new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 24

BEATs: Audio Pre-Training with Acoustic Tokenizers

The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.

  • 7 authors
·
Dec 18, 2022

MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training

Self-supervised learning (SSL) has recently emerged as a promising paradigm for training generalisable models on large-scale data in the fields of vision, text, and speech. Although SSL has been proven effective in speech and audio, its application to music audio has yet to be thoroughly explored. This is primarily due to the distinctive challenges associated with modelling musical knowledge, particularly its tonal and pitched characteristics of music. To address this research gap, we propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. In our exploration, we identified a superior combination of teacher models, which outperforms conventional speech and audio approaches in terms of performance. This combination includes an acoustic teacher based on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and a musical teacher based on the Constant-Q Transform (CQT). These teachers effectively guide our student model, a BERT-style transformer encoder, to better model music audio. In addition, we introduce an in-batch noise mixture augmentation to enhance the representation robustness. Furthermore, we explore a wide range of settings to overcome the instability in acoustic language model pre-training, which allows our designed paradigm to scale from 95M to 330M parameters. Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attains state-of-the-art (SOTA) overall scores. The code and models are online: https://github.com/yizhilll/MERT.

  • 18 authors
·
May 31, 2023

neural concatenative singing voice conversion: rethinking concatenation-based approach for one-shot singing voice conversion

Any-to-any singing voice conversion is confronted with a significant challenge of ``timbre leakage'' issue caused by inadequate disentanglement between the content and the speaker timbre. To address this issue, this study introduces a novel neural concatenative singing voice conversion (NeuCoSVC) framework. The NeuCoSVC framework comprises a self-supervised learning (SSL) representation extractor, a neural harmonic signal generator, and a waveform synthesizer. Specifically, the SSL extractor condenses the audio into a sequence of fixed-dimensional SSL features. The harmonic signal generator produces both raw and filtered harmonic signals as the pitch information by leveraging a linear time-varying (LTV) filter. Finally, the audio generator reconstructs the audio waveform based on the SSL features, as well as the harmonic signals and the loudness information. During inference, the system performs voice conversion by substituting source SSL features with their nearest counterparts from a matching pool, which comprises SSL representations extracted from the target audio, while the raw harmonic signals and the loudness are extracted from the source audio and are kept unchanged. Since the utilized SSL features in the conversion stage are directly from the target audio, the proposed framework has great potential to address the ``timbre leakage'' issue caused by previous disentanglement-based approaches. Experimental results confirm that the proposed system delivers much better performance than the speaker embedding approach (disentanglement-based) in the context of one-shot SVC across intra-language, cross-language, and cross-domain evaluations.

  • 5 authors
·
Dec 8, 2023

AudioTrust: Benchmarking the Multifaceted Trustworthiness of Audio Large Language Models

The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.

  • 32 authors
·
May 22 2

Comparison of semi-supervised deep learning algorithms for audio classification

In this article, we adapted five recent SSL methods to the task of audio classification. The first two methods, namely Deep Co-Training (DCT) and Mean Teacher (MT), involve two collaborative neural networks. The three other algorithms, called MixMatch (MM), ReMixMatch (RMM), and FixMatch (FM), are single-model methods that rely primarily on data augmentation strategies. Using the Wide-ResNet-28-2 architecture in all our experiments, 10% of labeled data and the remaining 90% as unlabeled data for training, we first compare the error rates of the five methods on three standard benchmark audio datasets: Environmental Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands (GSC). In all but one cases, MM, RMM, and FM outperformed MT and DCT significantly, MM and RMM being the best methods in most experiments. On UBS8K and GSC, MM achieved 18.02% and 3.25% error rate (ER), respectively, outperforming models trained with 100% of the available labeled data, which reached 23.29% and 4.94%, respectively. RMM achieved the best results on ESC-10 (12.00% ER), followed by FM which reached 13.33%. Second, we explored adding the mixup augmentation, used in MM and RMM, to DCT, MT, and FM. In almost all cases, mixup brought consistent gains. For instance, on GSC, FM reached 4.44% and 3.31% ER without and with mixup. Our PyTorch code will be made available upon paper acceptance at https:// github. com/ Labbe ti/ SSLH.

