high-quality pre-training dataset, referred to as prior samples. Specifically, Stable-TTS achieves prosody consistency by leveraging the high-quality prosody of prior samples, while effectively capturing the timbre of the target speaker. Additionally, it employs a prior-preservation loss during fine-tuning to maintain the synthesis ability for prior samples to prevent overfitting on target samples. Extensive experiments demonstrate the effectiveness of Stable-TTS even under limited amounts of and noisy target speech samples. 4 authors · Dec 28, 2024
- A Text-to-Speech Pipeline, Evaluation Methodology, and Initial Fine-Tuning Results for Child Speech Synthesis Speech synthesis has come a long way as current text-to-speech (TTS) models can now generate natural human-sounding speech. However, most of the TTS research focuses on using adult speech data and there has been very limited work done on child speech synthesis. This study developed and validated a training pipeline for fine-tuning state-of-the-art (SOTA) neural TTS models using child speech datasets. This approach adopts a multi-speaker TTS retuning workflow to provide a transfer-learning pipeline. A publicly available child speech dataset was cleaned to provide a smaller subset of approximately 19 hours, which formed the basis of our fine-tuning experiments. Both subjective and objective evaluations were performed using a pretrained MOSNet for objective evaluation and a novel subjective framework for mean opinion score (MOS) evaluations. Subjective evaluations achieved the MOS of 3.95 for speech intelligibility, 3.89 for voice naturalness, and 3.96 for voice consistency. Objective evaluation using a pretrained MOSNet showed a strong correlation between real and synthetic child voices. Speaker similarity was also verified by calculating the cosine similarity between the embeddings of utterances. An automatic speech recognition (ASR) model is also used to provide a word error rate (WER) comparison between the real and synthetic child voices. The final trained TTS model was able to synthesize child-like speech from reference audio samples as short as 5 seconds. 5 authors · Mar 22, 2022
- Cross-Lingual F5-TTS: Towards Language-Agnostic Voice Cloning and Speech Synthesis Flow-matching-based text-to-speech (TTS) models have shown high-quality speech synthesis. However, most current flow-matching-based TTS models still rely on reference transcripts corresponding to the audio prompt for synthesis. This dependency prevents cross-lingual voice cloning when audio prompt transcripts are unavailable, particularly for unseen languages. The key challenges for flow-matching-based TTS models to remove audio prompt transcripts are identifying word boundaries during training and determining appropriate duration during inference. In this paper, we introduce Cross-Lingual F5-TTS, a framework that enables cross-lingual voice cloning without audio prompt transcripts. Our method preprocesses audio prompts by forced alignment to obtain word boundaries, enabling direct synthesis from audio prompts while excluding transcripts during training. To address the duration modeling challenge, we train speaking rate predictors at different linguistic granularities to derive duration from speaker pace. Experiments show that our approach matches the performance of F5-TTS while enabling cross-lingual voice cloning. 10 authors · Sep 17
1 Face-StyleSpeech: Improved Face-to-Voice latent mapping for Natural Zero-shot Speech Synthesis from a Face Image Generating a voice from a face image is crucial for developing virtual humans capable of interacting using their unique voices, without relying on pre-recorded human speech. In this paper, we propose Face-StyleSpeech, a zero-shot Text-To-Speech (TTS) synthesis model that generates natural speech conditioned on a face image rather than reference speech. We hypothesize that learning both speaker identity and prosody from a face image poses a significant challenge. To address the issue, our TTS model incorporates both a face encoder and a prosody encoder. The prosody encoder is specifically designed to model prosodic features that are not captured only with a face image, allowing the face encoder to focus solely on capturing the speaker identity from the face image. Experimental results demonstrate that Face-StyleSpeech effectively generates more natural speech from a face image than baselines, even for the face images the model has not trained. Samples are at our demo page https://face-stylespeech.github.io. 3 authors · Sep 25, 2023
