new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 27

Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents

Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning, yet their application in agentic, multi-step reasoning within interactive environments remains a difficult challenge. Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities needed to perform complex decision-making in dynamic settings like web navigation. Previous attempts to bridge this ga-through supervised fine-tuning on curated expert demonstrations-often suffer from compounding errors and limited exploration data, resulting in sub-optimal policy outcomes. To overcome these challenges, we propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions using an off-policy variant of the Direct Preference Optimization (DPO) algorithm. Our method allows LLM agents to learn effectively from both successful and unsuccessful trajectories, thereby improving their generalization in complex, multi-step reasoning tasks. We validate our approach in the WebShop environment-a simulated e-commerce platform where it consistently outperforms behavior cloning and reinforced fine-tuning baseline, and beats average human performance when equipped with the capability to do online search. In real-world booking scenarios, our methodology boosts Llama-3 70B model's zero-shot performance from 18.6% to 81.7% success rate (a 340% relative increase) after a single day of data collection and further to 95.4% with online search. We believe this represents a substantial leap forward in the capabilities of autonomous agents, paving the way for more sophisticated and reliable decision-making in real-world settings.

  • 7 authors
·
Aug 13, 2024

WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents

Existing benchmarks for grounding language in interactive environments either lack real-world linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. To bridge this gap, we develop WebShop -- a simulated e-commerce website environment with 1.18 million real-world products and 12,087 crowd-sourced text instructions. Given a text instruction specifying a product requirement, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase an item. WebShop provides several challenges for language grounding including understanding compositional instructions, query (re-)formulation, comprehending and acting on noisy text in webpages, and performing strategic exploration. We collect over 1,600 human demonstrations for the task, and train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of 29%, which outperforms rule-based heuristics (9.6%) but is far lower than human expert performance (59%). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show that agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of WebShop in developing practical web-based agents that can operate in the wild.

  • 4 authors
·
Jul 4, 2022

ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents

Large language model (LLM)-based agents have been increasingly used to interact with external environments (e.g., games, APIs, etc.) and solve tasks. However, current frameworks do not enable these agents to work with users and interact with them to align on the details of their tasks and reach user-defined goals; instead, in ambiguous situations, these agents may make decisions based on assumptions. This work introduces ReSpAct (Reason, Speak, and Act), a novel framework that synergistically combines the essential skills for building task-oriented "conversational" agents. ReSpAct addresses this need for agents, expanding on the ReAct approach. The ReSpAct framework enables agents to interpret user instructions, reason about complex tasks, execute appropriate actions, and engage in dynamic dialogue to seek guidance, clarify ambiguities, understand user preferences, resolve problems, and use the intermediate feedback and responses of users to update their plans. We evaluated ReSpAct in environments supporting user interaction, such as task-oriented dialogue (MultiWOZ) and interactive decision-making (AlfWorld, WebShop). ReSpAct is flexible enough to incorporate dynamic user feedback and addresses prevalent issues like error propagation and agents getting stuck in reasoning loops. This results in more interpretable, human-like task-solving trajectories than relying solely on reasoning traces. In two interactive decision-making benchmarks, AlfWorld and WebShop, ReSpAct outperform the strong reasoning-only method ReAct by an absolute success rate of 6% and 4%, respectively. In the task-oriented dialogue benchmark MultiWOZ, ReSpAct improved Inform and Success scores by 5.5% and 3%, respectively.

Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce

In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.

  • 5 authors
·
Oct 23, 2023

Incorporating Customer Reviews in Size and Fit Recommendation systems for Fashion E-Commerce

With the huge growth in e-commerce domain, product recommendations have become an increasing field of interest amongst e-commerce companies. One of the more difficult tasks in product recommendations is size and fit predictions. There are a lot of size related returns and refunds in e-fashion domain which causes inconvenience to the customers as well as costs the company. Thus having a good size and fit recommendation system, which can predict the correct sizes for the customers will not only reduce size related returns and refunds but also improve customer experience. Early works in this field used traditional machine learning approaches to estimate customer and product sizes from purchase history. These methods suffered from cold start problem due to huge sparsity in the customer-product data. More recently, people have used deep learning to address this problem by embedding customer and product features. But none of them incorporates valuable customer feedback present on product pages along with the customer and product features. We propose a novel approach which can use information from customer reviews along with customer and product features for size and fit predictions. We demonstrate the effectiveness of our approach compared to using just product and customer features on 4 datasets. Our method shows an improvement of 1.37% - 4.31% in F1 (macro) score over the baseline across the 4 different datasets.