  • 3 authors
·
Feb 16, 2021

Adversarial Speaker Disentanglement Using Unannotated External Data for Self-supervised Representation Based Voice Conversion

Nowadays, recognition-synthesis-based methods have been quite popular with voice conversion (VC). By introducing linguistics features with good disentangling characters extracted from an automatic speech recognition (ASR) model, the VC performance achieved considerable breakthroughs. Recently, self-supervised learning (SSL) methods trained with a large-scale unannotated speech corpus have been applied to downstream tasks focusing on the content information, which is suitable for VC tasks. However, a huge amount of speaker information in SSL representations degrades timbre similarity and the quality of converted speech significantly. To address this problem, we proposed a high-similarity any-to-one voice conversion method with the input of SSL representations. We incorporated adversarial training mechanisms in the synthesis module using external unannotated corpora. Two auxiliary discriminators were trained to distinguish whether a sequence of mel-spectrograms has been converted by the acoustic model and whether a sequence of content embeddings contains speaker information from external corpora. Experimental results show that our proposed method achieves comparable similarity and higher naturalness than the supervised method, which needs a huge amount of annotated corpora for training and is applicable to improve similarity for VC methods with other SSL representations as input.

  • 5 authors
·
May 16, 2023

When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs

As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.

  • 8 authors
·
Aug 5 2

UNFUSED: UNsupervised Finetuning Using SElf supervised Distillation

In this paper, we introduce UnFuSeD, a novel approach to leverage self-supervised learning and reduce the need for large amounts of labeled data for audio classification. Unlike prior works, which directly fine-tune a self-supervised pre-trained encoder on a target dataset, we use the encoder to generate pseudo-labels for unsupervised fine-tuning before the actual fine-tuning step. We first train an encoder using a novel self-supervised learning algorithm (SSL) on an unlabeled audio dataset. Then, we use that encoder to generate pseudo-labels on our target task dataset via clustering the extracted representations. These pseudo-labels are then used to guide self-distillation on a randomly initialized model, which we call unsupervised fine-tuning. Finally, the resultant encoder is then fine-tuned on our target task dataset. Through UnFuSeD, we propose the first system that moves away from generic SSL paradigms in literature, which pre-train and fine-tune the same encoder, and present a novel self-distillation-based system to leverage SSL pre-training for low-resource audio classification. In practice, UnFuSeD achieves state-of-the-art results on the LAPE Benchmark, significantly outperforming all our baselines. Additionally, UnFuSeD allows us to achieve this at a 40% reduction in the number of parameters over the previous state-of-the-art system. We make all our codes publicly available.

  • 4 authors
·
Mar 9, 2023

When Fine-Tuning is Not Enough: Lessons from HSAD on Hybrid and Adversarial Audio Spoof Detection

The rapid advancement of AI has enabled highly realistic speech synthesis and voice cloning, posing serious risks to voice authentication, smart assistants, and telecom security. While most prior work frames spoof detection as a binary task, real-world attacks often involve hybrid utterances that mix genuine and synthetic speech, making detection substantially more challenging. To address this gap, we introduce the Hybrid Spoofed Audio Dataset (HSAD), a benchmark containing 1,248 clean and 41,044 degraded utterances across four classes: human, cloned, zero-shot AI-generated, and hybrid audio. Each sample is annotated with spoofing method, speaker identity, and degradation metadata to enable fine-grained analysis. We evaluate six transformer-based models, including spectrogram encoders (MIT-AST, MattyB95-AST) and self-supervised waveform models (Wav2Vec2, HuBERT). Results reveal critical lessons: pretrained models overgeneralize and collapse under hybrid conditions; spoof-specific fine-tuning improves separability but struggles with unseen compositions; and dataset-specific adaptation on HSAD yields large performance gains (AST greater than 97 percent and F1 score is approximately 99 percent), though residual errors persist for complex hybrids. These findings demonstrate that fine-tuning alone is not sufficient-robust hybrid-aware benchmarks like HSAD are essential to expose calibration failures, model biases, and factors affecting spoof detection in adversarial environments. HSAD thus provides both a dataset and an analytic framework for building resilient and trustworthy voice authentication systems.

