Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRisk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN)
This paper investigates the application of Feature-Enriched Generative Adversarial Networks (FE-GAN) in financial risk management, with a focus on improving the estimation of Value at Risk (VaR) and Expected Shortfall (ES). FE-GAN enhances existing GANs architectures by incorporating an additional input sequence derived from preceding data to improve model performance. Two specialized GANs models, the Wasserstein Generative Adversarial Network (WGAN) and the Tail Generative Adversarial Network (Tail-GAN), were evaluated under the FE-GAN framework. The results demonstrate that FE-GAN significantly outperforms traditional architectures in both VaR and ES estimation. Tail-GAN, leveraging its task-specific loss function, consistently outperforms WGAN in ES estimation, while both models exhibit similar performance in VaR estimation. Despite these promising results, the study acknowledges limitations, including reliance on highly correlated temporal data and restricted applicability to other domains. Future research directions include exploring alternative input generation methods, dynamic forecasting models, and advanced neural network architectures to further enhance GANs-based financial risk estimation.
Quantitative Risk Management in Volatile Markets with an Expectile-Based Framework for the FTSE Index
This research presents a framework for quantitative risk management in volatile markets, specifically focusing on expectile-based methodologies applied to the FTSE 100 index. Traditional risk measures such as Value-at-Risk (VaR) have demonstrated significant limitations during periods of market stress, as evidenced during the 2008 financial crisis and subsequent volatile periods. This study develops an advanced expectile-based framework that addresses the shortcomings of conventional quantile-based approaches by providing greater sensitivity to tail losses and improved stability in extreme market conditions. The research employs a dataset spanning two decades of FTSE 100 returns, incorporating periods of high volatility, market crashes, and recovery phases. Our methodology introduces novel mathematical formulations for expectile regression models, enhanced threshold determination techniques using time series analysis, and robust backtesting procedures. The empirical results demonstrate that expectile-based Value-at-Risk (EVaR) consistently outperforms traditional VaR measures across various confidence levels and market conditions. The framework exhibits superior performance during volatile periods, with reduced model risk and enhanced predictive accuracy. Furthermore, the study establishes practical implementation guidelines for financial institutions and provides evidence-based recommendations for regulatory compliance and portfolio management. The findings contribute significantly to the literature on financial risk management and offer practical tools for practitioners dealing with volatile market environments.
Bayesian Risk Markov Decision Processes
We consider finite-horizon Markov Decision Processes where parameters, such as transition probabilities, are unknown and estimated from data. The popular distributionally robust approach to addressing the parameter uncertainty can sometimes be overly conservative. In this paper, we propose a new formulation, Bayesian risk Markov Decision Process (BR-MDP), to address parameter uncertainty in MDPs, where a risk functional is applied in nested form to the expected total cost with respect to the Bayesian posterior distribution of the unknown parameters. The proposed formulation provides more flexible risk attitutes towards parameter uncertainty and takes into account the availability of data in future times stages. To solve the proposed formulation with the conditional value-at-risk (CVaR) risk functional, we propose an efficient approximation algorithm by deriving an analytical approximation of the value function and utilizing the convexity of CVaR. We demonstrate the empirical performance of the BR-MDP formulation and proposed algorithms on a gambler's betting problem and an inventory control problem.
RAP: Risk-Aware Prediction for Robust Planning
Robust planning in interactive scenarios requires predicting the uncertain future to make risk-aware decisions. Unfortunately, due to long-tail safety-critical events, the risk is often under-estimated by finite-sampling approximations of probabilistic motion forecasts. This can lead to overconfident and unsafe robot behavior, even with robust planners. Instead of assuming full prediction coverage that robust planners require, we propose to make prediction itself risk-aware. We introduce a new prediction objective to learn a risk-biased distribution over trajectories, so that risk evaluation simplifies to an expected cost estimation under this biased distribution. This reduces the sample complexity of the risk estimation during online planning, which is needed for safe real-time performance. Evaluation results in a didactic simulation environment and on a real-world dataset demonstrate the effectiveness of our approach. The code and a demo are available.
Credit risk for large portfolios of green and brown loans: extending the ASRF model
We propose a credit risk model for portfolios composed of green and brown loans, extending the ASRF framework via a two-factor copula structure. Systematic risk is modeled using potentially skewed distributions, allowing for asymmetric creditworthiness effects, while idiosyncratic risk remains Gaussian. Under a non-uniform exposure setting, we establish convergence in quadratic mean of the portfolio loss to a limit reflecting the distinct characteristics of the two loan segments. Numerical results confirm the theoretical findings and illustrate how value-at-risk is affected by portfolio granularity, default probabilities, factor loadings, and skewness. Our model accommodates differential sensitivity to systematic shocks and offers a tractable basis for further developments in credit risk modeling, including granularity adjustments, CDO pricing, and empirical analysis of green loan portfolios.
Fast and Robust: Task Sampling with Posterior and Diversity Synergies for Adaptive Decision-Makers in Randomized Environments
Task robust adaptation is a long-standing pursuit in sequential decision-making. Some risk-averse strategies, e.g., the conditional value-at-risk principle, are incorporated in domain randomization or meta reinforcement learning to prioritize difficult tasks in optimization, which demand costly intensive evaluations. The efficiency issue prompts the development of robust active task sampling to train adaptive policies, where risk-predictive models are used to surrogate policy evaluation. This work characterizes the optimization pipeline of robust active task sampling as a Markov decision process, posits theoretical and practical insights, and constitutes robustness concepts in risk-averse scenarios. Importantly, we propose an easy-to-implement method, referred to as Posterior and Diversity Synergized Task Sampling (PDTS), to accommodate fast and robust sequential decision-making. Extensive experiments show that PDTS unlocks the potential of robust active task sampling, significantly improves the zero-shot and few-shot adaptation robustness in challenging tasks, and even accelerates the learning process under certain scenarios. Our project website is at https://thu-rllab.github.io/PDTS_project_page.
Safe Collaborative Filtering
Excellent tail performance is crucial for modern machine learning tasks, such as algorithmic fairness, class imbalance, and risk-sensitive decision making, as it ensures the effective handling of challenging samples within a dataset. Tail performance is also a vital determinant of success for personalized recommender systems to reduce the risk of losing users with low satisfaction. This study introduces a "safe" collaborative filtering method that prioritizes recommendation quality for less-satisfied users rather than focusing on the average performance. Our approach minimizes the conditional value at risk (CVaR), which represents the average risk over the tails of users' loss. To overcome computational challenges for web-scale recommender systems, we develop a robust yet practical algorithm that extends the most scalable method, implicit alternating least squares (iALS). Empirical evaluation on real-world datasets demonstrates the excellent tail performance of our approach while maintaining competitive computational efficiency.
A Differentially Private Kaplan-Meier Estimator for Privacy-Preserving Survival Analysis
This paper presents a differentially private approach to Kaplan-Meier estimation that achieves accurate survival probability estimates while safeguarding individual privacy. The Kaplan-Meier estimator is widely used in survival analysis to estimate survival functions over time, yet applying it to sensitive datasets, such as clinical records, risks revealing private information. To address this, we introduce a novel algorithm that applies time-indexed Laplace noise, dynamic clipping, and smoothing to produce a privacy-preserving survival curve while maintaining the cumulative structure of the Kaplan-Meier estimator. By scaling noise over time, the algorithm accounts for decreasing sensitivity as fewer individuals remain at risk, while dynamic clipping and smoothing prevent extreme values and reduce fluctuations, preserving the natural shape of the survival curve. Our results, evaluated on the NCCTG lung cancer dataset, show that the proposed method effectively lowers root mean squared error (RMSE) and enhances accuracy across privacy budgets (epsilon). At epsilon = 10, the algorithm achieves an RMSE as low as 0.04, closely approximating non-private estimates. Additionally, membership inference attacks reveal that higher epsilon values (e.g., epsilon geq 6) significantly reduce influential points, particularly at higher thresholds, lowering susceptibility to inference attacks. These findings confirm that our approach balances privacy and utility, advancing privacy-preserving survival analysis.
Fundamental Tradeoffs in Learning with Prior Information
We seek to understand fundamental tradeoffs between the accuracy of prior information that a learner has on a given problem and its learning performance. We introduce the notion of prioritized risk, which differs from traditional notions of minimax and Bayes risk by allowing us to study such fundamental tradeoffs in settings where reality does not necessarily conform to the learner's prior. We present a general reduction-based approach for extending classical minimax lower-bound techniques in order to lower bound the prioritized risk for statistical estimation problems. We also introduce a novel generalization of Fano's inequality (which may be of independent interest) for lower bounding the prioritized risk in more general settings involving unbounded losses. We illustrate the ability of our framework to provide insights into tradeoffs between prior information and learning performance for problems in estimation, regression, and reinforcement learning.
Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.
Deep Probability Estimation
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Towards Assessing and Benchmarking Risk-Return Tradeoff of Off-Policy Evaluation
Off-Policy Evaluation (OPE) aims to assess the effectiveness of counterfactual policies using only offline logged data and is often used to identify the top-k promising policies for deployment in online A/B tests. Existing evaluation metrics for OPE estimators primarily focus on the "accuracy" of OPE or that of downstream policy selection, neglecting risk-return tradeoff in the subsequent online policy deployment. To address this issue, we draw inspiration from portfolio evaluation in finance and develop a new metric, called SharpeRatio@k, which measures the risk-return tradeoff of policy portfolios formed by an OPE estimator under varying online evaluation budgets (k). We validate our metric in two example scenarios, demonstrating its ability to effectively distinguish between low-risk and high-risk estimators and to accurately identify the most efficient one. Efficiency of an estimator is characterized by its capability to form the most advantageous policy portfolios, maximizing returns while minimizing risks during online deployment, a nuance that existing metrics typically overlook. To facilitate a quick, accurate, and consistent evaluation of OPE via SharpeRatio@k, we have also integrated this metric into an open-source software, SCOPE-RL (https://github.com/hakuhodo-technologies/scope-rl). Employing SharpeRatio@k and SCOPE-RL, we conduct comprehensive benchmarking experiments on various estimators and RL tasks, focusing on their risk-return tradeoff. These experiments offer several interesting directions and suggestions for future OPE research.
Risk forecasting using Long Short-Term Memory Mixture Density Networks
This work aims to implement Long Short-Term Memory mixture density networks (LSTM-MDNs) for Value-at-Risk forecasting and compare their performance with established models (historical simulation, CMM, and GARCH) using a defined backtesting procedure. The focus was on the neural network's ability to capture volatility clustering and its real-world applicability. Three architectures were tested: a 2-component mixture density network, a regularized 2-component model (Arimond et al., 2020), and a 3-component mixture model, the latter being tested for the first time in Value-at-Risk forecasting. Backtesting was performed on three stock indices (FTSE 100, S&P 500, EURO STOXX 50) over two distinct two-year periods (2017-2018 as a calm period, 2021-2022 as turbulent). Model performance was assessed through unconditional coverage and independence assumption tests. The neural network's ability to handle volatility clustering was validated via correlation analysis and graphical evaluation. Results show limited success for the neural network approach. LSTM-MDNs performed poorly for 2017/2018 but outperformed benchmark models in 2021/2022. The LSTM mechanism allowed the neural network to capture volatility clustering similarly to GARCH models. However, several issues were identified: the need for proper model initialization and reliance on large datasets for effective learning. The findings suggest that while LSTM-MDNs provide adequate risk forecasts, further research and adjustments are necessary for stable performance.
RiskPO: Risk-based Policy Optimization via Verifiable Reward for LLM Post-Training
Reinforcement learning with verifiable reward has recently emerged as a central paradigm for post-training large language models (LLMs); however, prevailing mean-based methods, such as Group Relative Policy Optimization (GRPO), suffer from entropy collapse and limited reasoning gains. We argue that these issues stem from overemphasizing high-probability output sequences while neglecting rare but informative reasoning paths. To address these challenges, we propose Risk-based Policy Optimization (RiskPO), which substitutes classical mean-based objectives with principled risk measures. Specifically, we introduce a Mixed Value-at-Risk objective that integrates weighted attention over multiple regions of the reward distribution, thereby amplifying gradient signals on challenging instances and preventing overconfident convergence. We further design a bundling scheme that aggregates multiple questions into bundles, thus enriching the feedback signal and yielding more stable and informative training dynamics. Theoretically, we prove that the risk-averse update alleviates entropy collapse and promotes exploration. Numerically, RiskPO achieves consistent and significant improvements in mathematical reasoning, multi-modal reasoning, and code generation benchmarks, surpassing GRPO and its variants on both Pass@1 and Pass@k metrics. Our results demonstrate that risk-based optimization provides a rigorous and effective paradigm for enhancing LLM reasoning capabilities.
A Model-Based Method for Minimizing CVaR and Beyond
We develop a variant of the stochastic prox-linear method for minimizing the Conditional Value-at-Risk (CVaR) objective. CVaR is a risk measure focused on minimizing worst-case performance, defined as the average of the top quantile of the losses. In machine learning, such a risk measure is useful to train more robust models. Although the stochastic subgradient method (SGM) is a natural choice for minimizing the CVaR objective, we show that our stochastic prox-linear (SPL+) algorithm can better exploit the structure of the objective, while still providing a convenient closed form update. Our SPL+ method also adapts to the scaling of the loss function, which allows for easier tuning. We then specialize a general convergence theorem for SPL+ to our setting, and show that it allows for a wider selection of step sizes compared to SGM. We support this theoretical finding experimentally.
Distributionally Robust Optimization with Bias and Variance Reduction
We consider the distributionally robust optimization (DRO) problem with spectral risk-based uncertainty set and f-divergence penalty. This formulation includes common risk-sensitive learning objectives such as regularized condition value-at-risk (CVaR) and average top-k loss. We present Prospect, a stochastic gradient-based algorithm that only requires tuning a single learning rate hyperparameter, and prove that it enjoys linear convergence for smooth regularized losses. This contrasts with previous algorithms that either require tuning multiple hyperparameters or potentially fail to converge due to biased gradient estimates or inadequate regularization. Empirically, we show that Prospect can converge 2-3times faster than baselines such as stochastic gradient and stochastic saddle-point methods on distribution shift and fairness benchmarks spanning tabular, vision, and language domains.
Learn to Rank Risky Investors: A Case Study of Predicting Retail Traders' Behaviour and Profitability
Identifying risky traders with high profits in financial markets is crucial for market makers, such as trading exchanges, to ensure effective risk management through real-time decisions on regulation compliance and hedging. However, capturing the complex and dynamic behaviours of individual traders poses significant challenges. Traditional classification and anomaly detection methods often establish a fixed risk boundary, failing to account for this complexity and dynamism. To tackle this issue, we propose a profit-aware risk ranker (PA-RiskRanker) that reframes the problem of identifying risky traders as a ranking task using Learning-to-Rank (LETOR) algorithms. Our approach features a Profit-Aware binary cross entropy (PA-BCE) loss function and a transformer-based ranker enhanced with a self-cross-trader attention pipeline. These components effectively integrate profit and loss (P&L) considerations into the training process while capturing intra- and inter-trader relationships. Our research critically examines the limitations of existing deep learning-based LETOR algorithms in trading risk management, which often overlook the importance of P&L in financial scenarios. By prioritising P&L, our method improves risky trader identification, achieving an 8.4% increase in F1 score compared to state-of-the-art (SOTA) ranking models like Rankformer. Additionally, it demonstrates a 10%-17% increase in average profit compared to all benchmark models.
Risk-aware Direct Preference Optimization under Nested Risk Measure
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
A Distributional Perspective on Reinforcement Learning
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
Continuous Risk Factor Models: Analyzing Asset Correlations through Energy Distance
This paper introduces a novel approach to financial risk analysis that does not rely on traditional price and market data, instead using market news to model assets as distributions over a metric space of risk factors. By representing asset returns as integrals over the scalar field of these risk factors, we derive the covariance structure between asset returns. Utilizing encoder-only language models to embed this news data, we explore the relationships between asset return distributions through the concept of Energy Distance, establishing connections between distributional differences and excess returns co-movements. This data-agnostic approach provides new insights into portfolio diversification, risk management, and the construction of hedging strategies. Our findings have significant implications for both theoretical finance and practical risk management, offering a more robust framework for modelling complex financial systems without depending on conventional market data.
Risk-sensitive Reinforcement Learning Based on Convex Scoring Functions
We propose a reinforcement learning (RL) framework under a broad class of risk objectives, characterized by convex scoring functions. This class covers many common risk measures, such as variance, Expected Shortfall, entropic Value-at-Risk, and mean-risk utility. To resolve the time-inconsistency issue, we consider an augmented state space and an auxiliary variable and recast the problem as a two-state optimization problem. We propose a customized Actor-Critic algorithm and establish some theoretical approximation guarantees. A key theoretical contribution is that our results do not require the Markov decision process to be continuous. Additionally, we propose an auxiliary variable sampling method inspired by the alternating minimization algorithm, which is convergent under certain conditions. We validate our approach in simulation experiments with a financial application in statistical arbitrage trading, demonstrating the effectiveness of the algorithm.