  • 3 authors
·
Aug 11, 2022

Cross-Domain Product Representation Learning for Rich-Content E-Commerce

The proliferation of short video and live-streaming platforms has revolutionized how consumers engage in online shopping. Instead of browsing product pages, consumers are now turning to rich-content e-commerce, where they can purchase products through dynamic and interactive media like short videos and live streams. This emerging form of online shopping has introduced technical challenges, as products may be presented differently across various media domains. Therefore, a unified product representation is essential for achieving cross-domain product recognition to ensure an optimal user search experience and effective product recommendations. Despite the urgent industrial need for a unified cross-domain product representation, previous studies have predominantly focused only on product pages without taking into account short videos and live streams. To fill the gap in the rich-content e-commerce area, in this paper, we introduce a large-scale cRoss-dOmain Product Ecognition dataset, called ROPE. ROPE covers a wide range of product categories and contains over 180,000 products, corresponding to millions of short videos and live streams. It is the first dataset to cover product pages, short videos, and live streams simultaneously, providing the basis for establishing a unified product representation across different media domains. Furthermore, we propose a Cross-dOmain Product rEpresentation framework, namely COPE, which unifies product representations in different domains through multimodal learning including text and vision. Extensive experiments on downstream tasks demonstrate the effectiveness of COPE in learning a joint feature space for all product domains.

  • 6 authors
·
Aug 10, 2023

EnvBench: A Benchmark for Automated Environment Setup

Recent advances in Large Language Models (LLMs) have enabled researchers to focus on practical repository-level tasks in software engineering domain. In this work, we consider a cornerstone task for automating work with software repositories-environment setup, i.e., a task of configuring a repository-specific development environment on a system. Existing studies on environment setup introduce innovative agentic strategies, but their evaluation is often based on small datasets that may not capture the full range of configuration challenges encountered in practice. To address this gap, we introduce a comprehensive environment setup benchmark EnvBench. It encompasses 329 Python and 665 JVM-based (Java, Kotlin) repositories, with a focus on repositories that present genuine configuration challenges, excluding projects that can be fully configured by simple deterministic scripts. To enable further benchmark extension and usage for model tuning, we implement two automatic metrics: a static analysis check for missing imports in Python and a compilation check for JVM languages. We demonstrate the applicability of our benchmark by evaluating three environment setup approaches, including a simple zero-shot baseline and two agentic workflows, that we test with two powerful LLM backbones, GPT-4o and GPT-4o-mini. The best approach manages to successfully configure 6.69% repositories for Python and 29.47% repositories for JVM, suggesting that EnvBench remains challenging for current approaches. Our benchmark suite is publicly available at https://github.com/JetBrains-Research/EnvBench. The dataset and experiment trajectories are available at https://jb.gg/envbench.

  • 5 authors
·
Mar 18

WebArena: A Realistic Web Environment for Building Autonomous Agents

With generative AI advances, the exciting potential for autonomous agents to manage daily tasks via natural language commands has emerged. However, cur rent agents are primarily created and tested in simplified synthetic environments, substantially limiting real-world scenario representation. In this paper, we build an environment for agent command and control that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on websites, and we create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and are designed to emulate tasks that humans routinely perform on the internet. We design and implement several autonomous agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 10.59%. These results highlight the need for further development of robust agents, that current state-of-the-art LMs are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress. Our code, data, environment reproduction resources, and video demonstrations are publicly available at https://webarena.dev/.