8 Ada-TTA: Towards Adaptive High-Quality Text-to-Talking Avatar Synthesis We are interested in a novel task, namely low-resource text-to-talking avatar. Given only a few-minute-long talking person video with the audio track as the training data and arbitrary texts as the driving input, we aim to synthesize high-quality talking portrait videos corresponding to the input text. This task has broad application prospects in the digital human industry but has not been technically achieved yet due to two challenges: (1) It is challenging to mimic the timbre from out-of-domain audio for a traditional multi-speaker Text-to-Speech system. (2) It is hard to render high-fidelity and lip-synchronized talking avatars with limited training data. In this paper, we introduce Adaptive Text-to-Talking Avatar (Ada-TTA), which (1) designs a generic zero-shot multi-speaker TTS model that well disentangles the text content, timbre, and prosody; and (2) embraces recent advances in neural rendering to achieve realistic audio-driven talking face video generation. With these designs, our method overcomes the aforementioned two challenges and achieves to generate identity-preserving speech and realistic talking person video. Experiments demonstrate that our method could synthesize realistic, identity-preserving, and audio-visual synchronized talking avatar videos. 8 authors · Jun 6, 2023 1
- Mixer-TTS: non-autoregressive, fast and compact text-to-speech model conditioned on language model embeddings This paper describes Mixer-TTS, a non-autoregressive model for mel-spectrogram generation. The model is based on the MLP-Mixer architecture adapted for speech synthesis. The basic Mixer-TTS contains pitch and duration predictors, with the latter being trained with an unsupervised TTS alignment framework. Alongside the basic model, we propose the extended version which additionally uses token embeddings from a pre-trained language model. Basic Mixer-TTS and its extended version achieve a mean opinion score (MOS) of 4.05 and 4.11, respectively, compared to a MOS of 4.27 of original LJSpeech samples. Both versions have a small number of parameters and enable much faster speech synthesis compared to the models with similar quality. 3 authors · Oct 7, 2021
- PromptTTS++: Controlling Speaker Identity in Prompt-Based Text-to-Speech Using Natural Language Descriptions We propose PromptTTS++, a prompt-based text-to-speech (TTS) synthesis system that allows control over speaker identity using natural language descriptions. To control speaker identity within the prompt-based TTS framework, we introduce the concept of speaker prompt, which describes voice characteristics (e.g., gender-neutral, young, old, and muffled) designed to be approximately independent of speaking style. Since there is no large-scale dataset containing speaker prompts, we first construct a dataset based on the LibriTTS-R corpus with manually annotated speaker prompts. We then employ a diffusion-based acoustic model with mixture density networks to model diverse speaker factors in the training data. Unlike previous studies that rely on style prompts describing only a limited aspect of speaker individuality, such as pitch, speaking speed, and energy, our method utilizes an additional speaker prompt to effectively learn the mapping from natural language descriptions to the acoustic features of diverse speakers. Our subjective evaluation results show that the proposed method can better control speaker characteristics than the methods without the speaker prompt. Audio samples are available at https://reppy4620.github.io/demo.promptttspp/. 7 authors · Sep 15, 2023
1 A Strong Baseline for Temporal Video-Text Alignment In this paper, we consider the problem of temporally aligning the video and texts from instructional videos, specifically, given a long-term video, and associated text sentences, our goal is to determine their corresponding timestamps in the video. To this end, we establish a simple, yet strong model that adopts a Transformer-based architecture with all texts as queries, iteratively attending to the visual features, to infer the optimal timestamp. We conduct thorough experiments to investigate: (i) the effect of upgrading ASR systems to reduce errors from speech recognition, (ii) the effect of various visual-textual backbones, ranging from CLIP to S3D, to the more recent InternVideo, (iii) the effect of transforming noisy ASR transcripts into descriptive steps by prompting a large language model (LLM), to summarize the core activities within the ASR transcript as a new training dataset. As a result, our proposed simple model demonstrates superior performance on both narration alignment and procedural step grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.3% on HT-Step, 3.4% on HTM-Align and 4.7% on CrossTask. We believe the proposed model and dataset with descriptive steps can be treated as a strong baseline for future research in temporal video-text alignment. All codes, models, and the resulting dataset will be publicly released to the research community. 6 authors · Dec 21, 2023