Making Reliable and Flexible Decisions in Long-tailed Classification
Long-tailed classification is challenging due to its heavy imbalance in class probabilities. While existing methods often focus on overall accuracy or accuracy for tail classes, they overlook a critical aspect: certain types of errors can carry greater risks than others in real-world long-tailed problems. For example, misclassifying patients (a tail class) as healthy individuals (a head class) entails far more serious consequences than the reverse scenario. To address this critical issue, we introduce Making Reliable and Flexible Decisions in Long-tailed Classification (RF-DLC), a novel framework aimed at reliable predictions in long-tailed problems. Leveraging Bayesian Decision Theory, we introduce an integrated gain to seamlessly combine long-tailed data distributions and the decision-making procedure. We further propose an efficient variational optimization strategy for the decision risk objective. Our method adapts readily to diverse utility matrices, which can be designed for specific tasks, ensuring its flexibility for different problem settings. In empirical evaluation, we design a new metric, False Head Rate, to quantify tail-sensitivity risk, along with comprehensive experiments on multiple real-world tasks, including large-scale image classification and uncertainty quantification, to demonstrate the reliability and flexibility of our method.
True to the Model or True to the Data?
A variety of recent papers discuss the application of Shapley values, a concept for explaining coalitional games, for feature attribution in machine learning. However, the correct way to connect a machine learning model to a coalitional game has been a source of controversy. The two main approaches that have been proposed differ in the way that they condition on known features, using either (1) an interventional or (2) an observational conditional expectation. While previous work has argued that one of the two approaches is preferable in general, we argue that the choice is application dependent. Furthermore, we argue that the choice comes down to whether it is desirable to be true to the model or true to the data. We use linear models to investigate this choice. After deriving an efficient method for calculating observational conditional expectation Shapley values for linear models, we investigate how correlation in simulated data impacts the convergence of observational conditional expectation Shapley values. Finally, we present two real data examples that we consider to be representative of possible use cases for feature attribution -- (1) credit risk modeling and (2) biological discovery. We show how a different choice of value function performs better in each scenario, and how possible attributions are impacted by modeling choices.
On Information-Theoretic Measures of Predictive Uncertainty
Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, there is no universal agreement on how to best quantify predictive uncertainty. In this work, we revisit core concepts to propose a framework for information-theoretic measures of predictive uncertainty. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We extensively evaluate these measures across a broad set of tasks, identifying conditions under which certain measures excel. Our findings show the importance of aligning the choice of uncertainty measure with the predicting model on in-distribution (ID) data, the limitations of epistemic uncertainty measures for out-of-distribution (OOD) data, and that the disentanglement between measures varies substantially between ID and OOD data. Together, these insights provide a more comprehensive understanding of predictive uncertainty measures, revealing their implicit assumptions and relationships.
DEUP: Direct Epistemic Uncertainty Prediction
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
FinRL-DeepSeek: LLM-Infused Risk-Sensitive Reinforcement Learning for Trading Agents
This paper presents a novel risk-sensitive trading agent combining reinforcement learning and large language models (LLMs). We extend the Conditional Value-at-Risk Proximal Policy Optimization (CPPO) algorithm, by adding risk assessment and trading recommendation signals generated by a LLM from financial news. Our approach is backtested on the Nasdaq-100 index benchmark, using financial news data from the FNSPID dataset and the DeepSeek V3, Qwen 2.5 and Llama 3.3 language models. The code, data, and trading agents are available at: https://github.com/benstaf/FinRL_DeepSeek
Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis
We propose a structural default model for portfolio-wide valuation adjustments (xVAs) and represent it as a system of coupled backward stochastic differential equations. The framework is divided into four layers, each capturing a key component: (i) clean values, (ii) initial margin and Collateral Valuation Adjustment (ColVA), (iii) Credit/Debit Valuation Adjustments (CVA/DVA) together with Margin Valuation Adjustment (MVA), and (iv) Funding Valuation Adjustment (FVA). Because these layers depend on one another through collateral and default effects, a naive Monte Carlo approach would require deeply nested simulations, making the problem computationally intractable. To address this challenge, we use an iterative deep BSDE approach, handling each layer sequentially so that earlier outputs serve as inputs to the subsequent layers. Initial margin is computed via deep quantile regression to reflect margin requirements over the Margin Period of Risk. We also adopt a change-of-measure method that highlights rare but significant defaults of the bank or counterparty, ensuring that these events are accurately captured in the training process. We further extend Han and Long's (2020) a posteriori error analysis to BSDEs on bounded domains. Due to the random exit from the domain, we obtain an order of convergence of O(h^{1/4-epsilon}) rather than the usual O(h^{1/2}). Numerical experiments illustrate that this method drastically reduces computational demands and successfully scales to high-dimensional, non-symmetric portfolios. The results confirm its effectiveness and accuracy, offering a practical alternative to nested Monte Carlo simulations in multi-counterparty xVA analyses.
Learning Optimized Risk Scores
Risk scores are simple classification models that let users make quick risk predictions by adding and subtracting a few small numbers. These models are widely used in medicine and criminal justice, but are difficult to learn from data because they need to be calibrated, sparse, use small integer coefficients, and obey application-specific operational constraints. In this paper, we present a new machine learning approach to learn risk scores. We formulate the risk score problem as a mixed integer nonlinear program, and present a cutting plane algorithm for non-convex settings to efficiently recover its optimal solution. We improve our algorithm with specialized techniques to generate feasible solutions, narrow the optimality gap, and reduce data-related computation. Our approach can fit risk scores in a way that scales linearly in the number of samples, provides a certificate of optimality, and obeys real-world constraints without parameter tuning or post-processing. We benchmark the performance benefits of this approach through an extensive set of numerical experiments, comparing to risk scores built using heuristic approaches. We also discuss its practical benefits through a real-world application where we build a customized risk score for ICU seizure prediction in collaboration with the Massachusetts General Hospital.
MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--
For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.
Provably Efficient Iterated CVaR Reinforcement Learning with Function Approximation and Human Feedback
Risk-sensitive reinforcement learning (RL) aims to optimize policies that balance the expected reward and risk. In this paper, we present a novel risk-sensitive RL framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations, enriched by human feedback. These new formulations provide a principled way to guarantee safety in each decision making step throughout the control process. Moreover, integrating human feedback into risk-sensitive RL framework bridges the gap between algorithmic decision-making and human participation, allowing us to also guarantee safety for human-in-the-loop systems. We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis. Furthermore, we establish a matching lower bound to corroborate the optimality of our algorithms in a linear context.
Predicting Rare Events by Shrinking Towards Proportional Odds
Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.
Deep Neural Networks Tend To Extrapolate Predictably
Conventional wisdom suggests that neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs. Our work reassesses this assumption for neural networks with high-dimensional inputs. Rather than extrapolating in arbitrary ways, we observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD. Moreover, we find that this value often closely approximates the optimal constant solution (OCS), i.e., the prediction that minimizes the average loss over the training data without observing the input. We present results showing this phenomenon across 8 datasets with different distributional shifts (including CIFAR10-C and ImageNet-R, S), different loss functions (cross entropy, MSE, and Gaussian NLL), and different architectures (CNNs and transformers). Furthermore, we present an explanation for this behavior, which we first validate empirically and then study theoretically in a simplified setting involving deep homogeneous networks with ReLU activations. Finally, we show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance tau. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is Omega(tau^{-1AK}), where A is the number of actions and K is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of Omega(tau^{-1SAK}) (with normalized cumulative rewards), where S is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of widetilde O(tau^{-1SAK}) under a continuity assumption and in general attains a near-optimal regret of widetilde O(tau^{-1}SAK), which is minimax-optimal for constant tau. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.
Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting
In this paper, we develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks. For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH. Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices, with the three assets representing quite distinct volatility dynamics. As the main volatility estimator, also underlying the target function of our hybrid models, we use the price-range-based Garman-Klass estimator, modified to incorporate the opening and closing prices. Volatility forecasts resulting from the hybrid models are employed to evaluate the assets' risk using the Value-at-Risk (VaR) and Expected Shortfall (ES) at two different tolerance levels of 5% and 1%. Gains from combining the GARCH and GRU approaches are discussed in the contexts of both the volatility and risk forecasts. In general, it can be concluded that the hybrid solutions produce more accurate point volatility forecasts, although it does not necessarily translate into superior VaR and ES forecasts.
Probably Anytime-Safe Stochastic Combinatorial Semi-Bandits
Motivated by concerns about making online decisions that incur undue amount of risk at each time step, in this paper, we formulate the probably anytime-safe stochastic combinatorial semi-bandits problem. In this problem, the agent is given the option to select a subset of size at most K from a set of L ground items. Each item is associated to a certain mean reward as well as a variance that represents its risk. To mitigate the risk that the agent incurs, we require that with probability at least 1-delta, over the entire horizon of time T, each of the choices that the agent makes should contain items whose sum of variances does not exceed a certain variance budget. We call this probably anytime-safe constraint. Under this constraint, we design and analyze an algorithm {\sc PASCombUCB} that minimizes the regret over the horizon of time T. By developing accompanying information-theoretic lower bounds, we show that under both the problem-dependent and problem-independent paradigms, {\sc PASCombUCB} is almost asymptotically optimal. Experiments are conducted to corroborate our theoretical findings. Our problem setup, the proposed {\sc PASCombUCB} algorithm, and novel analyses are applicable to domains such as recommendation systems and transportation in which an agent is allowed to choose multiple items at a single time step and wishes to control the risk over the whole time horizon.
Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms
This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.
VAPO: Efficient and Reliable Reinforcement Learning for Advanced Reasoning Tasks
We present VAPO, Value-based Augmented Proximal Policy Optimization framework for reasoning models., a novel framework tailored for reasoning models within the value-based paradigm. Benchmarked the AIME 2024 dataset, VAPO, built on the Qwen 32B pre-trained model, attains a state-of-the-art score of 60.4. In direct comparison under identical experimental settings, VAPO outperforms the previously reported results of DeepSeek-R1-Zero-Qwen-32B and DAPO by more than 10 points. The training process of VAPO stands out for its stability and efficiency. It reaches state-of-the-art performance within a mere 5,000 steps. Moreover, across multiple independent runs, no training crashes occur, underscoring its reliability. This research delves into long chain-of-thought (long-CoT) reasoning using a value-based reinforcement learning framework. We pinpoint three key challenges that plague value-based methods: value model bias, the presence of heterogeneous sequence lengths, and the sparsity of reward signals. Through systematic design, VAPO offers an integrated solution that effectively alleviates these challenges, enabling enhanced performance in long-CoT reasoning tasks.
Monitoring multicountry macroeconomic risk
We propose a multicountry quantile factor augmeneted vector autoregression (QFAVAR) to model heterogeneities both across countries and across characteristics of the distributions of macroeconomic time series. The presence of quantile factors allows for summarizing these two heterogeneities in a parsimonious way. We develop two algorithms for posterior inference that feature varying level of trade-off between estimation precision and computational speed. Using monthly data for the euro area, we establish the good empirical properties of the QFAVAR as a tool for assessing the effects of global shocks on country-level macroeconomic risks. In particular, QFAVAR short-run tail forecasts are more accurate compared to a FAVAR with symmetric Gaussian errors, as well as univariate quantile autoregressions that ignore comovements among quantiles of macroeconomic variables. We also illustrate how quantile impulse response functions and quantile connectedness measures, resulting from the new model, can be used to implement joint risk scenario analysis.
Domain constraints improve risk prediction when outcome data is missing
Machine learning models are often trained to predict the outcome resulting from a human decision. For example, if a doctor decides to test a patient for disease, will the patient test positive? A challenge is that historical decision-making determines whether the outcome is observed: we only observe test outcomes for patients doctors historically tested. Untested patients, for whom outcomes are unobserved, may differ from tested patients along observed and unobserved dimensions. We propose a Bayesian model class which captures this setting. The purpose of the model is to accurately estimate risk for both tested and untested patients. Estimating this model is challenging due to the wide range of possibilities for untested patients. To address this, we propose two domain constraints which are plausible in health settings: a prevalence constraint, where the overall disease prevalence is known, and an expertise constraint, where the human decision-maker deviates from purely risk-based decision-making only along a constrained feature set. We show theoretically and on synthetic data that domain constraints improve parameter inference. We apply our model to a case study of cancer risk prediction, showing that the model's inferred risk predicts cancer diagnoses, its inferred testing policy captures known public health policies, and it can identify suboptimalities in test allocation. Though our case study is in healthcare, our analysis reveals a general class of domain constraints which can improve model estimation in many settings.
Provably Efficient CVaR RL in Low-rank MDPs
We study risk-sensitive Reinforcement Learning (RL), where we aim to maximize the Conditional Value at Risk (CVaR) with a fixed risk tolerance tau. Prior theoretical work studying risk-sensitive RL focuses on the tabular Markov Decision Processes (MDPs) setting. To extend CVaR RL to settings where state space is large, function approximation must be deployed. We study CVaR RL in low-rank MDPs with nonlinear function approximation. Low-rank MDPs assume the underlying transition kernel admits a low-rank decomposition, but unlike prior linear models, low-rank MDPs do not assume the feature or state-action representation is known. We propose a novel Upper Confidence Bound (UCB) bonus-driven algorithm to carefully balance the interplay between exploration, exploitation, and representation learning in CVaR RL. We prove that our algorithm achieves a sample complexity of Oleft(H^7 A^2 d^4{tau^2 epsilon^2}right) to yield an epsilon-optimal CVaR, where H is the length of each episode, A is the capacity of action space, and d is the dimension of representations. Computational-wise, we design a novel discretized Least-Squares Value Iteration (LSVI) algorithm for the CVaR objective as the planning oracle and show that we can find the near-optimal policy in a polynomial running time with a Maximum Likelihood Estimation oracle. To our knowledge, this is the first provably efficient CVaR RL algorithm in low-rank MDPs.
Predictive Multiplicity in Probabilistic Classification
Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.
Horizon-Free Regret for Linear Markov Decision Processes
A recent line of works showed regret bounds in reinforcement learning (RL) can be (nearly) independent of planning horizon, a.k.a.~the horizon-free bounds. However, these regret bounds only apply to settings where a polynomial dependency on the size of transition model is allowed, such as tabular Markov Decision Process (MDP) and linear mixture MDP. We give the first horizon-free bound for the popular linear MDP setting where the size of the transition model can be exponentially large or even uncountable. In contrast to prior works which explicitly estimate the transition model and compute the inhomogeneous value functions at different time steps, we directly estimate the value functions and confidence sets. We obtain the horizon-free bound by: (1) maintaining multiple weighted least square estimators for the value functions; and (2) a structural lemma which shows the maximal total variation of the inhomogeneous value functions is bounded by a polynomial factor of the feature dimension.
An Instrumental Variable Approach to Confounded Off-Policy Evaluation
Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning
Portfolio Selection is an important real-world financial task and has attracted extensive attention in artificial intelligence communities. This task, however, has two main difficulties: (i) the non-stationary price series and complex asset correlations make the learning of feature representation very hard; (ii) the practicality principle in financial markets requires controlling both transaction and risk costs. Most existing methods adopt handcraft features and/or consider no constraints for the costs, which may make them perform unsatisfactorily and fail to control both costs in practice. In this paper, we propose a cost-sensitive portfolio selection method with deep reinforcement learning. Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations, while a new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning. We theoretically analyze the near-optimality of the proposed reward, which shows that the growth rate of the policy regarding this reward function can approach the theoretical optimum. We also empirically evaluate the proposed method on real-world datasets. Promising results demonstrate the effectiveness and superiority of the proposed method in terms of profitability, cost-sensitivity and representation abilities.
Asymptotically free sketched ridge ensembles: Risks, cross-validation, and tuning
We employ random matrix theory to establish consistency of generalized cross validation (GCV) for estimating prediction risks of sketched ridge regression ensembles, enabling efficient and consistent tuning of regularization and sketching parameters. Our results hold for a broad class of asymptotically free sketches under very mild data assumptions. For squared prediction risk, we provide a decomposition into an unsketched equivalent implicit ridge bias and a sketching-based variance, and prove that the risk can be globally optimized by only tuning sketch size in infinite ensembles. For general subquadratic prediction risk functionals, we extend GCV to construct consistent risk estimators, and thereby obtain distributional convergence of the GCV-corrected predictions in Wasserstein-2 metric. This in particular allows construction of prediction intervals with asymptotically correct coverage conditional on the training data. We also propose an "ensemble trick" whereby the risk for unsketched ridge regression can be efficiently estimated via GCV using small sketched ridge ensembles. We empirically validate our theoretical results using both synthetic and real large-scale datasets with practical sketches including CountSketch and subsampled randomized discrete cosine transforms.
"Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts
Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts.
Conformal Risk Control
We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea to distribution shift, quantile risk control, multiple and adversarial risk control, and expectations of U-statistics. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score.
Improved iterative methods for solving risk parity portfolio
Risk parity, also known as equal risk contribution, has recently gained increasing attention as a portfolio allocation method. However, solving portfolio weights must resort to numerical methods as the analytic solution is not available. This study improves two existing iterative methods: the cyclical coordinate descent (CCD) and Newton methods. We enhance the CCD method by simplifying the formulation using a correlation matrix and imposing an additional rescaling step. We also suggest an improved initial guess inspired by the CCD method for the Newton method. Numerical experiments show that the improved CCD method performs the best and is approximately three times faster than the original CCD method, saving more than 40% of the iterations.
Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information
We develop a portfolio allocation framework that leverages deep learning techniques to address challenges arising from high-dimensional, non-stationary, and low-signal-to-noise market information. Our approach includes a dynamic embedding method that reduces the non-stationary, high-dimensional state space into a lower-dimensional representation. We design a reinforcement learning (RL) framework that integrates generative autoencoders and online meta-learning to dynamically embed market information, enabling the RL agent to focus on the most impactful parts of the state space for portfolio allocation decisions. Empirical analysis based on the top 500 U.S. stocks demonstrates that our framework outperforms common portfolio benchmarks and the predict-then-optimize (PTO) approach using machine learning, particularly during periods of market stress. Traditional factor models do not fully explain this superior performance. The framework's ability to time volatility reduces its market exposure during turbulent times. Ablation studies confirm the robustness of this performance across various reinforcement learning algorithms. Additionally, the embedding and meta-learning techniques effectively manage the complexities of high-dimensional, noisy, and non-stationary financial data, enhancing both portfolio performance and risk management.
Risk-Averse Reinforcement Learning with Itakura-Saito Loss
Risk-averse reinforcement learning finds application in various high-stakes fields. Unlike classical reinforcement learning, which aims to maximize expected returns, risk-averse agents choose policies that minimize risk, occasionally sacrificing expected value. These preferences can be framed through utility theory. We focus on the specific case of the exponential utility function, where we can derive the Bellman equations and employ various reinforcement learning algorithms with few modifications. However, these methods suffer from numerical instability due to the need for exponent computation throughout the process. To address this, we introduce a numerically stable and mathematically sound loss function based on the Itakura-Saito divergence for learning state-value and action-value functions. We evaluate our proposed loss function against established alternatives, both theoretically and empirically. In the experimental section, we explore multiple financial scenarios, some with known analytical solutions, and show that our loss function outperforms the alternatives.
Customer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout
Accurately predicting customer Lifetime Value (LTV) is crucial for companies to optimize their revenue strategies. Traditional deep learning models for LTV prediction are effective but typically provide only point estimates and fail to capture model uncertainty in modeling user behaviors. To address this limitation, we propose a novel approach that enhances the architecture of purely neural network models by incorporating the Monte Carlo Dropout (MCD) framework. We benchmarked the proposed method using data from one of the most downloaded mobile games in the world, and demonstrated a substantial improvement in predictive Top 5\% Mean Absolute Percentage Error compared to existing state-of-the-art methods. Additionally, our approach provides confidence metric as an extra dimension for performance evaluation across various neural network models, facilitating more informed business decisions.
Transfer Learning for Portfolio Optimization
In this work, we explore the possibility of utilizing transfer learning techniques to address the financial portfolio optimization problem. We introduce a novel concept called "transfer risk", within the optimization framework of transfer learning. A series of numerical experiments are conducted from three categories: cross-continent transfer, cross-sector transfer, and cross-frequency transfer. In particular, 1. a strong correlation between the transfer risk and the overall performance of transfer learning methods is established, underscoring the significance of transfer risk as a viable indicator of "transferability"; 2. transfer risk is shown to provide a computationally efficient way to identify appropriate source tasks in transfer learning, enhancing the efficiency and effectiveness of the transfer learning approach; 3. additionally, the numerical experiments offer valuable new insights for portfolio management across these different settings.
Quantile Advantage Estimation for Entropy-Safe Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) strengthens LLM reasoning, but training often oscillates between {entropy collapse} and {entropy explosion}. We trace both hazards to the mean baseline used in value-free RL (e.g., GRPO and DAPO), which improperly penalizes negative-advantage samples under reward outliers. We propose {Quantile Advantage Estimation} (QAE), replacing the mean with a group-wise K-quantile baseline. QAE induces a response-level, two-regime gate: on hard queries (p <= 1 - K) it reinforces rare successes, while on easy queries (p > 1 - K) it targets remaining failures. Under first-order softmax updates, we prove {two-sided entropy safety}, giving lower and upper bounds on one-step entropy change that curb explosion and prevent collapse. Empirically, this minimal modification stabilizes entropy, sparsifies credit assignment (with tuned K, roughly 80% of responses receive zero advantage), and yields sustained pass@1 gains on Qwen3-8B/14B-Base across AIME 2024/2025 and AMC 2023. These results identify {baseline design} -- rather than token-level heuristics -- as the primary mechanism for scaling RLVR.
Regret Bounds for Markov Decision Processes with Recursive Optimized Certainty Equivalents
The optimized certainty equivalent (OCE) is a family of risk measures that cover important examples such as entropic risk, conditional value-at-risk and mean-variance models. In this paper, we propose a new episodic risk-sensitive reinforcement learning formulation based on tabular Markov decision processes with recursive OCEs. We design an efficient learning algorithm for this problem based on value iteration and upper confidence bound. We derive an upper bound on the regret of the proposed algorithm, and also establish a minimax lower bound. Our bounds show that the regret rate achieved by our proposed algorithm has optimal dependence on the number of episodes and the number of actions.
TraDE: Transformers for Density Estimation
We present TraDE, a self-attention-based architecture for auto-regressive density estimation with continuous and discrete valued data. Our model is trained using a penalized maximum likelihood objective, which ensures that samples from the density estimate resemble the training data distribution. The use of self-attention means that the model need not retain conditional sufficient statistics during the auto-regressive process beyond what is needed for each covariate. On standard tabular and image data benchmarks, TraDE produces significantly better density estimates than existing approaches such as normalizing flow estimators and recurrent auto-regressive models. However log-likelihood on held-out data only partially reflects how useful these estimates are in real-world applications. In order to systematically evaluate density estimators, we present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data and demonstrate that TraDE works well in these scenarios.
Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation
We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.
Quantum Monte Carlo methods for Newsvendor problem with Multiple Unreliable Suppliers
In the post-pandemic world, manufacturing enterprises face increasing uncertainties, especially with vulnerabilities in global supply chains. Although supply chain management has been extensively studied, the critical influence of decision-makers (DMs) in these systems remains underexplored. This study studies the inventory management problem under risk using the newsvendor model by incorporating DMs risk preferences. By employing the Quantum Monte Carlo (QMC) combined with Quantum Amplitude Estimation (QAE) algorithm, the estimation of probabilities or expectation values can be done more efficiently. This offers near-quadratic speedup compared to classical Monte Carlo methods. Our findings illuminate the intricate relationship between risk-aware decision-making and inventory management, providing essential insights for enhancing supply chain resilience and adaptability in uncertain conditions
Highly Imbalanced Regression with Tabular Data in SEP and Other Applications
We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.
Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning
A diversified risk-adjusted time-series momentum (TSMOM) portfolio can deliver substantial abnormal returns and offer some degree of tail risk protection during extreme market events. The performance of existing TSMOM strategies, however, relies not only on the quality of the momentum signal but also on the efficacy of the volatility estimator. Yet many of the existing studies have always considered these two factors to be independent. Inspired by recent progress in Multi-Task Learning (MTL), we present a new approach using MTL in a deep neural network architecture that jointly learns portfolio construction and various auxiliary tasks related to volatility, such as forecasting realized volatility as measured by different volatility estimators. Through backtesting from January 2000 to December 2020 on a diversified portfolio of continuous futures contracts, we demonstrate that even after accounting for transaction costs of up to 3 basis points, our approach outperforms existing TSMOM strategies. Moreover, experiments confirm that adding auxiliary tasks indeed boosts the portfolio's performance. These findings demonstrate that MTL can be a powerful tool in finance.
Value Gradient weighted Model-Based Reinforcement Learning
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies, yet unavoidable modeling errors often lead performance deterioration. The model in MBRL is often solely fitted to reconstruct dynamics, state observations in particular, while the impact of model error on the policy is not captured by the training objective. This leads to a mismatch between the intended goal of MBRL, enabling good policy and value learning, and the target of the loss function employed in practice, future state prediction. Naive intuition would suggest that value-aware model learning would fix this problem and, indeed, several solutions to this objective mismatch problem have been proposed based on theoretical analysis. However, they tend to be inferior in practice to commonly used maximum likelihood (MLE) based approaches. In this paper we propose the Value-gradient weighted Model Learning (VaGraM), a novel method for value-aware model learning which improves the performance of MBRL in challenging settings, such as small model capacity and the presence of distracting state dimensions. We analyze both MLE and value-aware approaches and demonstrate how they fail to account for exploration and the behavior of function approximation when learning value-aware models and highlight the additional goals that must be met to stabilize optimization in the deep learning setting. We verify our analysis by showing that our loss function is able to achieve high returns on the Mujoco benchmark suite while being more robust than maximum likelihood based approaches.
Binary Tree Option Pricing Under Market Microstructure Effects: A Random Forest Approach
We propose a machine learning-based extension of the classical binomial option pricing model that incorporates key market microstructure effects. Traditional models assume frictionless markets, overlooking empirical features such as bid-ask spreads, discrete price movements, and serial return correlations. Our framework augments the binomial tree with path-dependent transition probabilities estimated via Random Forest classifiers trained on high-frequency market data. This approach preserves no-arbitrage conditions while embedding real-world trading dynamics into the pricing model. Using 46,655 minute-level observations of SPY from January to June 2025, we achieve an AUC of 88.25% in forecasting one-step price movements. Order flow imbalance is identified as the most influential predictor, contributing 43.2% to feature importance. After resolving time-scaling inconsistencies in tree construction, our model yields option prices that deviate by 13.79% from Black-Scholes benchmarks, highlighting the impact of microstructure on fair value estimation. While computational limitations restrict the model to short-term derivatives, our results offer a robust, data-driven alternative to classical pricing methods grounded in empirical market behavior.
Advancing Investment Frontiers: Industry-grade Deep Reinforcement Learning for Portfolio Optimization
This research paper delves into the application of Deep Reinforcement Learning (DRL) in asset-class agnostic portfolio optimization, integrating industry-grade methodologies with quantitative finance. At the heart of this integration is our robust framework that not only merges advanced DRL algorithms with modern computational techniques but also emphasizes stringent statistical analysis, software engineering and regulatory compliance. To the best of our knowledge, this is the first study integrating financial Reinforcement Learning with sim-to-real methodologies from robotics and mathematical physics, thus enriching our frameworks and arguments with this unique perspective. Our research culminates with the introduction of AlphaOptimizerNet, a proprietary Reinforcement Learning agent (and corresponding library). Developed from a synthesis of state-of-the-art (SOTA) literature and our unique interdisciplinary methodology, AlphaOptimizerNet demonstrates encouraging risk-return optimization across various asset classes with realistic constraints. These preliminary results underscore the practical efficacy of our frameworks. As the finance sector increasingly gravitates towards advanced algorithmic solutions, our study bridges theoretical advancements with real-world applicability, offering a template for ensuring safety and robust standards in this technologically driven future.
Conformal Risk Control for Pulmonary Nodule Detection
Quantitative tools are increasingly appealing for decision support in healthcare, driven by the growing capabilities of advanced AI systems. However, understanding the predictive uncertainties surrounding a tool's output is crucial for decision-makers to ensure reliable and transparent decisions. In this paper, we present a case study on pulmonary nodule detection for lung cancer screening, enhancing an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC). We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain, allowing end-users to achieve arbitrary validity by trading off false positives and providing formal statistical guarantees on model performance. Among ground-truth nodules annotated by at least three radiologists, our model achieves a sensitivity that is competitive with that generally achieved by individual radiologists, with a slight increase in false positives. Furthermore, we illustrate the risks of using off-the-shelve prediction models when faced with ontological uncertainty, such as when radiologists disagree on what constitutes the ground truth on pulmonary nodules.
Assessing Language Model Deployment with Risk Cards
This paper introduces RiskCards, a framework for structured assessment and documentation of risks associated with an application of language models. As with all language, text generated by language models can be harmful, or used to bring about harm. Automating language generation adds both an element of scale and also more subtle or emergent undesirable tendencies to the generated text. Prior work establishes a wide variety of language model harms to many different actors: existing taxonomies identify categories of harms posed by language models; benchmarks establish automated tests of these harms; and documentation standards for models, tasks and datasets encourage transparent reporting. However, there is no risk-centric framework for documenting the complexity of a landscape in which some risks are shared across models and contexts, while others are specific, and where certain conditions may be required for risks to manifest as harms. RiskCards address this methodological gap by providing a generic framework for assessing the use of a given language model in a given scenario. Each RiskCard makes clear the routes for the risk to manifest harm, their placement in harm taxonomies, and example prompt-output pairs. While RiskCards are designed to be open-source, dynamic and participatory, we present a "starter set" of RiskCards taken from a broad literature survey, each of which details a concrete risk presentation. Language model RiskCards initiate a community knowledge base which permits the mapping of risks and harms to a specific model or its application scenario, ultimately contributing to a better, safer and shared understanding of the risk landscape.
VARD: Efficient and Dense Fine-Tuning for Diffusion Models with Value-based RL
Diffusion models have emerged as powerful generative tools across various domains, yet tailoring pre-trained models to exhibit specific desirable properties remains challenging. While reinforcement learning (RL) offers a promising solution,current methods struggle to simultaneously achieve stable, efficient fine-tuning and support non-differentiable rewards. Furthermore, their reliance on sparse rewards provides inadequate supervision during intermediate steps, often resulting in suboptimal generation quality. To address these limitations, dense and differentiable signals are required throughout the diffusion process. Hence, we propose VAlue-based Reinforced Diffusion (VARD): a novel approach that first learns a value function predicting expection of rewards from intermediate states, and subsequently uses this value function with KL regularization to provide dense supervision throughout the generation process. Our method maintains proximity to the pretrained model while enabling effective and stable training via backpropagation. Experimental results demonstrate that our approach facilitates better trajectory guidance, improves training efficiency and extends the applicability of RL to diffusion models optimized for complex, non-differentiable reward functions.
Estimation of Non-Crossing Quantile Regression Process with Deep ReQU Neural Networks
We propose a penalized nonparametric approach to estimating the quantile regression process (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep neural networks and introduce a novel penalty function to enforce non-crossing of quantile regression curves. We establish the non-asymptotic excess risk bounds for the estimated QRP and derive the mean integrated squared error for the estimated QRP under mild smoothness and regularity conditions. To establish these non-asymptotic risk and estimation error bounds, we also develop a new error bound for approximating C^s smooth functions with s >0 and their derivatives using ReQU activated neural networks. This is a new approximation result for ReQU networks and is of independent interest and may be useful in other problems. Our numerical experiments demonstrate that the proposed method is competitive with or outperforms two existing methods, including methods using reproducing kernels and random forests, for nonparametric quantile regression.
Intriguing Properties of Data Attribution on Diffusion Models
Data attribution seeks to trace model outputs back to training data. With the recent development of diffusion models, data attribution has become a desired module to properly assign valuations for high-quality or copyrighted training samples, ensuring that data contributors are fairly compensated or credited. Several theoretically motivated methods have been proposed to implement data attribution, in an effort to improve the trade-off between computational scalability and effectiveness. In this work, we conduct extensive experiments and ablation studies on attributing diffusion models, specifically focusing on DDPMs trained on CIFAR-10 and CelebA, as well as a Stable Diffusion model LoRA-finetuned on ArtBench. Intriguingly, we report counter-intuitive observations that theoretically unjustified design choices for attribution empirically outperform previous baselines by a large margin, in terms of both linear datamodeling score and counterfactual evaluation. Our work presents a significantly more efficient approach for attributing diffusion models, while the unexpected findings suggest that at least in non-convex settings, constructions guided by theoretical assumptions may lead to inferior attribution performance. The code is available at https://github.com/sail-sg/D-TRAK.