  • 11 authors
·
Jul 25, 2023 4

Unified Vision-Language Representation Modeling for E-Commerce Same-Style Products Retrieval

Same-style products retrieval plays an important role in e-commerce platforms, aiming to identify the same products which may have different text descriptions or images. It can be used for similar products retrieval from different suppliers or duplicate products detection of one supplier. Common methods use the image as the detected object, but they only consider the visual features and overlook the attribute information contained in the textual descriptions, and perform weakly for products in image less important industries like machinery, hardware tools and electronic component, even if an additional text matching module is added. In this paper, we propose a unified vision-language modeling method for e-commerce same-style products retrieval, which is designed to represent one product with its textual descriptions and visual contents. It contains one sampling skill to collect positive pairs from user click log with category and relevance constrained, and a novel contrastive loss unit to model the image, text, and image+text representations into one joint embedding space. It is capable of cross-modal product-to-product retrieval, as well as style transfer and user-interactive search. Offline evaluations on annotated data demonstrate its superior retrieval performance, and online testings show it can attract more clicks and conversions. Moreover, this model has already been deployed online for similar products retrieval in alibaba.com, the largest B2B e-commerce platform in the world.

  • 6 authors
·
Feb 10, 2023

MerRec: A Large-scale Multipurpose Mercari Dataset for Consumer-to-Consumer Recommendation Systems

In the evolving e-commerce field, recommendation systems crucially shape user experience and engagement. The rise of Consumer-to-Consumer (C2C) recommendation systems, noted for their flexibility and ease of access for customer vendors, marks a significant trend. However, the academic focus remains largely on Business-to-Consumer (B2C) models, leaving a gap filled by the limited C2C recommendation datasets that lack in item attributes, user diversity, and scale. The intricacy of C2C recommendation systems is further accentuated by the dual roles users assume as both sellers and buyers, introducing a spectrum of less uniform and varied inputs. Addressing this, we introduce MerRec, the first large-scale dataset specifically for C2C recommendations, sourced from the Mercari e-commerce platform, covering millions of users and products over 6 months in 2023. MerRec not only includes standard features such as user_id, item_id, and session_id, but also unique elements like timestamped action types, product taxonomy, and textual product attributes, offering a comprehensive dataset for research. This dataset, extensively evaluated across six recommendation tasks, establishes a new benchmark for the development of advanced recommendation algorithms in real-world scenarios, bridging the gap between academia and industry and propelling the study of C2C recommendations.

  • 6 authors
·
Feb 21, 2024 1

TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks

We interact with computers on an everyday basis, be it in everyday life or work, and many aspects of work can be done entirely with access to a computer and the Internet. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. But how performant are AI agents at helping to accelerate or even autonomously perform work-related tasks? The answer to this question has important implications for both industry looking to adopt AI into their workflows, and for economic policy to understand the effects that adoption of AI may have on the labor market. To measure the progress of these LLM agents' performance on performing real-world professional tasks, in this paper, we introduce TheAgentCompany, an extensible benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker: by browsing the Web, writing code, running programs, and communicating with other coworkers. We build a self-contained environment with internal web sites and data that mimics a small software company environment, and create a variety of tasks that may be performed by workers in such a company. We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that with the most competitive agent, 24% of the tasks can be completed autonomously. This paints a nuanced picture on task automation with LM agents -- in a setting simulating a real workplace, a good portion of simpler tasks could be solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current systems.

  • 21 authors
·
Dec 18, 2024 2

ProMap: Datasets for Product Mapping in E-commerce

The goal of product mapping is to decide, whether two listings from two different e-shops describe the same products. Existing datasets of matching and non-matching pairs of products, however, often suffer from incomplete product information or contain only very distant non-matching products. Therefore, while predictive models trained on these datasets achieve good results on them, in practice, they are unusable as they cannot distinguish very similar but non-matching pairs of products. This paper introduces two new datasets for product mapping: ProMapCz consisting of 1,495 Czech product pairs and ProMapEn consisting of 1,555 English product pairs of matching and non-matching products manually scraped from two pairs of e-shops. The datasets contain both images and textual descriptions of the products, including their specifications, making them one of the most complete datasets for product mapping. Additionally, the non-matching products were selected in two phases, creating two types of non-matches -- close non-matches and medium non-matches. Even the medium non-matches are pairs of products that are much more similar than non-matches in other datasets -- for example, they still need to have the same brand and similar name and price. After simple data preprocessing, several machine learning algorithms were trained on these and two the other datasets to demonstrate the complexity and completeness of ProMap datasets. ProMap datasets are presented as a golden standard for further research of product mapping filling the gaps in existing ones.

