- Frappe: Understanding the Usage and Perception of Mobile App Recommendations In-The-Wild This paper describes a real world deployment of a context-aware mobile app recommender system (RS) called Frappe. Utilizing a hybrid-approach, we conducted a large-scale app market deployment with 1000 Android users combined with a small-scale local user study involving 33 users. The resulting usage logs and subjective feedback enabled us to gather key insights into (1) context-dependent app usage and (2) the perceptions and experiences of end-users while interacting with context-aware mobile app recommendations. While Frappe performs very well based on usage-centric evaluation metrics insights from the small-scale study reveal some negative user experiences. Our results point to a number of actionable lessons learned specifically related to designing, deploying and evaluating mobile context-aware RS in-the-wild with real users. 4 authors · May 12, 2015
- Moderating Model Marketplaces: Platform Governance Puzzles for AI Intermediaries The AI development community is increasingly making use of hosting intermediaries such as Hugging Face provide easy access to user-uploaded models and training data. These model marketplaces lower technical deployment barriers for hundreds of thousands of users, yet can be used in numerous potentially harmful and illegal ways. In this article, we explain ways in which AI systems, which can both `contain' content and be open-ended tools, present one of the trickiest platform governance challenges seen to date. We provide case studies of several incidents across three illustrative platforms -- Hugging Face, GitHub and Civitai -- to examine how model marketplaces moderate models. Building on this analysis, we outline important (and yet nevertheless limited) practices that industry has been developing to respond to moderation demands: licensing, access and use restrictions, automated content moderation, and open policy development. While the policy challenge at hand is a considerable one, we conclude with some ideas as to how platforms could better mobilize resources to act as a careful, fair, and proportionate regulatory access point. 2 authors · Nov 21, 2023
1 A Deployment-First Methodology to Mechanism Design and Refinement in Distributed Systems Catalyzed by the popularity of blockchain technology, there has recently been a renewed interest in the design, implementation and evaluation of decentralized systems. Most of these systems are intended to be deployed at scale and in heterogeneous environments with real users and unpredictable workloads. Nevertheless, most research in this field evaluates such systems in controlled environments that poorly reflect the complex conditions of real-world environments. In this work, we argue that deployment is crucial to understanding decentralized mechanisms in a real-world environment and an enabler to building more robust and sustainable systems. We highlight the merits of deployment by comparing this approach with other experimental setups and show how our lab applied a deployment-first methodology. We then outline how we use Tribler, our peer-to-peer file-sharing application, to deploy and monitor decentralized mechanisms at scale. We illustrate the application of our methodology by describing a deployment trial in experimental tokenomics. Finally, we summarize four lessons learned from multiple deployment trials where we applied our methodology. 4 authors · Jan 11, 2023
- Erasing Labor with Labor: Dark Patterns and Lockstep Behaviors on Google Play Google Play's policy forbids the use of incentivized installs, ratings, and reviews to manipulate the placement of apps. However, there still exist apps that incentivize installs for other apps on the platform. To understand how install-incentivizing apps affect users, we examine their ecosystem through a socio-technical lens and perform a mixed-methods analysis of their reviews and permissions. Our dataset contains 319K reviews collected daily over five months from 60 such apps that cumulatively account for over 160.5M installs. We perform qualitative analysis of reviews to reveal various types of dark patterns that developers incorporate in install-incentivizing apps, highlighting their normative concerns at both user and platform levels. Permissions requested by these apps validate our discovery of dark patterns, with over 92% apps accessing sensitive user information. We find evidence of fraudulent reviews on install-incentivizing apps, following which we model them as an edge stream in a dynamic bipartite graph of apps and reviewers. Our proposed reconfiguration of a state-of-the-art microcluster anomaly detection algorithm yields promising preliminary results in detecting this fraud. We discover highly significant lockstep behaviors exhibited by reviews that aim to boost the overall rating of an install-incentivizing app. Upon evaluating the 50 most suspicious clusters of boosting reviews detected by the algorithm, we find (i) near-identical pairs of reviews across 94% (47 clusters), and (ii) over 35% (1,687 of 4,717 reviews) present in the same form near-identical pairs within their cluster. Finally, we conclude with a discussion on how fraud is intertwined with labor and poses a threat to the trust and transparency of Google Play. 7 authors · Feb 9, 2022
- Getting Inspiration for Feature Elicitation: App Store- vs. LLM-based Approach Over the past decade, app store (AppStore)-inspired requirements elicitation has proven to be highly beneficial. Developers often explore competitors' apps to gather inspiration for new features. With the advance of Generative AI, recent studies have demonstrated the potential of large language model (LLM)-inspired requirements elicitation. LLMs can assist in this process by providing inspiration for new feature ideas. While both approaches are gaining popularity in practice, there is a lack of insight into their differences. We report on a comparative study between AppStore- and LLM-based approaches for refining features into sub-features. By manually analyzing 1,200 sub-features recommended from both approaches, we identified their benefits, challenges, and key differences. While both approaches recommend highly relevant sub-features with clear descriptions, LLMs seem more powerful particularly concerning novel unseen app scopes. Moreover, some recommended features are imaginary with unclear feasibility, which suggests the importance of a human-analyst in the elicitation loop. 7 authors · Aug 30, 2024
35 AppWorld: A Controllable World of Apps and People for Benchmarking Interactive Coding Agents Autonomous agents that address day-to-day digital tasks (e.g., ordering groceries for a household), must not only operate multiple apps (e.g., notes, messaging, shopping app) via APIs, but also generate rich code with complex control flow in an iterative manner based on their interaction with the environment. However, existing benchmarks for tool use are inadequate, as they only cover tasks that require a simple sequence of API calls. To remedy this gap, we built AppWorld Engine, a high-quality execution environment (60K lines of code) of 9 day-to-day apps operable via 457 APIs and populated with realistic digital activities simulating the lives of ~100 fictitious users. We then created AppWorld Benchmark (40K lines of code), a suite of 750 natural, diverse, and challenging autonomous agent tasks requiring rich and interactive code generation. It supports robust programmatic evaluation with state-based unit tests, allowing for different ways of completing a task while also checking for unexpected changes, i.e., collateral damage. The state-of-the-art LLM, GPT-4o, solves only ~49% of our 'normal' tasks and ~30% of 'challenge' tasks, while other models solve at least 16% fewer. This highlights the benchmark's difficulty and AppWorld's potential to push the frontiers of interactive coding agents. The project website is available at https://appworld.dev/. 9 authors · Jul 26, 2024 4
- Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning Artificial intelligence (AI) is widely deployed to solve problems related to marketing attribution and budget optimization. However, AI models can be quite complex, and it can be difficult to understand model workings and insights without extensive implementation teams. In principle, recently developed large language models (LLMs), like GPT-4, can be deployed to provide marketing insights, reducing the time and effort required to make critical decisions. In practice, there are substantial challenges that need to be overcome to reliably use such models. We focus on domain-specific question-answering, SQL generation needed for data retrieval, and tabular analysis and show how a combination of semantic search, prompt engineering, and fine-tuning can be applied to dramatically improve the ability of LLMs to execute these tasks accurately. We compare both proprietary models, like GPT-4, and open-source models, like Llama-2-70b, as well as various embedding methods. These models are tested on sample use cases specific to marketing mix modeling and attribution. 4 authors · Apr 15, 2024