  • 5 authors
·
Sep 8

Towards robust audio spoofing detection: a detailed comparison of traditional and learned features

Automatic speaker verification, like every other biometric system, is vulnerable to spoofing attacks. Using only a few minutes of recorded voice of a genuine client of a speaker verification system, attackers can develop a variety of spoofing attacks that might trick such systems. Detecting these attacks using the audio cues present in the recordings is an important challenge. Most existing spoofing detection systems depend on knowing the used spoofing technique. With this research, we aim at overcoming this limitation, by examining robust audio features, both traditional and those learned through an autoencoder, that are generalizable over different types of replay spoofing. Furthermore, we provide a detailed account of all the steps necessary in setting up state-of-the-art audio feature detection, pre-, and postprocessing, such that the (non-audio expert) machine learning researcher can implement such systems. Finally, we evaluate the performance of our robust replay speaker detection system with a wide variety and different combinations of both extracted and machine learned audio features on the `out in the wild' ASVspoof 2017 dataset. This dataset contains a variety of new spoofing configurations. Since our focus is on examining which features will ensure robustness, we base our system on a traditional Gaussian Mixture Model-Universal Background Model. We then systematically investigate the relative contribution of each feature set. The fused models, based on both the known audio features and the machine learned features respectively, have a comparable performance with an Equal Error Rate (EER) of 12. The final best performing model, which obtains an EER of 10.8, is a hybrid model that contains both known and machine learned features, thus revealing the importance of incorporating both types of features when developing a robust spoofing prediction model.

  • 5 authors
·
May 28, 2019

Audio-Language Models for Audio-Centric Tasks: A survey

Audio-Language Models (ALMs), which are trained on audio-text data, focus on the processing, understanding, and reasoning of sounds. Unlike traditional supervised learning approaches learning from predefined labels, ALMs utilize natural language as a supervision signal, which is more suitable for describing complex real-world audio recordings. ALMs demonstrate strong zero-shot capabilities and can be flexibly adapted to diverse downstream tasks. These strengths not only enhance the accuracy and generalization of audio processing tasks but also promote the development of models that more closely resemble human auditory perception and comprehension. Recent advances in ALMs have positioned them at the forefront of computer audition research, inspiring a surge of efforts to advance ALM technologies. Despite rapid progress in the field of ALMs, there is still a notable lack of systematic surveys that comprehensively organize and analyze developments. In this paper, we present a comprehensive review of ALMs with a focus on general audio tasks, aiming to fill this gap by providing a structured and holistic overview of ALMs. Specifically, we cover: (1) the background of computer audition and audio-language models; (2) the foundational aspects of ALMs, including prevalent network architectures, training objectives, and evaluation methods; (3) foundational pre-training and audio-language pre-training approaches; (4) task-specific fine-tuning, multi-task tuning and agent systems for downstream applications; (5) datasets and benchmarks; and (6) current challenges and future directions. Our review provides a clear technical roadmap for researchers to understand the development and future trends of existing technologies, offering valuable references for implementation in real-world scenarios.

  • 5 authors
·
Jan 25

Audio Jailbreak: An Open Comprehensive Benchmark for Jailbreaking Large Audio-Language Models

The rise of Large Audio Language Models (LAMs) brings both potential and risks, as their audio outputs may contain harmful or unethical content. However, current research lacks a systematic, quantitative evaluation of LAM safety especially against jailbreak attacks, which are challenging due to the temporal and semantic nature of speech. To bridge this gap, we introduce AJailBench, the first benchmark specifically designed to evaluate jailbreak vulnerabilities in LAMs. We begin by constructing AJailBench-Base, a dataset of 1,495 adversarial audio prompts spanning 10 policy-violating categories, converted from textual jailbreak attacks using realistic text to speech synthesis. Using this dataset, we evaluate several state-of-the-art LAMs and reveal that none exhibit consistent robustness across attacks. To further strengthen jailbreak testing and simulate more realistic attack conditions, we propose a method to generate dynamic adversarial variants. Our Audio Perturbation Toolkit (APT) applies targeted distortions across time, frequency, and amplitude domains. To preserve the original jailbreak intent, we enforce a semantic consistency constraint and employ Bayesian optimization to efficiently search for perturbations that are both subtle and highly effective. This results in AJailBench-APT, an extended dataset of optimized adversarial audio samples. Our findings demonstrate that even small, semantically preserved perturbations can significantly reduce the safety performance of leading LAMs, underscoring the need for more robust and semantically aware defense mechanisms.