  • 2 authors
·
Sep 13, 2023

Collaborative Metric Learning Recommendation System: Application to Theatrical Movie Releases

Product recommendation systems are important for major movie studios during the movie greenlight process and as part of machine learning personalization pipelines. Collaborative Filtering (CF) models have proved to be effective at powering recommender systems for online streaming services with explicit customer feedback data. CF models do not perform well in scenarios in which feedback data is not available, in cold start situations like new product launches, and situations with markedly different customer tiers (e.g., high frequency customers vs. casual customers). Generative natural language models that create useful theme-based representations of an underlying corpus of documents can be used to represent new product descriptions, like new movie plots. When combined with CF, they have shown to increase the performance in cold start situations. Outside of those cases though in which explicit customer feedback is available, recommender engines must rely on binary purchase data, which materially degrades performance. Fortunately, purchase data can be combined with product descriptions to generate meaningful representations of products and customer trajectories in a convenient product space in which proximity represents similarity. Learning to measure the distance between points in this space can be accomplished with a deep neural network that trains on customer histories and on dense vectorizations of product descriptions. We developed a system based on Collaborative (Deep) Metric Learning (CML) to predict the purchase probabilities of new theatrical releases. We trained and evaluated the model using a large dataset of customer histories, and tested the model for a set of movies that were released outside of the training window. Initial experiments show gains relative to models that do not train on collaborative preferences.

  • 4 authors
·
Feb 28, 2018

LLaMA-E: Empowering E-commerce Authoring with Multi-Aspect Instruction Following

E-commerce authoring involves creating attractive, abundant, and targeted promotional content to drive product sales. The emergence of large language models (LLMs) introduces an innovative paradigm, offering a unified solution to address various authoring tasks within this scenario. However, mainstream LLMs trained on general corpora with common sense knowledge reveal limitations in fitting complex and personalized features unique to e-commerce products and customers. Furthermore, LLMs like GPT-3.5 necessitate remote accessibility, raising concerns about safeguarding voluminous customer privacy data during transmission. This paper proposes the LLaMA-E, the unified and customized instruction-following language models focusing on diverse e-commerce authoring tasks. Specifically, the domain experts create the seed instruction set from the tasks of ads generation, query-enhanced product title rewriting, product classification, purchase intent speculation, and general Q&A. These tasks enable the models to comprehensively understand precise e-commerce authoring knowledge by interleaving features covering typical service aspects of customers, sellers, and platforms. The GPT-3.5 is introduced as a teacher model, which expands the seed instructions to form a training set for the LLaMA-E models with various scales. The experimental results show that the proposed LLaMA-E models achieve state-of-the-art results in quantitative and qualitative evaluations, also exhibiting the advantage in zero-shot scenes. To the best of our knowledge, this study is the first to serve the LLMs to specific e-commerce authoring scenarios.

  • 6 authors
·
Aug 9, 2023

What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic E-Commerce

Online marketplaces will be transformed by autonomous AI agents acting on behalf of consumers. Rather than humans browsing and clicking, vision-language-model (VLM) agents can parse webpages, evaluate products, and transact. This raises a fundamental question: what do AI agents buy, and why? We develop ACES, a sandbox environment that pairs a platform-agnostic VLM agent with a fully programmable mock marketplace to study this question. We first conduct basic rationality checks in the context of simple tasks, and then, by randomizing product positions, prices, ratings, reviews, sponsored tags, and platform endorsements, we obtain causal estimates of how frontier VLMs actually shop. Models show strong but heterogeneous position effects: all favor the top row, yet different models prefer different columns, undermining the assumption of a universal "top" rank. They penalize sponsored tags and reward endorsements. Sensitivities to price, ratings, and reviews are directionally human-like but vary sharply in magnitude across models. Motivated by scenarios where sellers use AI agents to optimize product listings, we show that a seller-side agent that makes minor tweaks to product descriptions, targeting AI buyer preferences, can deliver substantial market-share gains if AI-mediated shopping dominates. We also find that modal product choices can differ across models and, in some cases, demand may concentrate on a few select products, raising competition questions. Together, our results illuminate how AI agents may behave in e-commerce settings and surface concrete seller strategy, platform design, and regulatory questions in an AI-mediated ecosystem.