Empirical Study of Market Impact Conditional on Order-Flow Imbalance
In this research, we have empirically investigated the key drivers affecting liquidity in equity markets. We illustrated how theoretical models, such as Kyle's model, of agents' interplay in the financial markets, are aligned with the phenomena observed in publicly available trades and quotes data. Specifically, we confirmed that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance. We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow. Our findings suggest that machine learning models can be used in estimation of financial variables; and predictive accuracy of such learning algorithms can surpass the performance of traditional statistical approaches. Understanding the determinants of price impact is crucial for several reasons. From a theoretical stance, modelling the impact provides a statistical measure of liquidity. Practitioners adopt impact models as a pre-trade tool to estimate expected transaction costs and optimize the execution of their strategies. This further serves as a post-trade valuation benchmark as suboptimal execution can significantly deteriorate a portfolio performance. More broadly, the price impact reflects the balance of liquidity across markets. This is of central importance to regulators as it provides an all-encompassing explanation of the correlation between market design and systemic risk, enabling regulators to design more stable and efficient markets.
Identifying Incorrect Classifications with Balanced Uncertainty
Uncertainty estimation is critical for cost-sensitive deep-learning applications (i.e. disease diagnosis). It is very challenging partly due to the inaccessibility of uncertainty groundtruth in most datasets. Previous works proposed to estimate the uncertainty from softmax calibration, Monte Carlo sampling, subjective logic and so on. However, these existing methods tend to be over-confident about their predictions with unreasonably low overall uncertainty, which originates from the imbalance between positive (correct classifications) and negative (incorrect classifications) samples. For this issue, we firstly propose the distributional imbalance to model the imbalance in uncertainty estimation as two kinds of distribution biases, and secondly propose Balanced True Class Probability (BTCP) framework, which learns an uncertainty estimator with a novel Distributional Focal Loss (DFL) objective. Finally, we evaluate the BTCP in terms of failure prediction and out-of-distribution (OOD) detection on multiple datasets. The experimental results show that BTCP outperforms other uncertainty estimation methods especially in identifying incorrect classifications.
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs. To build a trusted AI system, it is therefore critical to accurately quantify the prediction uncertainties. While current efforts focus on improving uncertainty quantification accuracy and efficiency, there is a need to identify uncertainty sources and take actions to mitigate their effects on predictions. Therefore, we propose to develop explainable and actionable Bayesian deep learning methods to not only perform accurate uncertainty quantification but also explain the uncertainties, identify their sources, and propose strategies to mitigate the uncertainty impacts. Specifically, we introduce a gradient-based uncertainty attribution method to identify the most problematic regions of the input that contribute to the prediction uncertainty. Compared to existing methods, the proposed UA-Backprop has competitive accuracy, relaxed assumptions, and high efficiency. Moreover, we propose an uncertainty mitigation strategy that leverages the attribution results as attention to further improve the model performance. Both qualitative and quantitative evaluations are conducted to demonstrate the effectiveness of our proposed methods.
Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs
We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by 1, we show that our algorithm only needs to explore tilde O( d^2varepsilon^{-2}) episodes to find an varepsilon-optimal policy, where d is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an Omega(d^2varepsilon^{-2}) sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.
Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
The Sliced-Wasserstein distance (SW) is a computationally efficient and theoretically grounded alternative to the Wasserstein distance. Yet, the literature on its statistical properties -- or, more accurately, its generalization properties -- with respect to the distribution of slices, beyond the uniform measure, is scarce. To bring new contributions to this line of research, we leverage the PAC-Bayesian theory and a central observation that SW may be interpreted as an average risk, the quantity PAC-Bayesian bounds have been designed to characterize. We provide three types of results: i) PAC-Bayesian generalization bounds that hold on what we refer as adaptive Sliced-Wasserstein distances, i.e. SW defined with respect to arbitrary distributions of slices (among which data-dependent distributions), ii) a principled procedure to learn the distribution of slices that yields maximally discriminative SW, by optimizing our theoretical bounds, and iii) empirical illustrations of our theoretical findings.
Quantifying Distributional Model Risk in Marginal Problems via Optimal Transport
This paper studies distributional model risk in marginal problems, where each marginal measure is assumed to lie in a Wasserstein ball centered at a fixed reference measure with a given radius. Theoretically, we establish several fundamental results including strong duality, finiteness of the proposed Wasserstein distributional model risk, and the existence of an optimizer at each radius. In addition, we show continuity of the Wasserstein distributional model risk as a function of the radius. Using strong duality, we extend the well-known Makarov bounds for the distribution function of the sum of two random variables with given marginals to Wasserstein distributionally robust Markarov bounds. Practically, we illustrate our results on four distinct applications when the sample information comes from multiple data sources and only some marginal reference measures are identified. They are: partial identification of treatment effects; externally valid treatment choice via robust welfare functions; Wasserstein distributionally robust estimation under data combination; and evaluation of the worst aggregate risk measures.
AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks
In quantitative finance, machine learning methods are essential for alpha generation. This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization. During the COVID period (2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77. It incorporates two risk models to enhance risk management, showing efficiency during volatile periods. The methodology was implemented on the QuantConnect platform, which was chosen for its robust framework and experimental reproducibility. The system, which predicts future price movements, includes a three-year warm-up to ensure proper algorithm function. It targets highly liquid, large-cap energy stocks to ensure stable and predictable performance while also considering broker payments. The dual-model alpha system utilizes log returns to select the optimal state based on the historical performance. It combines state predictions with neural network outputs, which are based on historical data, to generate trading signals. This study examined the architecture of the trading system, data pre-processing, training, and performance. The full code and backtesting data are available under the QuantConnect terms.
AIRI: Predicting Retention Indices and their Uncertainties using Artificial Intelligence
The Kov\'ats Retention index (RI) is a quantity measured using gas chromatography and commonly used in the identification of chemical structures. Creating libraries of observed RI values is a laborious task, so we explore the use of a deep neural network for predicting RI values from structure for standard semipolar columns. This network generated predictions with a mean absolute error of 15.1 and, in a quantification of the tail of the error distribution, a 95th percentile absolute error of 46.5. Because of the Artificial Intelligence Retention Indices (AIRI) network's accuracy, it was used to predict RI values for the NIST EI-MS spectral libraries. These RI values are used to improve chemical identification methods and the quality of the library. Estimating uncertainty is an important practical need when using prediction models. To quantify the uncertainty of our network for each individual prediction, we used the outputs of an ensemble of 8 networks to calculate a predicted standard deviation for each RI value prediction. This predicted standard deviation was corrected to follow the error between observed and predicted RI values. The Z scores using these predicted standard deviations had a standard deviation of 1.52 and a 95th percentile absolute Z score corresponding to a mean RI value of 42.6.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Mirror descent value iteration (MDVI), an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL), has served as the basis for recent high-performing practical RL algorithms. However, despite the use of function approximation in practice, the theoretical understanding of MDVI has been limited to tabular Markov decision processes (MDPs). We study MDVI with linear function approximation through its sample complexity required to identify an varepsilon-optimal policy with probability 1-delta under the settings of an infinite-horizon linear MDP, generative model, and G-optimal design. We demonstrate that least-squares regression weighted by the variance of an estimated optimal value function of the next state is crucial to achieving minimax optimality. Based on this observation, we present Variance-Weighted Least-Squares MDVI (VWLS-MDVI), the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs. Furthermore, we propose a practical VWLS algorithm for value-based deep RL, Deep Variance Weighting (DVW). Our experiments demonstrate that DVW improves the performance of popular value-based deep RL algorithms on a set of MinAtar benchmarks.
Efficient Algorithms for Generalized Linear Bandits with Heavy-tailed Rewards
This paper investigates the problem of generalized linear bandits with heavy-tailed rewards, whose (1+epsilon)-th moment is bounded for some epsilonin (0,1]. Although there exist methods for generalized linear bandits, most of them focus on bounded or sub-Gaussian rewards and are not well-suited for many real-world scenarios, such as financial markets and web-advertising. To address this issue, we propose two novel algorithms based on truncation and mean of medians. These algorithms achieve an almost optimal regret bound of O(dT^{1{1+epsilon}}), where d is the dimension of contextual information and T is the time horizon. Our truncation-based algorithm supports online learning, distinguishing it from existing truncation-based approaches. Additionally, our mean-of-medians-based algorithm requires only O(log T) rewards and one estimator per epoch, making it more practical. Moreover, our algorithms improve the regret bounds by a logarithmic factor compared to existing algorithms when epsilon=1. Numerical experimental results confirm the merits of our algorithms.
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning
Offline reinforcement learning aims to train agents from pre-collected datasets. However, this comes with the added challenge of estimating the value of behaviors not covered in the dataset. Model-based methods offer a potential solution by training an approximate dynamics model, which then allows collection of additional synthetic data via rollouts in this model. The prevailing theory treats this approach as online RL in an approximate dynamics model, and any remaining performance gap is therefore understood as being due to dynamics model errors. In this paper, we analyze this assumption and investigate how popular algorithms perform as the learned dynamics model is improved. In contrast to both intuition and theory, if the learned dynamics model is replaced by the true error-free dynamics, existing model-based methods completely fail. This reveals a key oversight: The theoretical foundations assume sampling of full horizon rollouts in the learned dynamics model; however, in practice, the number of model-rollout steps is aggressively reduced to prevent accumulating errors. We show that this truncation of rollouts results in a set of edge-of-reach states at which we are effectively ``bootstrapping from the void.'' This triggers pathological value overestimation and complete performance collapse. We term this the edge-of-reach problem. Based on this new insight, we fill important gaps in existing theory, and reveal how prior model-based methods are primarily addressing the edge-of-reach problem, rather than model-inaccuracy as claimed. Finally, we propose Reach-Aware Value Learning (RAVL), a simple and robust method that directly addresses the edge-of-reach problem and hence - unlike existing methods - does not fail as the dynamics model is improved. Code open-sourced at: github.com/anyasims/edge-of-reach.
A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market
Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.
Quantification of Uncertainty with Adversarial Models
Quantifying uncertainty is important for actionable predictions in real-world applications. A crucial part of predictive uncertainty quantification is the estimation of epistemic uncertainty, which is defined as an integral of the product between a divergence function and the posterior. Current methods such as Deep Ensembles or MC dropout underperform at estimating the epistemic uncertainty, since they primarily consider the posterior when sampling models. We suggest Quantification of Uncertainty with Adversarial Models (QUAM) to better estimate the epistemic uncertainty. QUAM identifies regions where the whole product under the integral is large, not just the posterior. Consequently, QUAM has lower approximation error of the epistemic uncertainty compared to previous methods. Models for which the product is large correspond to adversarial models (not adversarial examples!). Adversarial models have both a high posterior as well as a high divergence between their predictions and that of a reference model. Our experiments show that QUAM excels in capturing epistemic uncertainty for deep learning models and outperforms previous methods on challenging tasks in the vision domain.
Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration
The realm of High-Frequency Trading (HFT) is characterized by rapid decision-making processes that capitalize on fleeting market inefficiencies. As the financial markets become increasingly competitive, there is a pressing need for innovative strategies that can adapt and evolve with changing market dynamics. Enter Reinforcement Learning (RL), a branch of machine learning where agents learn by interacting with their environment, making it an intriguing candidate for HFT applications. This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for HFT scenarios. By leveraging the adaptive learning capabilities of RL, we explore its potential to unearth patterns and devise trading strategies that traditional methods might overlook. We delve into the intricate exploration-exploitation trade-offs inherent in RL and how they manifest in the volatile world of HFT. Furthermore, we confront the challenges of applying RL in non-stationary environments, typical of financial markets, and investigate methodologies to mitigate associated risks. Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns. This paper, therefore, positions RL as a pivotal tool for the next generation of HFT-based statistical arbitrage, offering insights for both researchers and practitioners in the field.
Non-Exchangeable Conformal Risk Control
Split conformal prediction has recently sparked great interest due to its ability to provide formally guaranteed uncertainty sets or intervals for predictions made by black-box neural models, ensuring a predefined probability of containing the actual ground truth. While the original formulation assumes data exchangeability, some extensions handle non-exchangeable data, which is often the case in many real-world scenarios. In parallel, some progress has been made in conformal methods that provide statistical guarantees for a broader range of objectives, such as bounding the best F_1-score or minimizing the false negative rate in expectation. In this paper, we leverage and extend these two lines of work by proposing non-exchangeable conformal risk control, which allows controlling the expected value of any monotone loss function when the data is not exchangeable. Our framework is flexible, makes very few assumptions, and allows weighting the data based on its relevance for a given test example; a careful choice of weights may result on tighter bounds, making our framework useful in the presence of change points, time series, or other forms of distribution drift. Experiments with both synthetic and real world data show the usefulness of our method.
Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization
This paper addresses the critical disconnect between prediction and decision quality in portfolio optimization by integrating Large Language Models (LLMs) with decision-focused learning. We demonstrate both theoretically and empirically that minimizing the prediction error alone leads to suboptimal portfolio decisions. We aim to exploit the representational power of LLMs for investment decisions. An attention mechanism processes asset relationships, temporal dependencies, and macro variables, which are then directly integrated into a portfolio optimization layer. This enables the model to capture complex market dynamics and align predictions with the decision objectives. Extensive experiments on S\&P100 and DOW30 datasets show that our model consistently outperforms state-of-the-art deep learning models. In addition, gradient-based analyses show that our model prioritizes the assets most crucial to decision making, thus mitigating the effects of prediction errors on portfolio performance. These findings underscore the value of integrating decision objectives into predictions for more robust and context-aware portfolio management.
Mildly Constrained Evaluation Policy for Offline Reinforcement Learning
Offline reinforcement learning (RL) methodologies enforce constraints on the policy to adhere closely to the behavior policy, thereby stabilizing value learning and mitigating the selection of out-of-distribution (OOD) actions during test time. Conventional approaches apply identical constraints for both value learning and test time inference. However, our findings indicate that the constraints suitable for value estimation may in fact be excessively restrictive for action selection during test time. To address this issue, we propose a Mildly Constrained Evaluation Policy (MCEP) for test time inference with a more constrained target policy for value estimation. Since the target policy has been adopted in various prior approaches, MCEP can be seamlessly integrated with them as a plug-in. We instantiate MCEP based on TD3-BC [Fujimoto and Gu, 2021] and AWAC [Nair et al., 2020] algorithms. The empirical results on MuJoCo locomotion tasks show that the MCEP significantly outperforms the target policy and achieves competitive results to state-of-the-art offline RL methods. The codes are open-sourced at https://github.com/egg-west/MCEP.git.
Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis
Machine learning models trained on Earth observation data, such as satellite imagery, have demonstrated significant promise in predicting household-level wealth indices, enabling the creation of high-resolution wealth maps that can be leveraged across multiple causal trials. However, because standard training objectives prioritize overall predictive accuracy, these predictions inherently suffer from shrinkage toward the mean, leading to attenuated estimates of causal treatment effects and limiting their utility in policy. Existing debiasing methods, such as Prediction-Powered Inference, can handle this attenuation bias but require additional fresh ground-truth data at the downstream stage of causal inference, which restricts their applicability in data-scarce environments. Here, we introduce and evaluate two correction methods -- linear calibration correction and Tweedie's correction -- that substantially reduce prediction bias without relying on newly collected labeled data. Linear calibration corrects bias through a straightforward linear transformation derived from held-out calibration data, whereas Tweedie's correction leverages empirical Bayes principles to directly address shrinkage-induced biases by exploiting score functions derived from the model's learning patterns. Through analytical exercises and experiments using Demographic and Health Survey data, we demonstrate that the proposed methods meet or outperform existing approaches that either require (a) adjustments to training pipelines or (b) additional labeled data. These approaches may represent a promising avenue for improving the reliability of causal inference when direct outcome measures are limited or unavailable, enabling a "one map, many trials" paradigm where a single upstream data creation team produces predictions usable by many downstream teams across diverse ML pipelines.
A non-asymptotic approach for model selection via penalization in high-dimensional mixture of experts models
Mixture of experts (MoE) are a popular class of statistical and machine learning models that have gained attention over the years due to their flexibility and efficiency. In this work, we consider Gaussian-gated localized MoE (GLoME) and block-diagonal covariance localized MoE (BLoME) regression models to present nonlinear relationships in heterogeneous data with potential hidden graph-structured interactions between high-dimensional predictors. These models pose difficult statistical estimation and model selection questions, both from a computational and theoretical perspective. This paper is devoted to the study of the problem of model selection among a collection of GLoME or BLoME models characterized by the number of mixture components, the complexity of Gaussian mean experts, and the hidden block-diagonal structures of the covariance matrices, in a penalized maximum likelihood estimation framework. In particular, we establish non-asymptotic risk bounds that take the form of weak oracle inequalities, provided that lower bounds for the penalties hold. The good empirical behavior of our models is then demonstrated on synthetic and real datasets.