SSAMBA: Self-Supervised Audio Representation Learning with Mamba State Space Model

Transformers have revolutionized deep learning across various tasks, including audio representation learning, due to their powerful modeling capabilities. However, they often suffer from quadratic complexity in both GPU memory usage and computational inference time, affecting their efficiency. Recently, state space models (SSMs) like Mamba have emerged as a promising alternative, offering a more efficient approach by avoiding these complexities. Given these advantages, we explore the potential of SSM-based models in audio tasks. In this paper, we introduce Self-Supervised Audio Mamba (SSAMBA), the first self-supervised, attention-free, and SSM-based model for audio representation learning. SSAMBA leverages the bidirectional Mamba to capture complex audio patterns effectively. We incorporate a self-supervised pretraining framework that optimizes both discriminative and generative objectives, enabling the model to learn robust audio representations from large-scale, unlabeled datasets. We evaluated SSAMBA on various tasks such as audio classification, keyword spotting, and speaker identification. Our results demonstrate that SSAMBA outperforms the Self-Supervised Audio Spectrogram Transformer (SSAST) in most tasks. Notably, SSAMBA is approximately 92.7% faster in batch inference speed and 95.4% more memory-efficient than SSAST for the tiny model size with an input token size of 22k. These efficiency gains, combined with superior performance, underscore the effectiveness of SSAMBA's architectural innovation, making it a compelling choice for a wide range of audio processing applications.

  • 4 authors
·
May 20, 2024

Towards Reliable Audio Deepfake Attribution and Model Recognition: A Multi-Level Autoencoder-Based Framework

The proliferation of audio deepfakes poses a growing threat to trust in digital communications. While detection methods have advanced, attributing audio deepfakes to their source models remains an underexplored yet crucial challenge. In this paper we introduce LAVA (Layered Architecture for Voice Attribution), a hierarchical framework for audio deepfake detection and model recognition that leverages attention-enhanced latent representations extracted by a convolutional autoencoder trained solely on fake audio. Two specialized classifiers operate on these features: Audio Deepfake Attribution (ADA), which identifies the generation technology, and Audio Deepfake Model Recognition (ADMR), which recognize the specific generative model instance. To improve robustness under open-set conditions, we incorporate confidence-based rejection thresholds. Experiments on ASVspoof2021, FakeOrReal, and CodecFake show strong performance: the ADA classifier achieves F1-scores over 95% across all datasets, and the ADMR module reaches 96.31% macro F1 across six classes. Additional tests on unseen attacks from ASVpoof2019 LA and error propagation analysis confirm LAVA's robustness and reliability. The framework advances the field by introducing a supervised approach to deepfake attribution and model recognition under open-set conditions, validated on public benchmarks and accompanied by publicly released models and code. Models and code are available at https://www.github.com/adipiz99/lava-framework.

  • 4 authors
·
Aug 4

Sparks of Large Audio Models: A Survey and Outlook

This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, Large Audio Models, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding Foundational Large Audio Models, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of Large Audio Models with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.

  • 11 authors
·
Aug 24, 2023

Self-supervised Audio Teacher-Student Transformer for Both Clip-level and Frame-level Tasks

Self-supervised learning (SSL) has emerged as a popular approach for learning audio representations. One goal of audio self-supervised pre-training is to transfer knowledge to downstream audio tasks, generally including clip-level and frame-level tasks. While frame-level tasks are important for fine-grained acoustic scene/event understanding, prior studies primarily evaluate on clip-level downstream tasks. In order to tackle both clip-level and frame-level tasks, this paper proposes Audio Teacher-Student Transformer (ATST), with a clip-level version (named ATST-Clip) and a frame-level version (named ATST-Frame), responsible for learning clip-level and frame-level representations, respectively. Both methods use a Transformer encoder and a teacher-student training scheme. We have carefully designed the view creation strategy for ATST-Clip and ATST-Frame. Specifically, ATST-Clip uses segment-wise data augmentations, and ATST-Frame integrates frame-wise data augmentations and masking. Experimental results show that our ATST-Frame model obtains state-of-the-art (SOTA) performances on most of the clip-level and frame-level downstream tasks. Especially, it outperforms other models by a large margin on the frame-level sound event detection task. In addition, the performance can be further improved by combining the two models through knowledge distillation. Our code is available online.