  • 5 authors
·
Aug 4 2

VirtualModel: Generating Object-ID-retentive Human-object Interaction Image by Diffusion Model for E-commerce Marketing

Due to the significant advances in large-scale text-to-image generation by diffusion model (DM), controllable human image generation has been attracting much attention recently. Existing works, such as Controlnet [36], T2I-adapter [20] and HumanSD [10] have demonstrated good abilities in generating human images based on pose conditions, they still fail to meet the requirements of real e-commerce scenarios. These include (1) the interaction between the shown product and human should be considered, (2) human parts like face/hand/arm/foot and the interaction between human model and product should be hyper-realistic, and (3) the identity of the product shown in advertising should be exactly consistent with the product itself. To this end, in this paper, we first define a new human image generation task for e-commerce marketing, i.e., Object-ID-retentive Human-object Interaction image Generation (OHG), and then propose a VirtualModel framework to generate human images for product shown, which supports displays of any categories of products and any types of human-object interaction. As shown in Figure 1, VirtualModel not only outperforms other methods in terms of accurate pose control and image quality but also allows for the display of user-specified product objects by maintaining the product-ID consistency and enhancing the plausibility of human-object interaction. Codes and data will be released.

  • 5 authors
·
May 16, 2024

Two Is Better Than One: Dual Embeddings for Complementary Product Recommendations

Embedding based product recommendations have gained popularity in recent years due to its ability to easily integrate to large-scale systems and allowing nearest neighbor searches in real-time. The bulk of studies in this area has predominantly been focused on similar item recommendations. Research on complementary item recommendations, on the other hand, still remains considerably under-explored. We define similar items as items that are interchangeable in terms of their utility and complementary items as items that serve different purposes, yet are compatible when used with one another. In this paper, we apply a novel approach to finding complementary items by leveraging dual embedding representations for products. We demonstrate that the notion of relatedness discovered in NLP for skip-gram negative sampling (SGNS) models translates effectively to the concept of complementarity when training item representations using co-purchase data. Since sparsity of purchase data is a major challenge in real-world scenarios, we further augment the model using synthetic samples to extend coverage. This allows the model to provide complementary recommendations for items that do not share co-purchase data by leveraging other abundantly available data modalities such as images, text, clicks etc. We establish the effectiveness of our approach in improving both coverage and quality of recommendations on real world data for a major online retail company. We further show the importance of task specific hyperparameter tuning in training SGNS. Our model is effective yet simple to implement, making it a great candidate for generating complementary item recommendations at any e-commerce website.

  • 4 authors
·
Nov 27, 2022

LLaSA: Large Language and E-Commerce Shopping Assistant

The e-commerce platform has evolved rapidly due to its widespread popularity and convenience. Developing an e-commerce shopping assistant for customers is crucial to aiding them in quickly finding desired products and recommending precisely what they need. However, most previous shopping assistants face two main problems: (1) task-specificity, which necessitates the development of different models for various tasks, thereby increasing development costs and limiting effectiveness; and (2) poor generalization, where the trained model performs inadequately on up-to-date products. To resolve these issues, we employ Large Language Models (LLMs) to construct an omnipotent assistant, leveraging their adeptness at handling multiple tasks and their superior generalization capability. Nonetheless, LLMs lack inherent knowledge of e-commerce concepts. To address this, we create an instruction dataset comprising 65,000 samples and diverse tasks, termed as EshopInstruct. Through instruction tuning on our dataset, the assistant, named LLaSA, demonstrates the potential to function as an omnipotent assistant. Additionally, we propose various inference optimization strategies to enhance performance with limited inference resources. In the Amazon KDD Cup 2024 Challenge, our proposed method, LLaSA, achieved an overall ranking of 3rd place on ShopBench, including 57 tasks and approximately 20,000 questions, and we secured top-5 rankings in each track, especially in track4, where we achieved the best performance result among all student teams. Our extensive practices fully demonstrate that LLMs possess the great potential to be competent e-commerce shopping assistants.