Sequential Counterfactual Risk Minimization
Counterfactual Risk Minimization (CRM) is a framework for dealing with the logged bandit feedback problem, where the goal is to improve a logging policy using offline data. In this paper, we explore the case where it is possible to deploy learned policies multiple times and acquire new data. We extend the CRM principle and its theory to this scenario, which we call "Sequential Counterfactual Risk Minimization (SCRM)." We introduce a novel counterfactual estimator and identify conditions that can improve the performance of CRM in terms of excess risk and regret rates, by using an analysis similar to restart strategies in accelerated optimization methods. We also provide an empirical evaluation of our method in both discrete and continuous action settings, and demonstrate the benefits of multiple deployments of CRM.
Only Pay for What Is Uncertain: Variance-Adaptive Thompson Sampling
Most bandit algorithms assume that the reward variances or their upper bounds are known, and that they are the same for all arms. This naturally leads to suboptimal performance and higher regret due to variance overestimation. On the other hand, underestimated reward variances may lead to linear regret due to committing early to a suboptimal arm. This motivated prior works on variance-adaptive frequentist algorithms, which have strong instance-dependent regret bounds but cannot incorporate prior knowledge on reward variances. We lay foundations for the Bayesian setting, which incorporates prior knowledge. This results in lower regret in practice, due to using the prior in the algorithm design, and also improved regret guarantees. Specifically, we study Gaussian bandits with {unknown heterogeneous reward variances}, and develop a Thompson sampling algorithm with prior-dependent Bayes regret bounds. We achieve lower regret with lower reward variances and more informative priors on them, which is precisely why we pay only for what is uncertain. This is the first result of its kind. Finally, we corroborate our theory with extensive experiments, which show the superiority of our variance-adaptive Bayesian algorithm over prior frequentist approaches. We also show that our approach is robust to model misspecification and can be applied with estimated priors.
A Practical Upper Bound for the Worst-Case Attribution Deviations
Model attribution is a critical component of deep neural networks (DNNs) for its interpretability to complex models. Recent studies bring up attention to the security of attribution methods as they are vulnerable to attribution attacks that generate similar images with dramatically different attributions. Existing works have been investigating empirically improving the robustness of DNNs against those attacks; however, none of them explicitly quantifies the actual deviations of attributions. In this work, for the first time, a constrained optimization problem is formulated to derive an upper bound that measures the largest dissimilarity of attributions after the samples are perturbed by any noises within a certain region while the classification results remain the same. Based on the formulation, different practical approaches are introduced to bound the attributions above using Euclidean distance and cosine similarity under both ell_2 and ell_infty-norm perturbations constraints. The bounds developed by our theoretical study are validated on various datasets and two different types of attacks (PGD attack and IFIA attribution attack). Over 10 million attacks in the experiments indicate that the proposed upper bounds effectively quantify the robustness of models based on the worst-case attribution dissimilarities.
A predict-and-optimize approach to profit-driven churn prevention
In this paper, we introduce a novel predict-and-optimize method for profit-driven churn prevention. We frame the task of targeting customers for a retention campaign as a regret minimization problem. The main objective is to leverage individual customer lifetime values (CLVs) to ensure that only the most valuable customers are targeted. In contrast, many profit-driven strategies focus on churn probabilities while considering average CLVs. This often results in significant information loss due to data aggregation. Our proposed model aligns with the guidelines of Predict-and-Optimize (PnO) frameworks and can be efficiently solved using stochastic gradient descent methods. Results from 12 churn prediction datasets underscore the effectiveness of our approach, which achieves the best average performance compared to other well-established strategies in terms of average profit.
Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks
Designing an optimum portfolio for allocating suitable weights to its constituent assets so that the return and risk associated with the portfolio are optimized is a computationally hard problem. The seminal work of Markowitz that attempted to solve the problem by estimating the future returns of the stocks is found to perform sub-optimally on real-world stock market data. This is because the estimation task becomes extremely challenging due to the stochastic and volatile nature of stock prices. This work illustrates three approaches to portfolio design minimizing the risk, optimizing the risk, and assigning equal weights to the stocks of a portfolio. Thirteen critical sectors listed on the National Stock Exchange (NSE) of India are first chosen. Three portfolios are designed following the above approaches choosing the top ten stocks from each sector based on their free-float market capitalization. The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022. The portfolios are evaluated on the stock price data from Jan 1, 2022, to Dec 31, 2022. The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified.
Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization
Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance sigma_{1:T}^2 and the cumulative adversarial variation Sigma_{1:T}^2 for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance sigma_{max}^2 and the maximal adversarial variation Sigma_{max}^2 for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same O(sigma_{1:T^2}+Sigma_{1:T^2}) regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an O(min{log (sigma_{1:T}^2+Sigma_{1:T}^2), (sigma_{max}^2 + Sigma_{max}^2) log T}) bound, better than their O((sigma_{max}^2 + Sigma_{max}^2) log T) bound. For exp-concave and smooth functions, we achieve a new O(dlog(sigma_{1:T}^2+Sigma_{1:T}^2)) bound. Owing to the OMD framework, we can further extend our result to obtain dynamic regret guarantees, which are more favorable in non-stationary online scenarios. The attained results allow us to recover excess risk bounds of the stochastic setting and regret bounds of the adversarial setting, and derive new guarantees for many intermediate scenarios.
Distributional Offline Policy Evaluation with Predictive Error Guarantees
We study the problem of estimating the distribution of the return of a policy using an offline dataset that is not generated from the policy, i.e., distributional offline policy evaluation (OPE). We propose an algorithm called Fitted Likelihood Estimation (FLE), which conducts a sequence of Maximum Likelihood Estimation (MLE) and has the flexibility of integrating any state-of-the-art probabilistic generative models as long as it can be trained via MLE. FLE can be used for both finite-horizon and infinite-horizon discounted settings where rewards can be multi-dimensional vectors. Our theoretical results show that for both finite-horizon and infinite-horizon discounted settings, FLE can learn distributions that are close to the ground truth under total variation distance and Wasserstein distance, respectively. Our theoretical results hold under the conditions that the offline data covers the test policy's traces and that the supervised learning MLE procedures succeed. Experimentally, we demonstrate the performance of FLE with two generative models, Gaussian mixture models and diffusion models. For the multi-dimensional reward setting, FLE with diffusion models is capable of estimating the complicated distribution of the return of a test policy.
A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits
This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization. While recent literature has established Deep Hedging as a data-driven alternative to traditional risk management strategies, the computational burden of training neural networks with first-order methods remains a significant impediment to practical implementation. The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization, specifically addressing the challenges of sequential financial data and curvature estimation in recurrent networks. Empirical validation using simulated paths from a calibrated Heston stochastic volatility model demonstrates that the K-FAC implementation achieves marked improvements in convergence dynamics and hedging efficacy. The methodology yields a 78.3% reduction in transaction costs (t = 56.88, p < 0.001) and a 34.4% decrease in profit and loss (P&L) variance compared to Adam optimization. Moreover, the K-FAC-enhanced model exhibits superior risk-adjusted performance with a Sharpe ratio of 0.0401, contrasting with -0.0025 for the baseline model. These results provide compelling evidence that second-order optimization methods can materially enhance the tractability of Deep Hedging implementations. The findings contribute to the growing literature on computational methods in quantitative finance while highlighting the potential for advanced optimization techniques to bridge the gap between theoretical frameworks and practical applications in financial markets.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models
The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.
Addressing Function Approximation Error in Actor-Critic Methods
In value-based reinforcement learning methods such as deep Q-learning, function approximation errors are known to lead to overestimated value estimates and suboptimal policies. We show that this problem persists in an actor-critic setting and propose novel mechanisms to minimize its effects on both the actor and the critic. Our algorithm builds on Double Q-learning, by taking the minimum value between a pair of critics to limit overestimation. We draw the connection between target networks and overestimation bias, and suggest delaying policy updates to reduce per-update error and further improve performance. We evaluate our method on the suite of OpenAI gym tasks, outperforming the state of the art in every environment tested.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Knowledge is reward: Learning optimal exploration by predictive reward cashing
There is a strong link between the general concept of intelligence and the ability to collect and use information. The theory of Bayes-adaptive exploration offers an attractive optimality framework for training machines to perform complex information gathering tasks. However, the computational complexity of the resulting optimal control problem has limited the diffusion of the theory to mainstream deep AI research. In this paper we exploit the inherent mathematical structure of Bayes-adaptive problems in order to dramatically simplify the problem by making the reward structure denser while simultaneously decoupling the learning of exploitation and exploration policies. The key to this simplification comes from the novel concept of cross-value (i.e. the value of being in an environment while acting optimally according to another), which we use to quantify the value of currently available information. This results in a new denser reward structure that "cashes in" all future rewards that can be predicted from the current information state. In a set of experiments we show that the approach makes it possible to learn challenging information gathering tasks without the use of shaping and heuristic bonuses in situations where the standard RL algorithms fail.
Regression Discontinuity Design with Distribution-Valued Outcomes
This article introduces Regression Discontinuity Design (RDD) with Distribution-Valued Outcomes (R3D), extending the standard RDD framework to settings where the outcome is a distribution rather than a scalar. Such settings arise when treatment is assigned at a higher level of aggregation than the outcome-for example, when a subsidy is allocated based on a firm-level revenue cutoff while the outcome of interest is the distribution of employee wages within the firm. Since standard RDD methods cannot accommodate such two-level randomness, I propose a novel approach based on random distributions. The target estimand is a "local average quantile treatment effect", which averages across random quantiles. To estimate this target, I introduce two related approaches: one that extends local polynomial regression to random quantiles and another based on local Fr\'echet regression, a form of functional regression. For both estimators, I establish asymptotic normality and develop uniform, debiased confidence bands together with a data-driven bandwidth selection procedure. Simulations validate these theoretical properties and show existing methods to be biased and inconsistent in this setting. I then apply the proposed methods to study the effects of gubernatorial party control on within-state income distributions in the US, using a close-election design. The results suggest a classic equality-efficiency tradeoff under Democratic governorship, driven by reductions in income at the top of the distribution.
Quantifying Limits to Detection of Early Warning for Critical Transitions
Catastrophic regime shifts in complex natural systems may be averted through advanced detection. Recent work has provided a proof-of-principle that many systems approaching a catastrophic transition may be identified through the lens of early warning indicators such as rising variance or increased return times. Despite widespread appreciation of the difficulties and uncertainty involved in such forecasts, proposed methods hardly ever characterize their expected error rates. Without the benefits of replicates, controls, or hindsight, applications of these approaches must quantify how reliable different indicators are in avoiding false alarms, and how sensitive they are to missing subtle warning signs. We propose a model based approach in order to quantify this trade-off between reliability and sensitivity and allow comparisons between different indicators. We show these error rates can be quite severe for common indicators even under favorable assumptions, and also illustrate how a model-based indicator can improve this performance. We demonstrate how the performance of an early warning indicator varies in different data sets, and suggest that uncertainty quantification become a more central part of early warning predictions.
Conservative State Value Estimation for Offline Reinforcement Learning
Offline reinforcement learning faces a significant challenge of value over-estimation due to the distributional drift between the dataset and the current learned policy, leading to learning failure in practice. The common approach is to incorporate a penalty term to reward or value estimation in the Bellman iterations. Meanwhile, to avoid extrapolation on out-of-distribution (OOD) states and actions, existing methods focus on conservative Q-function estimation. In this paper, we propose Conservative State Value Estimation (CSVE), a new approach that learns conservative V-function via directly imposing penalty on OOD states. Compared to prior work, CSVE allows more effective in-data policy optimization with conservative value guarantees. Further, we apply CSVE and develop a practical actor-critic algorithm in which the critic does the conservative value estimation by additionally sampling and penalizing the states around the dataset, and the actor applies advantage weighted updates extended with state exploration to improve the policy. We evaluate in classic continual control tasks of D4RL, showing that our method performs better than the conservative Q-function learning methods and is strongly competitive among recent SOTA methods.
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs
Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.
Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging
We consider two data driven approaches, Reinforcement Learning (RL) and Deep Trajectory-based Stochastic Optimal Control (DTSOC) for hedging a European call option without and with transaction cost according to a quadratic hedging P&L objective at maturity ("variance-optimal hedging" or "final quadratic hedging"). We study the performance of the two approaches under various market environments (modeled via the Black-Scholes and/or the log-normal SABR model) to understand their advantages and limitations. Without transaction costs and in the Black-Scholes model, both approaches match the performance of the variance-optimal Delta hedge. In the log-normal SABR model without transaction costs, they match the performance of the variance-optimal Barlett's Delta hedge. Agents trained on Black-Scholes trajectories with matching initial volatility but used on SABR trajectories match the performance of Bartlett's Delta hedge in average cost, but show substantially wider variance. To apply RL approaches to these problems, P&L at maturity is written as sum of step-wise contributions and variants of RL algorithms are implemented and used that minimize expectation of second moments of such sums.
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
Optimal randomized multilevel Monte Carlo for repeatedly nested expectations
The estimation of repeatedly nested expectations is a challenging task that arises in many real-world systems. However, existing methods generally suffer from high computational costs when the number of nestings becomes large. Fix any non-negative integer D for the total number of nestings. Standard Monte Carlo methods typically cost at least O(varepsilon^{-(2+D)}) and sometimes O(varepsilon^{-2(1+D)}) to obtain an estimator up to varepsilon-error. More advanced methods, such as multilevel Monte Carlo, currently only exist for D = 1. In this paper, we propose a novel Monte Carlo estimator called READ, which stands for "Recursive Estimator for Arbitrary Depth.'' Our estimator has an optimal computational cost of O(varepsilon^{-2}) for every fixed D under suitable assumptions, and a nearly optimal computational cost of O(varepsilon^{-2(1 + delta)}) for any 0 < delta < frac12 under much more general assumptions. Our estimator is also unbiased, which makes it easy to parallelize. The key ingredients in our construction are an observation of the problem's recursive structure and the recursive use of the randomized multilevel Monte Carlo method.
Learning to Predict Short-Term Volatility with Order Flow Image Representation
Introduction: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information. The inherent stochastic nature and anti-persistence of price pose difficulties in accurate prediction. Methods: To address this, we propose a method that transforms order flow data over a fixed time interval (snapshots) into images. The order flow includes trade sizes, trade directions, and limit order book, and is mapped into image colour channels. These images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer, with additionally supplementing them with hand-crafted features. The models are evaluated against classical GARCH, Multilayer Perceptron trained on raw data, and a naive guess method that considers current volatility as a prediction. Results: The experiments are conducted using price data from January 2021 and evaluate model performance in terms of root mean square error (RMSPE). The results show that our order flow representation with a CNN as a predictive model achieves the best performance, with an RMSPE of 0.85+/-1.1 for the model with aggregated features and 1.0+/-1.4 for the model without feature supplementation. ConvMixer with feature supplementation follows closely. In comparison, the RMSPE for the naive guess method was 1.4+/-3.0.
Refined Regret for Adversarial MDPs with Linear Function Approximation
We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.
Don't Waste Mistakes: Leveraging Negative RL-Groups via Confidence Reweighting
Reinforcement learning with verifiable rewards (RLVR) has become a standard recipe for improving large language models (LLMs) on reasoning tasks, with Group Relative Policy Optimization (GRPO) widely used in practice. Yet GRPO wastes substantial compute on negative groups: groups in which no sampled response is correct yield zero advantage and thus no gradient. We ask whether negative groups can be leveraged without extra supervision. Starting from a maximum-likelihood (MLE) objective in reward modeling, we show that the MLE gradient is equivalent to a policy gradient for a modified value function. This value function adds a confidence-weighted penalty on incorrect responses, imposing larger penalties on more confident mistakes. We refer to this as Likelihood Estimation with Negative Samples (LENS). LENS modifies GRPO to assign non-zero, confidence-dependent rewards to incorrect generations, making negative groups informative and converting previously wasted samples into useful gradient updates. On the MATH benchmark with Llama-3.1-8B and Qwen-2.5-3B, the proposed variant consistently outperforms GRPO baseline, with significant gains on harder items. These results demonstrate a principled and practical way to "rescue" negative groups, improving efficiency and performance in RLVR.