  • 3 authors
·
Jun 7, 2023

Measuring the Robustness of Audio Deepfake Detectors

Deepfakes have become a universal and rapidly intensifying concern of generative AI across various media types such as images, audio, and videos. Among these, audio deepfakes have been of particular concern due to the ease of high-quality voice synthesis and distribution via platforms such as social media and robocalls. Consequently, detecting audio deepfakes plays a critical role in combating the growing misuse of AI-synthesized speech. However, real-world scenarios often introduce various audio corruptions, such as noise, modification, and compression, that may significantly impact detection performance. This work systematically evaluates the robustness of 10 audio deepfake detection models against 16 common corruptions, categorized into noise perturbation, audio modification, and compression. Using both traditional deep learning models and state-of-the-art foundation models, we make four unique observations. First, our findings show that while most models demonstrate strong robustness to noise, they are notably more vulnerable to modifications and compression, especially when neural codecs are applied. Second, speech foundation models generally outperform traditional models across most scenarios, likely due to their self-supervised learning paradigm and large-scale pre-training. Third, our results show that increasing model size improves robustness, albeit with diminishing returns. Fourth, we demonstrate how targeted data augmentation during training can enhance model resilience to unseen perturbations. A case study on political speech deepfakes highlights the effectiveness of foundation models in achieving high accuracy under real-world conditions. These findings emphasize the importance of developing more robust detection frameworks to ensure reliability in practical deployment settings.

  • 3 authors
·
Mar 21

AHELM: A Holistic Evaluation of Audio-Language Models

Evaluations of audio-language models (ALMs) -- multimodal models that take interleaved audio and text as input and output text -- are hindered by the lack of standardized benchmarks; most benchmarks measure only one or two capabilities and omit evaluative aspects such as fairness or safety. Furthermore, comparison across models is difficult as separate evaluations test a limited number of models and use different prompting methods and inference parameters. To address these shortfalls, we introduce AHELM, a benchmark that aggregates various datasets -- including 2 new synthetic audio-text datasets called PARADE, which evaluates the ALMs on avoiding stereotypes, and CoRe-Bench, which measures reasoning over conversational audio through inferential multi-turn question answering -- to holistically measure the performance of ALMs across 10 aspects we have identified as important to the development and usage of ALMs: audio perception, knowledge, reasoning, emotion detection, bias, fairness, multilinguality, robustness, toxicity, and safety. We also standardize the prompts, inference parameters, and evaluation metrics to ensure equitable comparisons across models. We test 14 open-weight and closed-API ALMs from 3 developers and 3 additional simple baseline systems each consisting of an automatic speech recognizer and a language model. Our results show that while Gemini 2.5 Pro ranks top in 5 out of 10 aspects, it exhibits group unfairness (p=0.01) on ASR tasks whereas most of the other models do not. We also find that the baseline systems perform reasonably well on AHELM, with one ranking 5th overall despite having only speech-to-text capabilities. For transparency, all raw prompts, model generations, and outputs are available on our website at https://crfm.stanford.edu/helm/audio/v1.0.0. AHELM is intended to be a living benchmark and new datasets and models will be added over time.

  • 9 authors
·
Aug 29 3

HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec

Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec}

  • 6 authors
·
May 4, 2023 1

Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models

Audio language models can understand audio inputs and perform a range of audio-related tasks based on instructions, such as speech recognition and audio captioning, where the instructions are usually textual prompts. Audio language models are mostly initialized from pre-trained audio encoders and large language models (LLMs). Although these pre-trained components were developed to support multiple languages, audio-language models are trained predominantly on English data, which may limit their usability to only English instructions or English speech inputs. First, this paper examines the performance of existing audio language models in an underserved language using Thai as an example. This paper demonstrates that, despite being built on multilingual backbones, audio language models do not exhibit cross-lingual emergent abilities to low-resource languages. Second, this paper studies data mixture for developing audio language models that are optimized for a target language as well as English. In addition. this paper integrates audio comprehension and speech instruction-following capabilities into a single unified model. Our experiments provide insights into data mixture for enhancing instruction-following capabilities in both a low-resource language and English. Our model, Typhoon-Audio, outperforms existing open-source audio language models by a considerable margin, and it is comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai languages.