  • 7 authors
·
Aug 4, 2024

ST-WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents

Recent advancements in Web agents have introduced novel architectures and benchmarks showcasing progress in autonomous web navigation and interaction. However, most existing benchmarks prioritize effectiveness and accuracy, overlooking factors like safety and trustworthiness which are essential for deploying web agents in enterprise settings. We present STWebAgentBench, a benchmark designed to evaluate web agents safety and trustworthiness across six critical dimensions, essential for reliability in enterprise applications. This benchmark is grounded in a detailed framework that defines safe and trustworthy (ST) agent behavior. Our work extends WebArena with safety templates and evaluation functions to assess safety policy compliance rigorously. We introduce the Completion Under Policy to measure task success while adhering to policies, alongside the Risk Ratio, which quantifies policy violations across dimensions, providing actionable insights to address safety gaps. Our evaluation reveals that current SOTA agents struggle with policy adherence and cannot yet be relied upon for critical business applications. We open-source this benchmark and invite the community to contribute, with the goal of fostering a new generation of safer, more trustworthy AI agents. All code, data, environment reproduction resources, and video demonstrations are available at https://sites.google.com/view/st-webagentbench/home.

  • 6 authors
·
Oct 9, 2024

OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

Autonomous agents that accomplish complex computer tasks with minimal human interventions have the potential to transform human-computer interaction, significantly enhancing accessibility and productivity. However, existing benchmarks either lack an interactive environment or are limited to environments specific to certain applications or domains, failing to reflect the diverse and complex nature of real-world computer use, thereby limiting the scope of tasks and agent scalability. To address this issue, we introduce OSWorld, the first-of-its-kind scalable, real computer environment for multimodal agents, supporting task setup, execution-based evaluation, and interactive learning across various operating systems such as Ubuntu, Windows, and macOS. OSWorld can serve as a unified, integrated computer environment for assessing open-ended computer tasks that involve arbitrary applications. Building upon OSWorld, we create a benchmark of 369 computer tasks involving real web and desktop apps in open domains, OS file I/O, and workflows spanning multiple applications. Each task example is derived from real-world computer use cases and includes a detailed initial state setup configuration and a custom execution-based evaluation script for reliable, reproducible evaluation. Extensive evaluation of state-of-the-art LLM/VLM-based agents on OSWorld reveals significant deficiencies in their ability to serve as computer assistants. While humans can accomplish over 72.36% of the tasks, the best model achieves only 12.24% success, primarily struggling with GUI grounding and operational knowledge. Comprehensive analysis using OSWorld provides valuable insights for developing multimodal generalist agents that were not possible with previous benchmarks. Our code, environment, baseline models, and data are publicly available at https://os-world.github.io.

  • 17 authors
·
Apr 11, 2024 1

The multi-modal universe of fast-fashion: the Visuelle 2.0 benchmark

We present Visuelle 2.0, the first dataset useful for facing diverse prediction problems that a fast-fashion company has to manage routinely. Furthermore, we demonstrate how the use of computer vision is substantial in this scenario. Visuelle 2.0 contains data for 6 seasons / 5355 clothing products of Nuna Lie, a famous Italian company with hundreds of shops located in different areas within the country. In particular, we focus on a specific prediction problem, namely short-observation new product sale forecasting (SO-fore). SO-fore assumes that the season has started and a set of new products is on the shelves of the different stores. The goal is to forecast the sales for a particular horizon, given a short, available past (few weeks), since no earlier statistics are available. To be successful, SO-fore approaches should capture this short past and exploit other modalities or exogenous data. To these aims, Visuelle 2.0 is equipped with disaggregated data at the item-shop level and multi-modal information for each clothing item, allowing computer vision approaches to come into play. The main message that we deliver is that the use of image data with deep networks boosts performances obtained when using the time series in long-term forecasting scenarios, ameliorating the WAPE and MAE by up to 5.48% and 7% respectively compared to competitive baseline methods. The dataset is available at https://humaticslab.github.io/forecasting/visuelle

  • 5 authors
·
Apr 14, 2022

Harmful Terms and Where to Find Them: Measuring and Modeling Unfavorable Financial Terms and Conditions in Shopping Websites at Scale