ATRAF-driven IMRaD Methodology: Tradeoff and Risk Analysis of Software Architectures Across Abstraction Levels
Software architecture research relies on key architectural artifacts -- Software Architectures, Reference Architectures, and Architectural Frameworks -- that underpin the design and analysis of complex systems. Evaluating these artifacts is essential to assess tradeoffs and risks affecting quality attributes such as performance, modifiability, and security. Although methodologies like the Architecture Tradeoff Analysis Method (ATAM) support software architecture evaluation, their industrial focus misaligns with the IMRaD (Introduction, Methods, Results, Discussion) format prevalent in academic research, impeding transparency and reproducibility. Our prior work introduced the Architecture Tradeoff and Risk Analysis Framework (ATRAF), extending ATAM through three methods -- ATRAM, RATRAM, and AFTRAM, addressing all abstraction levels, using a unified, iterative four-phase spiral model. These phases -- Scenario and Requirements Gathering, Architectural Views and Scenario Realization, Attribute-Specific Analyses, and Sensitivity, Tradeoff, and Risk Analysis -- ensure traceability and coherence. This paper presents the ATRAF-driven IMRaD Methodology, a concise method to align ATRAF's phases with IMRaD sections. This methodology enhances the rigor, transparency, and accessibility of software architecture research, enabling systematic reporting of complex evaluations.
Accelerating Policy Gradient by Estimating Value Function from Prior Computation in Deep Reinforcement Learning
This paper investigates the use of prior computation to estimate the value function to improve sample efficiency in on-policy policy gradient methods in reinforcement learning. Our approach is to estimate the value function from prior computations, such as from the Q-network learned in DQN or the value function trained for different but related environments. In particular, we learn a new value function for the target task while combining it with a value estimate from the prior computation. Finally, the resulting value function is used as a baseline in the policy gradient method. This use of a baseline has the theoretical property of reducing variance in gradient computation and thus improving sample efficiency. The experiments show the successful use of prior value estimates in various settings and improved sample efficiency in several tasks.
Revisiting Design Choices in Offline Model-Based Reinforcement Learning
Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies, circumventing the need for potentially expensive or unsafe online data collection. Significant progress has been made recently in offline model-based reinforcement learning, approaches which leverage a learned dynamics model. This typically involves constructing a probabilistic model, and using the model uncertainty to penalize rewards where there is insufficient data, solving for a pessimistic MDP that lower bounds the true MDP. Existing methods, however, exhibit a breakdown between theory and practice, whereby pessimistic return ought to be bounded by the total variation distance of the model from the true dynamics, but is instead implemented through a penalty based on estimated model uncertainty. This has spawned a variety of uncertainty heuristics, with little to no comparison between differing approaches. In this paper, we compare these heuristics, and design novel protocols to investigate their interaction with other hyperparameters, such as the number of models, or imaginary rollout horizon. Using these insights, we show that selecting these key hyperparameters using Bayesian Optimization produces superior configurations that are vastly different to those currently used in existing hand-tuned state-of-the-art methods, and result in drastically stronger performance.
Why does Throwing Away Data Improve Worst-Group Error?
When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.
CardioCoT: Hierarchical Reasoning for Multimodal Survival Analysis
Accurate prediction of major adverse cardiovascular events recurrence risk in acute myocardial infarction patients based on postoperative cardiac MRI and associated clinical notes is crucial for precision treatment and personalized intervention. Existing methods primarily focus on risk stratification capability while overlooking the need for intermediate robust reasoning and model interpretability in clinical practice. Moreover, end-to-end risk prediction using LLM/VLM faces significant challenges due to data limitations and modeling complexity. To bridge this gap, we propose CardioCoT, a novel two-stage hierarchical reasoning-enhanced survival analysis framework designed to enhance both model interpretability and predictive performance. In the first stage, we employ an evidence-augmented self-refinement mechanism to guide LLM/VLMs in generating robust hierarchical reasoning trajectories based on associated radiological findings. In the second stage, we integrate the reasoning trajectories with imaging data for risk model training and prediction. CardioCoT demonstrates superior performance in MACE recurrence risk prediction while providing interpretable reasoning processes, offering valuable insights for clinical decision-making.
Statistical Learning under Heterogenous Distribution Shift
This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
Black-box risk scoring models permeate our lives, yet are typically proprietary or opaque. We propose Distill-and-Compare, a model distillation and comparison approach to audit such models. To gain insight into black-box models, we treat them as teachers, training transparent student models to mimic the risk scores assigned by black-box models. We compare the student model trained with distillation to a second un-distilled transparent model trained on ground-truth outcomes, and use differences between the two models to gain insight into the black-box model. Our approach can be applied in a realistic setting, without probing the black-box model API. We demonstrate the approach on four public data sets: COMPAS, Stop-and-Frisk, Chicago Police, and Lending Club. We also propose a statistical test to determine if a data set is missing key features used to train the black-box model. Our test finds that the ProPublica data is likely missing key feature(s) used in COMPAS.
DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions both to an individual's initial features and to intermediate outcomes and features at each subsequent stage, which are affected by decisions in prior stages. Examples include personalized first- and second-line treatments of chronic conditions like diabetes, cancer, and depression, which adapt to patient response to first-line treatment, disease progression, and individual characteristics. While existing literature mostly focuses on estimating the optimal DTR from offline data such as from sequentially randomized trials, we study the problem of developing the optimal DTR in an online manner, where the interaction with each individual affect both our cumulative reward and our data collection for future learning. We term this the DTR bandit problem. We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear. We demonstrate our algorithm and its benefits both in synthetic experiments and in a case study of adaptive treatment of major depressive disorder using real-world data.
A Prescriptive Learning Analytics Framework: Beyond Predictive Modelling and onto Explainable AI with Prescriptive Analytics and ChatGPT
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of prediction only. The component of predictive analytics concerned with interpreting the internals of the models and explaining their predictions for individual cases to stakeholders has largely been neglected. Additionally, works that attempt to employ data-driven prescriptive analytics to automatically generate evidence-based remedial advice for at-risk learners are in their infancy. eXplainable AI is a field that has recently emerged providing cutting-edge tools which support transparent predictive analytics and techniques for generating tailored advice for at-risk students. This study proposes a novel framework that unifies both transparent machine learning as well as techniques for enabling prescriptive analytics, while integrating the latest advances in large language models. This work practically demonstrates the proposed framework using predictive models for identifying at-risk learners of programme non-completion. The study then further demonstrates how predictive modelling can be augmented with prescriptive analytics on two case studies in order to generate human-readable prescriptive feedback for those who are at risk using ChatGPT.
Portfolio Optimization: A Comparative Study
Portfolio optimization has been an area that has attracted considerable attention from the financial research community. Designing a profitable portfolio is a challenging task involving precise forecasting of future stock returns and risks. This chapter presents a comparative study of three portfolio design approaches, the mean-variance portfolio (MVP), hierarchical risk parity (HRP)-based portfolio, and autoencoder-based portfolio. These three approaches to portfolio design are applied to the historical prices of stocks chosen from ten thematic sectors listed on the National Stock Exchange (NSE) of India. The portfolios are designed using the stock price data from January 1, 2018, to December 31, 2021, and their performances are tested on the out-of-sample data from January 1, 2022, to December 31, 2022. Extensive results are analyzed on the performance of the portfolios. It is observed that the performance of the MVP portfolio is the best on the out-of-sample data for the risk-adjusted returns. However, the autoencoder portfolios outperformed their counterparts on annual returns.
Regularized Robust MDPs and Risk-Sensitive MDPs: Equivalence, Policy Gradient, and Sample Complexity
Robust Markov Decision Processes (MDPs) and risk-sensitive MDPs are both powerful tools for making decisions in the presence of uncertainties. Previous efforts have aimed to establish their connections, revealing equivalences in specific formulations. This paper introduces a new formulation for risk-sensitive MDPs, which assesses risk in a slightly different manner compared to the classical Markov risk measure (Ruszczy\'nski 2010), and establishes its equivalence with a class of regularized robust MDP (RMDP) problems, including the standard RMDP as a special case. Leveraging this equivalence, we further derive the policy gradient theorem for both problems, proving gradient domination and global convergence of the exact policy gradient method under the tabular setting with direct parameterization. This forms a sharp contrast to the Markov risk measure, known to be potentially non-gradient-dominant (Huang et al. 2021). We also propose a sample-based offline learning algorithm, namely the robust fitted-Z iteration (RFZI), for a specific regularized RMDP problem with a KL-divergence regularization term (or equivalently the risk-sensitive MDP with an entropy risk measure). We showcase its streamlined design and less stringent assumptions due to the equivalence and analyze its sample complexity.
Sketched Ridgeless Linear Regression: The Role of Downsampling
Overparametrization often helps improve the generalization performance. This paper proposes a dual view of overparametrization suggesting that downsampling may also help generalize. Motivated by this dual view, we characterize two out-of-sample prediction risks of the sketched ridgeless least square estimator in the proportional regime masymp n asymp p, where m is the sketching size, n the sample size, and p the feature dimensionality. Our results reveal the statistical role of downsampling. Specifically, downsampling does not always hurt the generalization performance, and may actually help improve it in some cases. We identify the optimal sketching sizes that minimize the out-of-sample prediction risks, and find that the optimally sketched estimator has stabler risk curves that eliminates the peaks of those for the full-sample estimator. We then propose a practical procedure to empirically identify the optimal sketching size. Finally, we extend our results to cover central limit theorems and misspecified models. Numerical studies strongly support our theory.
Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning
Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.
Robust Quadrupedal Locomotion via Risk-Averse Policy Learning
The robustness of legged locomotion is crucial for quadrupedal robots in challenging terrains. Recently, Reinforcement Learning (RL) has shown promising results in legged locomotion and various methods try to integrate privileged distillation, scene modeling, and external sensors to improve the generalization and robustness of locomotion policies. However, these methods are hard to handle uncertain scenarios such as abrupt terrain changes or unexpected external forces. In this paper, we consider a novel risk-sensitive perspective to enhance the robustness of legged locomotion. Specifically, we employ a distributional value function learned by quantile regression to model the aleatoric uncertainty of environments, and perform risk-averse policy learning by optimizing the worst-case scenarios via a risk distortion measure. Extensive experiments in both simulation environments and a real Aliengo robot demonstrate that our method is efficient in handling various external disturbances, and the resulting policy exhibits improved robustness in harsh and uncertain situations in legged locomotion. Videos are available at https://risk-averse-locomotion.github.io/.
Similarity-Distance-Magnitude Universal Verification
We address the neural network robustness problem by adding Similarity (i.e., correctly predicted depth-matches into training)-awareness and Distance-to-training-distribution-awareness to the existing output Magnitude (i.e., decision-boundary)-awareness of the softmax function. The resulting SDM activation function provides strong signals of the relative epistemic (reducible) predictive uncertainty. We use this novel behavior to further address the complementary HCI problem of mapping the output to human-interpretable summary statistics over relevant partitions of a held-out calibration set. Estimates of prediction-conditional uncertainty are obtained via a parsimonious learned transform over the class-conditional empirical CDFs of the output of a final-layer SDM activation function. For decision-making and as an intrinsic model check, estimates of class-conditional accuracy are obtained by further partitioning the high-probability regions of this calibrated output into class-conditional, region-specific CDFs. The uncertainty estimates from SDM calibration are remarkably robust to test-time distribution shifts and out-of-distribution inputs; incorporate awareness of the effective sample size; provide estimates of uncertainty from the learning and data splitting processes; and are well-suited for selective classification and conditional branching for additional test-time compute based on the predictive uncertainty, as for selective LLM generation, routing, and composition over multiple models and retrieval. Finally, we construct SDM networks, LLMs with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties. We provide open-source software implementing these results.
Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an O(mathsf{Var^star M Gamma S A K}) regret bound where O hides logarithm factors, M is the number of contexts, S is the number of states, A is the number of actions, K is the number of episodes, Gamma le S is the maximum transition degree of any state-action pair, and Var^star is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel Omega(mathsf{Var^star M S A K}) regret lower bound with Gamma = 2, which shows our upper bound minimax optimal when Gamma is a constant for the class of variance-bounded LMDPs. Our lower bound relies on new constructions of hard instances and an argument inspired by the symmetrization technique from theoretical computer science, both of which are technically different from existing lower bound proof for MDPs, and thus can be of independent interest.
Conformalized Selective Regression
Should prediction models always deliver a prediction? In the pursuit of maximum predictive performance, critical considerations of reliability and fairness are often overshadowed, particularly when it comes to the role of uncertainty. Selective regression, also known as the "reject option," allows models to abstain from predictions in cases of considerable uncertainty. Initially proposed seven decades ago, approaches to selective regression have mostly focused on distribution-based proxies for measuring uncertainty, particularly conditional variance. However, this focus neglects the significant influence of model-specific biases on a model's performance. In this paper, we propose a novel approach to selective regression by leveraging conformal prediction, which provides grounded confidence measures for individual predictions based on model-specific biases. In addition, we propose a standardized evaluation framework to allow proper comparison of selective regression approaches. Via an extensive experimental approach, we demonstrate how our proposed approach, conformalized selective regression, demonstrates an advantage over multiple state-of-the-art baselines.
Proper losses for discrete generative models
We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss.
RiOSWorld: Benchmarking the Risk of Multimodal Compter-Use Agents
With the rapid development of multimodal large language models (MLLMs), they are increasingly deployed as autonomous computer-use agents capable of accomplishing complex computer tasks. However, a pressing issue arises: Can the safety risk principles designed and aligned for general MLLMs in dialogue scenarios be effectively transferred to real-world computer-use scenarios? Existing research on evaluating the safety risks of MLLM-based computer-use agents suffers from several limitations: it either lacks realistic interactive environments, or narrowly focuses on one or a few specific risk types. These limitations ignore the complexity, variability, and diversity of real-world environments, thereby restricting comprehensive risk evaluation for computer-use agents. To this end, we introduce RiOSWorld, a benchmark designed to evaluate the potential risks of MLLM-based agents during real-world computer manipulations. Our benchmark includes 492 risky tasks spanning various computer applications, involving web, social media, multimedia, os, email, and office software. We categorize these risks into two major classes based on their risk source: (i) User-originated risks and (ii) Environmental risks. For the evaluation, we evaluate safety risks from two perspectives: (i) Risk goal intention and (ii) Risk goal completion. Extensive experiments with multimodal agents on RiOSWorld demonstrate that current computer-use agents confront significant safety risks in real-world scenarios. Our findings highlight the necessity and urgency of safety alignment for computer-use agents in real-world computer manipulation, providing valuable insights for developing trustworthy computer-use agents. Our benchmark is publicly available at https://yjyddq.github.io/RiOSWorld.github.io/.
Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models
We examine the potential of ChatGPT and other large language models in predicting stock market returns using news headlines. We use ChatGPT to assess whether each headline is good, bad, or neutral for firms' stock prices. We document a significantly positive correlation between ChatGPT scores and subsequent daily stock returns. We find that ChatGPT outperforms traditional sentiment analysis methods. More basic models such as GPT-1, GPT-2, and BERT cannot accurately forecast returns, indicating return predictability is an emerging capacity of complex language models. Long-short strategies based on ChatGPT-4 deliver the highest Sharpe ratio. Furthermore, we find predictability in both small and large stocks, suggesting market underreaction to company news. Predictability is stronger among smaller stocks and stocks with bad news, consistent with limits-to-arbitrage also playing an important role. Finally, we propose a new method to evaluate and understand the models' reasoning capabilities. Overall, our results suggest that incorporating advanced language models into the investment decision-making process can yield more accurate predictions and enhance the performance of quantitative trading strategies.
A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects.
Avoiding Catastrophe in Online Learning by Asking for Help
Most learning algorithms with formal regret guarantees assume that no mistake is irreparable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are catastrophic, i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe that round and aim to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We first show that in general, any algorithm either constantly queries the mentor or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online learning model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
Optimizing Return Distributions with Distributional Dynamic Programming
We introduce distributional dynamic programming (DP) methods for optimizing statistical functionals of the return distribution, with standard reinforcement learning as a special case. Previous distributional DP methods could optimize the same class of expected utilities as classic DP. To go beyond expected utilities, we combine distributional DP with stock augmentation, a technique previously introduced for classic DP in the context of risk-sensitive RL, where the MDP state is augmented with a statistic of the rewards obtained so far (since the first time step). We find that a number of recently studied problems can be formulated as stock-augmented return distribution optimization, and we show that we can use distributional DP to solve them. We analyze distributional value and policy iteration, with bounds and a study of what objectives these distributional DP methods can or cannot optimize. We describe a number of applications outlining how to use distributional DP to solve different stock-augmented return distribution optimization problems, for example maximizing conditional value-at-risk, and homeostatic regulation. To highlight the practical potential of stock-augmented return distribution optimization and distributional DP, we combine the core ideas of distributional value iteration with the deep RL agent DQN, and empirically evaluate it for solving instances of the applications discussed.