  • 5 authors
·
Sep 17, 2024

Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model

Recent advancements in audio generation have been significantly propelled by the capabilities of Large Language Models (LLMs). The existing research on audio LLM has primarily focused on enhancing the architecture and scale of audio language models, as well as leveraging larger datasets, and generally, acoustic codecs, such as EnCodec, are used for audio tokenization. However, these codecs were originally designed for audio compression, which may lead to suboptimal performance in the context of audio LLM. Our research aims to address the shortcomings of current audio LLM codecs, particularly their challenges in maintaining semantic integrity in generated audio. For instance, existing methods like VALL-E, which condition acoustic token generation on text transcriptions, often suffer from content inaccuracies and elevated word error rates (WER) due to semantic misinterpretations of acoustic tokens, resulting in word skipping and errors. To overcome these issues, we propose a straightforward yet effective approach called X-Codec. X-Codec incorporates semantic features from a pre-trained semantic encoder before the Residual Vector Quantization (RVQ) stage and introduces a semantic reconstruction loss after RVQ. By enhancing the semantic ability of the codec, X-Codec significantly reduces WER in speech synthesis tasks and extends these benefits to non-speech applications, including music and sound generation. Our experiments in text-to-speech, music continuation, and text-to-sound tasks demonstrate that integrating semantic information substantially improves the overall performance of language models in audio generation. Our code and demo are available (Demo: https://x-codec-audio.github.io Code: https://github.com/zhenye234/xcodec)

  • 12 authors
·
Aug 30, 2024

UniTTS: An end-to-end TTS system without decoupling of acoustic and semantic information

The emergence of multi-codebook neutral audio codecs such as Residual Vector Quantization (RVQ) and Group Vector Quantization (GVQ) has significantly advanced Large-Language-Model (LLM) based Text-to-Speech (TTS) systems. These codecs are crucial in separating semantic and acoustic information while efficiently harnessing semantic priors. However, since semantic and acoustic information cannot be fully aligned, a significant drawback of these methods when applied to LLM-based TTS is that large language models may have limited access to comprehensive audio information. To address this limitation, we propose DistilCodec and UniTTS, which collectively offer the following advantages: 1) This method can distill a multi-codebook audio codec into a single-codebook audio codec with 32,768 codes while achieving a near 100\% utilization. 2) As DistilCodec does not employ a semantic alignment scheme, a large amount of high-quality unlabeled audio (such as audiobooks with sound effects, songs, etc.) can be incorporated during training, further expanding data diversity and broadening its applicability. 3) Leveraging the comprehensive audio information modeling of DistilCodec, we integrated three key tasks into UniTTS's pre-training framework: audio modality autoregression, text modality autoregression, and speech-text cross-modal autoregression. This allows UniTTS to accept interleaved text and speech/audio prompts while substantially preserving LLM's text capabilities. 4) UniTTS employs a three-stage training process: Pre-Training, Supervised Fine-Tuning (SFT), and Alignment. Source code and model checkpoints are publicly available at https://github.com/IDEA-Emdoor-Lab/UniTTS and https://github.com/IDEA-Emdoor-Lab/DistilCodec.

  • 6 authors
·
May 22

It's Raw! Audio Generation with State-Space Models

Developing architectures suitable for modeling raw audio is a challenging problem due to the high sampling rates of audio waveforms. Standard sequence modeling approaches like RNNs and CNNs have previously been tailored to fit the demands of audio, but the resultant architectures make undesirable computational tradeoffs and struggle to model waveforms effectively. We propose SaShiMi, a new multi-scale architecture for waveform modeling built around the recently introduced S4 model for long sequence modeling. We identify that S4 can be unstable during autoregressive generation, and provide a simple improvement to its parameterization by drawing connections to Hurwitz matrices. SaShiMi yields state-of-the-art performance for unconditional waveform generation in the autoregressive setting. Additionally, SaShiMi improves non-autoregressive generation performance when used as the backbone architecture for a diffusion model. Compared to prior architectures in the autoregressive generation setting, SaShiMi generates piano and speech waveforms which humans find more musical and coherent respectively, e.g. 2x better mean opinion scores than WaveNet on an unconditional speech generation task. On a music generation task, SaShiMi outperforms WaveNet on density estimation and speed at both training and inference even when using 3x fewer parameters. Code can be found at https://github.com/HazyResearch/state-spaces and samples at https://hazyresearch.stanford.edu/sashimi-examples.

  • 4 authors
·
Feb 19, 2022

SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound

Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.

