2 WikiSplit++: Easy Data Refinement for Split and Rephrase The task of Split and Rephrase, which splits a complex sentence into multiple simple sentences with the same meaning, improves readability and enhances the performance of downstream tasks in natural language processing (NLP). However, while Split and Rephrase can be improved using a text-to-text generation approach that applies encoder-decoder models fine-tuned with a large-scale dataset, it still suffers from hallucinations and under-splitting. To address these issues, this paper presents a simple and strong data refinement approach. Here, we create WikiSplit++ by removing instances in WikiSplit where complex sentences do not entail at least one of the simpler sentences and reversing the order of reference simple sentences. Experimental results show that training with WikiSplit++ leads to better performance than training with WikiSplit, even with fewer training instances. In particular, our approach yields significant gains in the number of splits and the entailment ratio, a proxy for measuring hallucinations. 6 authors · Apr 13, 2024
- WikiSQE: A Large-Scale Dataset for Sentence Quality Estimation in Wikipedia Wikipedia can be edited by anyone and thus contains various quality sentences. Therefore, Wikipedia includes some poor-quality edits, which are often marked up by other editors. While editors' reviews enhance the credibility of Wikipedia, it is hard to check all edited text. Assisting in this process is very important, but a large and comprehensive dataset for studying it does not currently exist. Here, we propose WikiSQE, the first large-scale dataset for sentence quality estimation in Wikipedia. Each sentence is extracted from the entire revision history of English Wikipedia, and the target quality labels were carefully investigated and selected. WikiSQE has about 3.4 M sentences with 153 quality labels. In the experiment with automatic classification using competitive machine learning models, sentences that had problems with citation, syntax/semantics, or propositions were found to be more difficult to detect. In addition, by performing human annotation, we found that the model we developed performed better than the crowdsourced workers. WikiSQE is expected to be a valuable resource for other tasks in NLP. 3 authors · May 10, 2023
3 LLMSQL: Upgrading WikiSQL for the LLM Era of Text-to-SQL Converting natural language questions into SQL queries (Text-to-SQL) enables non-expert users to interact with relational databases and has long been a central task for natural language interfaces to data. While the WikiSQL dataset played a key role in early NL2SQL research, its usage has declined due to structural and annotation issues, including case sensitivity inconsistencies, data type mismatches, syntax errors, and unanswered questions. We present LLMSQL, a systematic revision and transformation of WikiSQL designed for the LLM era. We classify these errors and implement automated methods for cleaning and re-annotation. To assess the impact of these improvements, we evaluated multiple large language models (LLMs), including Gemma 3, LLaMA 3.2, Mistral 7B, gpt-oss 20B, Phi-3.5 Mini, Qwen 2.5, OpenAI o4-mini, DeepSeek R1 and others. Rather than serving as an update, LLMSQL is introduced as an LLM-ready benchmark: unlike the original WikiSQL, tailored for pointer-network models selecting tokens from input, LLMSQL provides clean natural language questions and full SQL queries as plain text, enabling straightforward generation and evaluation for modern natural language-to-SQL models. LLMSQL · Sep 27 2