The Architecture Tradeoff and Risk Analysis Framework (ATRAF): A Unified Approach for Evaluating Software Architectures, Reference Architectures, and Architectural Frameworks
Modern software systems are guided by hierarchical architectural concepts -- software architectures, reference architectures, and architectural frameworks -- each operating at a distinct level of abstraction. These artifacts promote reuse, scalability, and consistency, but also embed tradeoffs that shape critical quality attributes such as modifiability, performance, and security. Existing evaluation methods, such as the Architecture Tradeoff Analysis Method (ATAM), focus on system-specific architectures and are not designed to address the broader generality and variability of higher-level architectural forms. To close this gap, we introduce the Architecture Tradeoff and Risk Analysis Framework (ATRAF) -- a unified, scenario-driven framework for evaluating tradeoffs and risks across architectural levels. ATRAF encompasses three methods: the Architecture Tradeoff and Risk Analysis Method (ATRAM), extending ATAM with enhanced risk identification for concrete systems; the Reference Architecture Tradeoff and Risk Analysis Method (RATRAM), adapting ATRAM to the evaluation of domain-level reference architectures; and the Architectural Framework Tradeoff and Risk Analysis Method (AFTRAM), supporting the evaluation of architectural frameworks that guide entire system families. All three methods follow an iterative spiral process that enables the identification of sensitivities, tradeoffs, and risks while supporting continuous refinement of architectural artifacts. We demonstrate ATRAF through progressively abstracted examples derived from the Remote Temperature Sensor (RTS) case, originally introduced in the ATAM literature. ATRAF equips architects, reference modelers, and framework designers with a practical, systematic approach for analyzing design alternatives and managing quality attribute tradeoffs early in the lifecycle and across all levels of architectural abstraction.
Distributional Reinforcement Learning for Multi-Dimensional Reward Functions
A growing trend for value-based reinforcement learning (RL) algorithms is to capture more information than scalar value functions in the value network. One of the most well-known methods in this branch is distributional RL, which models return distribution instead of scalar value. In another line of work, hybrid reward architectures (HRA) in RL have studied to model source-specific value functions for each source of reward, which is also shown to be beneficial in performance. To fully inherit the benefits of distributional RL and hybrid reward architectures, we introduce Multi-Dimensional Distributional DQN (MD3QN), which extends distributional RL to model the joint return distribution from multiple reward sources. As a by-product of joint distribution modeling, MD3QN can capture not only the randomness in returns for each source of reward, but also the rich reward correlation between the randomness of different sources. We prove the convergence for the joint distributional Bellman operator and build our empirical algorithm by minimizing the Maximum Mean Discrepancy between joint return distribution and its Bellman target. In experiments, our method accurately models the joint return distribution in environments with richly correlated reward functions, and outperforms previous RL methods utilizing multi-dimensional reward functions in the control setting.
Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices
This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils. We introduce a completely novel approach to diversification activity not on the level of single assets but on the level of ensemble algorithmic investment strategies (AIS) built based on the prices of these assets. We employ four types of diverse theoretical models (LSTM - Long Short-Term Memory, ARIMA-GARCH - Autoregressive Integrated Moving Average - Generalized Autoregressive Conditional Heteroskedasticity, momentum, and contrarian) to generate price forecasts, which are then used to produce investment signals in single and complex AIS. In such a way, we are able to verify the diversification potential of different types of investment strategies consisting of various assets (energy commodities, precious metals, cryptocurrencies, or soft commodities) in hedging ensemble AIS built for equity indices (S&P 500 index). Empirical data used in this study cover the period between 2004 and 2022. Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin. Finally, we test the LSTM model for a higher frequency of data (1 hour). We conclude that it outperforms the results obtained using daily data.
QTMRL: An Agent for Quantitative Trading Decision-Making Based on Multi-Indicator Guided Reinforcement Learning
In the highly volatile and uncertain global financial markets, traditional quantitative trading models relying on statistical modeling or empirical rules often fail to adapt to dynamic market changes and black swan events due to rigid assumptions and limited generalization. To address these issues, this paper proposes QTMRL (Quantitative Trading Multi-Indicator Reinforcement Learning), an intelligent trading agent combining multi-dimensional technical indicators with reinforcement learning (RL) for adaptive and stable portfolio management. We first construct a comprehensive multi-indicator dataset using 23 years of S&P 500 daily OHLCV data (2000-2022) for 16 representative stocks across 5 sectors, enriching raw data with trend, volatility, and momentum indicators to capture holistic market dynamics. Then we design a lightweight RL framework based on the Advantage Actor-Critic (A2C) algorithm, including data processing, A2C algorithm, and trading agent modules to support policy learning and actionable trading decisions. Extensive experiments compare QTMRL with 9 baselines (e.g., ARIMA, LSTM, moving average strategies) across diverse market regimes, verifying its superiority in profitability, risk adjustment, and downside risk control. The code of QTMRL is publicly available at https://github.com/ChenJiahaoJNU/QTMRL.git
Financial Risk Assessment via Long-term Payment Behavior Sequence Folding
Online inclusive financial services encounter significant financial risks due to their expansive user base and low default costs. By real-world practice, we reveal that utilizing longer-term user payment behaviors can enhance models' ability to forecast financial risks. However, learning long behavior sequences is non-trivial for deep sequential models. Additionally, the diverse fields of payment behaviors carry rich information, requiring thorough exploitation. These factors collectively complicate the task of long-term user behavior modeling. To tackle these challenges, we propose a Long-term Payment Behavior Sequence Folding method, referred to as LBSF. In LBSF, payment behavior sequences are folded based on merchants, using the merchant field as an intrinsic grouping criterion, which enables informative parallelism without reliance on external knowledge. Meanwhile, we maximize the utility of payment details through a multi-field behavior encoding mechanism. Subsequently, behavior aggregation at the merchant level followed by relational learning across merchants facilitates comprehensive user financial representation. We evaluate LBSF on the financial risk assessment task using a large-scale real-world dataset. The results demonstrate that folding long behavior sequences based on internal behavioral cues effectively models long-term patterns and changes, thereby generating more accurate user financial profiles for practical applications.
LLM Cyber Evaluations Don't Capture Real-World Risk
Large language models (LLMs) are demonstrating increasing prowess in cybersecurity applications, creating creating inherent risks alongside their potential for strengthening defenses. In this position paper, we argue that current efforts to evaluate risks posed by these capabilities are misaligned with the goal of understanding real-world impact. Evaluating LLM cybersecurity risk requires more than just measuring model capabilities -- it demands a comprehensive risk assessment that incorporates analysis of threat actor adoption behavior and potential for impact. We propose a risk assessment framework for LLM cyber capabilities and apply it to a case study of language models used as cybersecurity assistants. Our evaluation of frontier models reveals high compliance rates but moderate accuracy on realistic cyber assistance tasks. However, our framework suggests that this particular use case presents only moderate risk due to limited operational advantages and impact potential. Based on these findings, we recommend several improvements to align research priorities with real-world impact assessment, including closer academia-industry collaboration, more realistic modeling of attacker behavior, and inclusion of economic metrics in evaluations. This work represents an important step toward more effective assessment and mitigation of LLM-enabled cybersecurity risks.
CRUDE: Calibrating Regression Uncertainty Distributions Empirically
Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions that may cause performance drops. In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data. We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples for which model confidence exceeds that threshold. ATC outperforms previous methods across several model architectures, types of distribution shifts (e.g., due to synthetic corruptions, dataset reproduction, or novel subpopulations), and datasets (Wilds, ImageNet, Breeds, CIFAR, and MNIST). In our experiments, ATC estimates target performance 2-4times more accurately than prior methods. We also explore the theoretical foundations of the problem, proving that, in general, identifying the accuracy is just as hard as identifying the optimal predictor and thus, the efficacy of any method rests upon (perhaps unstated) assumptions on the nature of the shift. Finally, analyzing our method on some toy distributions, we provide insights concerning when it works. Code is available at https://github.com/saurabhgarg1996/ATC_code/.
Boosting Stock Price Prediction with Anticipated Macro Policy Changes
Prediction of stock prices plays a significant role in aiding the decision-making of investors. Considering its importance, a growing literature has emerged trying to forecast stock prices with improved accuracy. In this study, we introduce an innovative approach for forecasting stock prices with greater accuracy. We incorporate external economic environment-related information along with stock prices. In our novel approach, we improve the performance of stock price prediction by taking into account variations due to future expected macroeconomic policy changes as investors adjust their current behavior ahead of time based on expected future macroeconomic policy changes. Furthermore, we incorporate macroeconomic variables along with historical stock prices to make predictions. Results from this strongly support the inclusion of future economic policy changes along with current macroeconomic information. We confirm the supremacy of our method over the conventional approach using several tree-based machine-learning algorithms. Results are strongly conclusive across various machine learning models. Our preferred model outperforms the conventional approach with an RMSE value of 1.61 compared to an RMSE value of 1.75 from the conventional approach.
Introduction to Multi-Armed Bandits
Multi-armed bandits a simple but very powerful framework for algorithms that make decisions over time under uncertainty. An enormous body of work has accumulated over the years, covered in several books and surveys. This book provides a more introductory, textbook-like treatment of the subject. Each chapter tackles a particular line of work, providing a self-contained, teachable technical introduction and a brief review of the further developments; many of the chapters conclude with exercises. The book is structured as follows. The first four chapters are on IID rewards, from the basic model to impossibility results to Bayesian priors to Lipschitz rewards. The next three chapters cover adversarial rewards, from the full-feedback version to adversarial bandits to extensions with linear rewards and combinatorially structured actions. Chapter 8 is on contextual bandits, a middle ground between IID and adversarial bandits in which the change in reward distributions is completely explained by observable contexts. The last three chapters cover connections to economics, from learning in repeated games to bandits with supply/budget constraints to exploration in the presence of incentives. The appendix provides sufficient background on concentration and KL-divergence. The chapters on "bandits with similarity information", "bandits with knapsacks" and "bandits and agents" can also be consumed as standalone surveys on the respective topics.
One Step is Enough: Multi-Agent Reinforcement Learning based on One-Step Policy Optimization for Order Dispatch on Ride-Sharing Platforms
On-demand ride-sharing platforms face the fundamental challenge of dynamically bundling passengers with diverse origins and destinations and matching them with vehicles in real time, all under significant uncertainty. Recently, MARL has emerged as a promising solution for this problem, leveraging decentralized learning to address the curse of dimensionality caused by the large number of agents in the ride-hailing market and the resulting expansive state and action spaces. However, conventional MARL-based ride-sharing approaches heavily rely on the accurate estimation of Q-values or V-values, which becomes problematic in large-scale, highly uncertain environments. Specifically, most of these approaches adopt an independent paradigm, exacerbating this issue, as each agent treats others as part of the environment, leading to unstable training and substantial estimation bias in value functions. To address these challenges, we propose two novel alternative methods that bypass value function estimation. First, we adapt GRPO to ride-sharing, replacing the PPO baseline with the group average reward to eliminate critic estimation errors and reduce training bias. Second, inspired by GRPO's full utilization of group reward information, we customize the PPO framework for ride-sharing platforms and show that, under a homogeneous fleet, the optimal policy can be trained using only one-step rewards - a method we term One-Step Policy Optimization (OSPO). Experiments on a real-world Manhattan ride-hailing dataset demonstrate that both GRPO and OSPO achieve superior performance across most scenarios, efficiently optimizing pickup times and the number of served orders using simple MLP networks.
Bounds on the conditional and average treatment effect with unobserved confounding factors
For observational studies, we study the sensitivity of causal inference when treatment assignments may depend on unobserved confounders. We develop a loss minimization approach for estimating bounds on the conditional average treatment effect (CATE) when unobserved confounders have a bounded effect on the odds ratio of treatment selection. Our approach is scalable and allows flexible use of model classes in estimation, including nonparametric and black-box machine learning methods. Based on these bounds for the CATE, we propose a sensitivity analysis for the average treatment effect (ATE). Our semi-parametric estimator extends/bounds the augmented inverse propensity weighted (AIPW) estimator for the ATE under bounded unobserved confounding. By constructing a Neyman orthogonal score, our estimator of the bound for the ATE is a regular root-n estimator so long as the nuisance parameters are estimated at the o_p(n^{-1/4}) rate. We complement our methodology with optimality results showing that our proposed bounds are tight in certain cases. We demonstrate our method on simulated and real data examples, and show accurate coverage of our confidence intervals in practical finite sample regimes with rich covariate information.
Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling
In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Code will soon be available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
Safe Offline Reinforcement Learning with Real-Time Budget Constraints
Aiming at promoting the safe real-world deployment of Reinforcement Learning (RL), research on safe RL has made significant progress in recent years. However, most existing works in the literature still focus on the online setting where risky violations of the safety budget are likely to be incurred during training. Besides, in many real-world applications, the learned policy is required to respond to dynamically determined safety budgets (i.e., constraint threshold) in real time. In this paper, we target at the above real-time budget constraint problem under the offline setting, and propose Trajectory-based REal-time Budget Inference (TREBI) as a novel solution that approaches this problem from the perspective of trajectory distribution. Theoretically, we prove an error bound of the estimation on the episodic reward and cost under the offline setting and thus provide a performance guarantee for TREBI. Empirical results on a wide range of simulation tasks and a real-world large-scale advertising application demonstrate the capability of TREBI in solving real-time budget constraint problems under offline settings.
BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values
There has been increasing interest in modeling survival data using deep learning methods in medical research. In this paper, we proposed a Bayesian hierarchical deep neural networks model for modeling and prediction of survival data. Compared with previously studied methods, the new proposal can provide not only point estimate of survival probability but also quantification of the corresponding uncertainty, which can be of crucial importance in predictive modeling and subsequent decision making. The favorable statistical properties of point and uncertainty estimates were demonstrated by simulation studies and real data analysis. The Python code implementing the proposed approach was provided.
On-Chain Credit Risk Score in Decentralized Finance
Decentralized Finance (DeFi), a financial ecosystem without centralized controlling organization, has introduced a new paradigm for lending and borrowing. However, its capital efficiency remains constrained by the inability to effectively assess the risk associated with each user/wallet. This paper introduces the 'On-Chain Credit Risk Score (OCCR Score) in DeFi', a probabilistic measure designed to quantify the credit risk associated with a wallet. By analyzing historical real-time on-chain activity as well as predictive scenarios, the OCCR Score may enable DeFi lending protocols to dynamically adjust Loan-to-Value (LTV) ratios and Liquidation Thresholds (LT) based on the risk profile of a wallet. Unlike existing wallet risk scoring models, which rely on heuristic-based evaluations, the OCCR Score offers a more objective and probabilistic approach, aligning closer to traditional credit risk assessment methodologies. This framework can further enhance DeFi's capital efficiency by incentivizing responsible borrowing behavior and optimizing risk-adjusted returns for lenders.
Neur2RO: Neural Two-Stage Robust Optimization
Robust optimization provides a mathematical framework for modeling and solving decision-making problems under worst-case uncertainty. This work addresses two-stage robust optimization (2RO) problems (also called adjustable robust optimization), wherein first-stage and second-stage decisions are made before and after uncertainty is realized, respectively. This results in a nested min-max-min optimization problem which is extremely challenging computationally, especially when the decisions are discrete. We propose Neur2RO, an efficient machine learning-driven instantiation of column-and-constraint generation (CCG), a classical iterative algorithm for 2RO. Specifically, we learn to estimate the value function of the second-stage problem via a novel neural network architecture that is easy to optimize over by design. Embedding our neural network into CCG yields high-quality solutions quickly as evidenced by experiments on two 2RO benchmarks, knapsack and capital budgeting. For knapsack, Neur2RO finds solutions that are within roughly 2% of the best-known values in a few seconds compared to the three hours of the state-of-the-art exact branch-and-price algorithm; for larger and more complex instances, Neur2RO finds even better solutions. For capital budgeting, Neur2RO outperforms three variants of the k-adaptability algorithm, particularly on the largest instances, with a 10 to 100-fold reduction in solution time. Our code and data are available at https://github.com/khalil-research/Neur2RO.
Robust Portfolio Design and Stock Price Prediction Using an Optimized LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio with weights allocated to the stocks in a way that optimizes its return and the risk. This paper presents a systematic approach towards building two types of portfolios, optimum risk, and eigen, for four critical economic sectors of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Sector-wise portfolios are built based on their ten most significant stocks. An LSTM model is also designed for predicting future stock prices. Six months after the construction of the portfolios, i.e., on Jul 1, 2021, the actual returns and the LSTM-predicted returns for the portfolios are computed. A comparison of the predicted and the actual returns indicate a high accuracy level of the LSTM model.
Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
Treatment effect estimation in continuous time is crucial for personalized medicine. However, existing methods for this task are limited to point estimates of the potential outcomes, whereas uncertainty estimates have been ignored. Needless to say, uncertainty quantification is crucial for reliable decision-making in medical applications. To fill this gap, we propose a novel Bayesian neural controlled differential equation (BNCDE) for treatment effect estimation in continuous time. In our BNCDE, the time dimension is modeled through a coupled system of neural controlled differential equations and neural stochastic differential equations, where the neural stochastic differential equations allow for tractable variational Bayesian inference. Thereby, for an assigned sequence of treatments, our BNCDE provides meaningful posterior predictive distributions of the potential outcomes. To the best of our knowledge, ours is the first tailored neural method to provide uncertainty estimates of treatment effects in continuous time. As such, our method is of direct practical value for promoting reliable decision-making in medicine.
Transferable Post-training via Inverse Value Learning
As post-training processes utilize increasingly large datasets and base models continue to grow in size, the computational demands and implementation challenges of existing algorithms are escalating significantly. In this paper, we propose modeling the changes at the logits level during post-training using a separate neural network (i.e., the value network). After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference, enables them to achieve similar capability enhancements. We systematically investigate the best practices for this paradigm in terms of pre-training weights and connection schemes. We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes within the same family, models undergoing continuous pre-training within the same family, and models with different vocabularies across families. In certain cases, it can achieve performance comparable to full-parameter fine-tuning. Furthermore, we explore methods to enhance the transferability of the value model and prevent overfitting to the base model used during training.
Pre-training Time Series Models with Stock Data Customization
Stock selection, which aims to predict stock prices and identify the most profitable ones, is a crucial task in finance. While existing methods primarily focus on developing model structures and building graphs for improved selection, pre-training strategies remain underexplored in this domain. Current stock series pre-training follows methods from other areas without adapting to the unique characteristics of financial data, particularly overlooking stock-specific contextual information and the non-stationary nature of stock prices. Consequently, the latent statistical features inherent in stock data are underutilized. In this paper, we propose three novel pre-training tasks tailored to stock data characteristics: stock code classification, stock sector classification, and moving average prediction. We develop the Stock Specialized Pre-trained Transformer (SSPT) based on a two-layer transformer architecture. Extensive experimental results validate the effectiveness of our pre-training methods and provide detailed guidance on their application. Evaluations on five stock datasets, including four markets and two time periods, demonstrate that SSPT consistently outperforms the market and existing methods in terms of both cumulative investment return ratio and Sharpe ratio. Additionally, our experiments on simulated data investigate the underlying mechanisms of our methods, providing insights into understanding price series. Our code is publicly available at: https://github.com/astudentuser/Pre-training-Time-Series-Models-with-Stock-Data-Customization.
Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting
In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities.
Distributional Reinforcement Learning-based Energy Arbitrage Strategies in Imbalance Settlement Mechanism
Growth in the penetration of renewable energy sources makes supply more uncertain and leads to an increase in the system imbalance. This trend, together with the single imbalance pricing, opens an opportunity for balance responsible parties (BRPs) to perform energy arbitrage in the imbalance settlement mechanism. To this end, we propose a battery control framework based on distributional reinforcement learning (DRL). Our proposed control framework takes a risk-sensitive perspective, allowing BRPs to adjust their risk preferences: we aim to optimize a weighted sum of the arbitrage profit and a risk measure while constraining the daily number of cycles for the battery. We assess the performance of our proposed control framework using the Belgian imbalance prices of 2022 and compare two state-of-the-art RL methods, deep Q learning and soft actor-critic. Results reveal that the distributional soft actor-critic method can outperform other methods. Moreover, we note that our fully risk-averse agent appropriately learns to hedge against the risk related to the unknown imbalance price by (dis)charging the battery only when the agent is more certain about the price.
Learning Conformal Abstention Policies for Adaptive Risk Management in Large Language and Vision-Language Models
Large Language and Vision-Language Models (LLMs/VLMs) are increasingly used in safety-critical applications, yet their opaque decision-making complicates risk assessment and reliability. Uncertainty quantification (UQ) helps assess prediction confidence and enables abstention when uncertainty is high. Conformal prediction (CP), a leading UQ method, provides statistical guarantees but relies on static thresholds, which fail to adapt to task complexity and evolving data distributions, leading to suboptimal trade-offs in accuracy, coverage, and informativeness. To address this, we propose learnable conformal abstention, integrating reinforcement learning (RL) with CP to optimize abstention thresholds dynamically. By treating CP thresholds as adaptive actions, our approach balances multiple objectives, minimizing prediction set size while maintaining reliable coverage. Extensive evaluations across diverse LLM/VLM benchmarks show our method outperforms Least Ambiguous Classifiers (LAC) and Adaptive Prediction Sets (APS), improving accuracy by up to 3.2%, boosting AUROC for hallucination detection by 22.19%, enhancing uncertainty-guided selective generation (AUARC) by 21.17%, and reducing calibration error by 70%-85%. These improvements hold across multiple models and datasets while consistently meeting the 90% coverage target, establishing our approach as a more effective and flexible solution for reliable decision-making in safety-critical applications. The code is available at: {https://github.com/sinatayebati/vlm-uncertainty}.
On the Societal Impact of Open Foundation Models
Foundation models are powerful technologies: how they are released publicly directly shapes their societal impact. In this position paper, we focus on open foundation models, defined here as those with broadly available model weights (e.g. Llama 2, Stable Diffusion XL). We identify five distinctive properties (e.g. greater customizability, poor monitoring) of open foundation models that lead to both their benefits and risks. Open foundation models present significant benefits, with some caveats, that span innovation, competition, the distribution of decision-making power, and transparency. To understand their risks of misuse, we design a risk assessment framework for analyzing their marginal risk. Across several misuse vectors (e.g. cyberattacks, bioweapons), we find that current research is insufficient to effectively characterize the marginal risk of open foundation models relative to pre-existing technologies. The framework helps explain why the marginal risk is low in some cases, clarifies disagreements about misuse risks by revealing that past work has focused on different subsets of the framework with different assumptions, and articulates a way forward for more constructive debate. Overall, our work helps support a more grounded assessment of the societal impact of open foundation models by outlining what research is needed to empirically validate their theoretical benefits and risks.
Solving the optimal stopping problem with reinforcement learning: an application in financial option exercise
The optimal stopping problem is a category of decision problems with a specific constrained configuration. It is relevant to various real-world applications such as finance and management. To solve the optimal stopping problem, state-of-the-art algorithms in dynamic programming, such as the least-squares Monte Carlo (LSMC), are employed. This type of algorithm relies on path simulations using only the last price of the underlying asset as a state representation. Also, the LSMC was thinking for option valuation where risk-neutral probabilities can be employed to account for uncertainty. However, the general optimal stopping problem goals may not fit the requirements of the LSMC showing auto-correlated prices. We employ a data-driven method that uses Monte Carlo simulation to train and test artificial neural networks (ANN) to solve the optimal stopping problem. Using ANN to solve decision problems is not entirely new. We propose a different architecture that uses convolutional neural networks (CNN) to deal with the dimensionality problem that arises when we transform the whole history of prices into a Markovian state. We present experiments that indicate that our proposed architecture improves results over the previous implementations under specific simulated time series function sets. Lastly, we employ our proposed method to compare the optimal exercise of the financial options problem with the LSMC algorithm. Our experiments show that our method can capture more accurate exercise opportunities when compared to the LSMC. We have outstandingly higher (above 974\% improvement) expected payoff from these exercise policies under the many Monte Carlo simulations that used the real-world return database on the out-of-sample (test) data.
Long-tailed Classification from a Bayesian-decision-theory Perspective
Long-tailed classification poses a challenge due to its heavy imbalance in class probabilities and tail-sensitivity risks with asymmetric misprediction costs. Recent attempts have used re-balancing loss and ensemble methods, but they are largely heuristic and depend heavily on empirical results, lacking theoretical explanation. Furthermore, existing methods overlook the decision loss, which characterizes different costs associated with tailed classes. This paper presents a general and principled framework from a Bayesian-decision-theory perspective, which unifies existing techniques including re-balancing and ensemble methods, and provides theoretical justifications for their effectiveness. From this perspective, we derive a novel objective based on the integrated risk and a Bayesian deep-ensemble approach to improve the accuracy of all classes, especially the "tail". Besides, our framework allows for task-adaptive decision loss which provides provably optimal decisions in varying task scenarios, along with the capability to quantify uncertainty. Finally, We conduct comprehensive experiments, including standard classification, tail-sensitive classification with a new False Head Rate metric, calibration, and ablation studies. Our framework significantly improves the current SOTA even on large-scale real-world datasets like ImageNet.
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
It is well known that accurate probabilistic predictors can be trained through empirical risk minimisation with proper scoring rules as loss functions. While such learners capture so-called aleatoric uncertainty of predictions, various machine learning methods have recently been developed with the goal to let the learner also represent its epistemic uncertainty, i.e., the uncertainty caused by a lack of knowledge and data. An emerging branch of the literature proposes the use of a second-order learner that provides predictions in terms of distributions on probability distributions. However, recent work has revealed serious theoretical shortcomings for second-order predictors based on loss minimisation. In this paper, we generalise these findings and prove a more fundamental result: There seems to be no loss function that provides an incentive for a second-order learner to faithfully represent its epistemic uncertainty in the same manner as proper scoring rules do for standard (first-order) learners. As a main mathematical tool to prove this result, we introduce the generalised notion of second-order scoring rules.
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD Detection On Medical Tabular Data
When deploying machine learning models in high-stakes real-world environments such as health care, it is crucial to accurately assess the uncertainty concerning a model's prediction on abnormal inputs. However, there is a scarcity of literature analyzing this problem on medical data, especially on mixed-type tabular data such as Electronic Health Records. We close this gap by presenting a series of tests including a large variety of contemporary uncertainty estimation techniques, in order to determine whether they are able to identify out-of-distribution (OOD) patients. In contrast to previous work, we design tests on realistic and clinically relevant OOD groups, and run experiments on real-world medical data. We find that almost all techniques fail to achieve convincing results, partly disagreeing with earlier findings.
Bitcoin Price Predictive Modeling Using Expert Correction
The paper studies the linear model for Bitcoin price which includes regression features based on Bitcoin currency statistics, mining processes, Google search trends, Wikipedia pages visits. The pattern of deviation of regression model prediction from real prices is simpler comparing to price time series. It is assumed that this pattern can be predicted by an experienced expert. In such a way, using the combination of the regression model and expert correction, one can receive better results than with either regression model or expert opinion only. It is shown that Bayesian approach makes it possible to utilize the probabilistic approach using distributions with fat tails and take into account the outliers in Bitcoin price time series.
Diffusion World Model
We introduce Diffusion World Model (DWM), a conditional diffusion model capable of predicting multistep future states and rewards concurrently. As opposed to traditional one-step dynamics models, DWM offers long-horizon predictions in a single forward pass, eliminating the need for recursive quires. We integrate DWM into model-based value estimation, where the short-term return is simulated by future trajectories sampled from DWM. In the context of offline reinforcement learning, DWM can be viewed as a conservative value regularization through generative modeling. Alternatively, it can be seen as a data source that enables offline Q-learning with synthetic data. Our experiments on the D4RL dataset confirm the robustness of DWM to long-horizon simulation. In terms of absolute performance, DWM significantly surpasses one-step dynamics models with a 44% performance gain, and achieves state-of-the-art performance.
What's Behind PPO's Collapse in Long-CoT? Value Optimization Holds the Secret
Reinforcement learning (RL) is pivotal for enabling large language models (LLMs) to generate long chains of thought (CoT) for complex tasks like math and reasoning. However, Proximal Policy Optimization (PPO), effective in many RL scenarios, fails in long CoT tasks. This paper identifies that value initialization bias and reward signal decay are the root causes of PPO's failure. We propose Value-Calibrated PPO (VC-PPO) to address these issues. In VC-PPO, the value model is pretrained to tackle initialization bias, and the Generalized Advantage Estimation (GAE) computation is decoupled between the actor and critic to mitigate reward signal decay. Experiments on the American Invitational Mathematics Examination (AIME) show that VC-PPO significantly boosts PPO performance. Ablation studies show that techniques in VC-PPO are essential in enhancing PPO for long CoT tasks.
EERO: Early Exit with Reject Option for Efficient Classification with limited budget
The increasing complexity of advanced machine learning models requires innovative approaches to manage computational resources effectively. One such method is the Early Exit strategy, which allows for adaptive computation by providing a mechanism to shorten the processing path for simpler data instances. In this paper, we propose EERO, a new methodology to translate the problem of early exiting to a problem of using multiple classifiers with reject option in order to better select the exiting head for each instance. We calibrate the probabilities of exiting at the different heads using aggregation with exponential weights to guarantee a fixed budget .We consider factors such as Bayesian risk, budget constraints, and head-specific budget consumption. Experimental results, conducted using a ResNet-18 model and a ConvNext architecture on Cifar and ImageNet datasets, demonstrate that our method not only effectively manages budget allocation but also enhances accuracy in overthinking scenarios.
Conformal Prediction with Missing Values
Conformal prediction is a theoretically grounded framework for constructing predictive intervals. We study conformal prediction with missing values in the covariates -- a setting that brings new challenges to uncertainty quantification. We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution and almost all imputation functions. However, we emphasize that the average coverage varies depending on the pattern of missing values: conformal methods tend to construct prediction intervals that under-cover the response conditionally to some missing patterns. This motivates our novel generalized conformalized quantile regression framework, missing data augmentation, which yields prediction intervals that are valid conditionally to the patterns of missing values, despite their exponential number. We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk, thus achieving valid coverage conditionally to any given data point. Moreover, we examine the case of a linear model, which demonstrates the importance of our proposal in overcoming the heteroskedasticity induced by missing values. Using synthetic and data from critical care, we corroborate our theory and report improved performance of our methods.
Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators
Recently, channel-independent methods have achieved state-of-the-art performance in multivariate time series (MTS) forecasting. Despite reducing overfitting risks, these methods miss potential opportunities in utilizing channel dependence for accurate predictions. We argue that there exist locally stationary lead-lag relationships between variates, i.e., some lagged variates may follow the leading indicators within a short time period. Exploiting such channel dependence is beneficial since leading indicators offer advance information that can be used to reduce the forecasting difficulty of the lagged variates. In this paper, we propose a new method named LIFT that first efficiently estimates leading indicators and their leading steps at each time step and then judiciously allows the lagged variates to utilize the advance information from leading indicators. LIFT plays as a plugin that can be seamlessly collaborated with arbitrary time series forecasting methods. Extensive experiments on six real-world datasets demonstrate that LIFT improves the state-of-the-art methods by 5.5% in average forecasting performance. Our code is available at https://github.com/SJTU-Quant/LIFT.
Approaching Emergent Risks: An Exploratory Study into Artificial Intelligence Risk Management within Financial Organisations
Globally, artificial intelligence (AI) implementation is growing, holding the capability to fundamentally alter organisational processes and decision making. Simultaneously, this brings a multitude of emergent risks to organisations, exposing vulnerabilities in their extant risk management frameworks. This necessitates a greater understanding of how organisations can position themselves in response. This issue is particularly pertinent within the financial sector with relatively mature AI applications matched with severe societal repercussions of potential risk events. Despite this, academic risk management literature is trailing behind the speed of AI implementation. Adopting a management perspective, this study aims to contribute to the understanding of AI risk management in organisations through an exploratory empirical investigation into these practices. In-depth insights are gained through interviews with nine practitioners from different organisations within the UK financial sector. Through examining areas of organisational convergence and divergence, the findings of this study unearth levels of risk management framework readiness and prevailing approaches to risk management at both a processual and organisational level. Whilst enhancing the developing literature concerning AI risk management within organisations, the study simultaneously offers a practical contribution, providing key areas of guidance for practitioners in the operational development of AI risk management frameworks.
Adaptive Alpha Weighting with PPO: Enhancing Prompt-Based LLM-Generated Alphas in Quant Trading
This paper proposes a reinforcement learning framework that employs Proximal Policy Optimization (PPO) to dynamically optimize the weights of multiple large language model (LLM)-generated formulaic alphas for stock trading strategies. Formulaic alphas are mathematically defined trading signals derived from price, volume, sentiment, and other data. Although recent studies have shown that LLMs can generate diverse and effective alphas, a critical challenge lies in how to adaptively integrate them under varying market conditions. To address this gap, we leverage the deepseek-r1-distill-llama-70b model to generate fifty alphas for five major stocks: Apple, HSBC, Pepsi, Toyota, and Tencent, and then use PPO to adjust their weights in real time. Experimental results demonstrate that the PPO-optimized strategy achieves strong returns and high Sharpe ratios across most stocks, outperforming both an equal-weighted alpha portfolio and traditional benchmarks such as the Nikkei 225, S&P 500, and Hang Seng Index. The findings highlight the importance of reinforcement learning in the allocation of alpha weights and show the potential of combining LLM-generated signals with adaptive optimization for robust financial forecasting and trading.