Terms and conditions for online shopping websites often contain terms that can have significant financial consequences for customers. Despite their impact, there is currently no comprehensive understanding of the types and potential risks associated with unfavorable financial terms. Furthermore, there are no publicly available detection systems or datasets to systematically identify or mitigate these terms. In this paper, we take the first steps toward solving this problem with three key contributions. First, we introduce TermMiner, an automated data collection and topic modeling pipeline to understand the landscape of unfavorable financial terms. Second, we create ShopTC-100K, a dataset of terms and conditions from shopping websites in the Tranco top 100K list, comprising 1.8 million terms from 8,251 websites. Consequently, we develop a taxonomy of 22 types from 4 categories of unfavorable financial terms -- spanning purchase, post-purchase, account termination, and legal aspects. Third, we build TermLens, an automated detector that uses Large Language Models (LLMs) to identify unfavorable financial terms. Fine-tuned on an annotated dataset, TermLens achieves an F1 score of 94.6\% and a false positive rate of 2.3\% using GPT-4o. When applied to shopping websites from the Tranco top 100K, we find that 42.06\% of these sites contain at least one unfavorable financial term, with such terms being more prevalent on less popular websites. Case studies further highlight the financial risks and customer dissatisfaction associated with unfavorable financial terms, as well as the limitations of existing ecosystem defenses.

  • 5 authors
·
Feb 3

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

  • 2 authors
·
Jul 26, 2022

The Impact of Environment Configurations on the Stability of AI-Enabled Systems

Nowadays, software systems tend to include Artificial Intelligence (AI) components. Changes in the operational environment have been known to negatively impact the stability of AI-enabled software systems by causing unintended changes in behavior. However, how an environment configuration impacts the behavior of such systems has yet to be explored. Understanding and quantifying the degree of instability caused by different environment settings can help practitioners decide the best environment configuration for the most stable AI systems. To achieve this goal, we performed experiments with eight different combinations of three key environment variables (operating system, Python version, and CPU architecture) on 30 open-source AI-enabled systems using the Travis CI platform. We determine the existence and the degree of instability introduced by each configuration using three metrics: the output of an AI component of the system (model performance), the time required to build and run the system (processing time), and the cost associated with building and running the system (expense). Our results indicate that changes in environment configurations lead to instability across all three metrics; however, it is observed more frequently with respect to processing time and expense rather than model performance. For example, between Linux and MacOS, instability is observed in 23\%, 96.67\%, and 100\% of the studied projects in model performance, processing time, and expense, respectively. Our findings underscore the importance of identifying the optimal combination of configuration settings to mitigate drops in model performance and reduce the processing time and expense before deploying an AI-enabled system.

  • 5 authors
·
Aug 5, 2024

BanglishRev: A Large-Scale Bangla-English and Code-mixed Dataset of Product Reviews in E-Commerce

This work presents the BanglishRev Dataset, the largest e-commerce product review dataset to date for reviews written in Bengali, English, a mixture of both and Banglish, Bengali words written with English alphabets. The dataset comprises of 1.74 million written reviews from 3.2 million ratings information collected from a total of 128k products being sold in online e-commerce platforms targeting the Bengali population. It includes an extensive array of related metadata for each of the reviews including the rating given by the reviewer, date the review was posted and date of purchase, number of likes, dislikes, response from the seller, images associated with the review etc. With sentiment analysis being the most prominent usage of review datasets, experimentation with a binary sentiment analysis model with the review rating serving as an indicator of positive or negative sentiment was conducted to evaluate the effectiveness of the large amount of data presented in BanglishRev for sentiment analysis tasks. A BanglishBERT model is trained on the data from BanglishRev with reviews being considered labeled positive if the rating is greater than 3 and negative if the rating is less than or equal to 3. The model is evaluated by being testing against a previously published manually annotated dataset for e-commerce reviews written in a mixture of Bangla, English and Banglish. The experimental model achieved an exceptional accuracy of 94\% and F1 score of 0.94, demonstrating the dataset's efficacy for sentiment analysis. Some of the intriguing patterns and observations seen within the dataset and future research directions where the dataset can be utilized is also discussed and explored. The dataset can be accessed through https://huggingface.co/datasets/BanglishRev/bangla-english-and-code-mixed-ecommerce-review-dataset.

  • 4 authors
·
Dec 17, 2024