  • 6 authors
·
Apr 30, 2024 1

AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension

Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as Automatic Speech Recognition (ASR), and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement. In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research.

  • 11 authors
·
Feb 12, 2024

Making Acoustic Side-Channel Attacks on Noisy Keyboards Viable with LLM-Assisted Spectrograms' "Typo" Correction

The large integration of microphones into devices increases the opportunities for Acoustic Side-Channel Attacks (ASCAs), as these can be used to capture keystrokes' audio signals that might reveal sensitive information. However, the current State-Of-The-Art (SOTA) models for ASCAs, including Convolutional Neural Networks (CNNs) and hybrid models, such as CoAtNet, still exhibit limited robustness under realistic noisy conditions. Solving this problem requires either: (i) an increased model's capacity to infer contextual information from longer sequences, allowing the model to learn that an initially noisily typed word is the same as a futurely collected non-noisy word, or (ii) an approach to fix misidentified information from the contexts, as one does not type random words, but the ones that best fit the conversation context. In this paper, we demonstrate that both strategies are viable and complementary solutions for making ASCAs practical. We observed that no existing solution leverages advanced transformer architectures' power for these tasks and propose that: (i) Visual Transformers (VTs) are the candidate solutions for capturing long-term contextual information and (ii) transformer-powered Large Language Models (LLMs) are the candidate solutions to fix the ``typos'' (mispredictions) the model might make. Thus, we here present the first-of-its-kind approach that integrates VTs and LLMs for ASCAs. We first show that VTs achieve SOTA performance in classifying keystrokes when compared to the previous CNN benchmark. Second, we demonstrate that LLMs can mitigate the impact of real-world noise. Evaluations on the natural sentences revealed that: (i) incorporating LLMs (e.g., GPT-4o) in our ASCA pipeline boosts the performance of error-correction tasks; and (ii) the comparable performance can be attained by a lightweight, fine-tuned smaller LLM (67 times smaller than GPT-4o), using...

  • 4 authors
·
Apr 15

PITCH: AI-assisted Tagging of Deepfake Audio Calls using Challenge-Response

The rise of AI voice-cloning technology, particularly audio Real-time Deepfakes (RTDFs), has intensified social engineering attacks by enabling real-time voice impersonation that bypasses conventional enrollment-based authentication. To address this, we propose PITCH, a robust challenge-response method to detect and tag interactive deepfake audio calls. We developed a comprehensive taxonomy of audio challenges based on the human auditory system, linguistics, and environmental factors, yielding 20 prospective challenges. These were tested against leading voice-cloning systems using a novel dataset comprising 18,600 original and 1.6 million deepfake samples from 100 users. PITCH's prospective challenges enhanced machine detection capabilities to 88.7% AUROC score on the full unbalanced dataset, enabling us to shortlist 10 functional challenges that balance security and usability. For human evaluation and subsequent analyses, we filtered a challenging, balanced subset. On this subset, human evaluators independently scored 72.6% accuracy, while machines achieved 87.7%. Acknowledging that call environments require higher human control, we aided call receivers in making decisions with them using machines. Our solution uses an early warning system to tag suspicious incoming calls as "Deepfake-likely." Contrary to prior findings, we discovered that integrating human intuition with machine precision offers complementary advantages. Our solution gave users maximum control and boosted detection accuracy to 84.5%. Evidenced by this jump in accuracy, PITCH demonstrated the potential for AI-assisted pre-screening in call verification processes, offering an adaptable and usable approach to combat real-time voice-cloning attacks. Code to reproduce and access data at https://github.com/mittalgovind/PITCH-Deepfakes.

  • 5 authors
·
Feb 28, 2024

Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking

Respiratory audio, such as coughing and breathing sounds, has predictive power for a wide range of healthcare applications, yet is currently under-explored. The main problem for those applications arises from the difficulty in collecting large labeled task-specific data for model development. Generalizable respiratory acoustic foundation models pretrained with unlabeled data would offer appealing advantages and possibly unlock this impasse. However, given the safety-critical nature of healthcare applications, it is pivotal to also ensure openness and replicability for any proposed foundation model solution. To this end, we introduce OPERA, an OPEn Respiratory Acoustic foundation model pretraining and benchmarking system, as the first approach answering this need. We curate large-scale respiratory audio datasets (~136K samples, 440 hours), pretrain three pioneering foundation models, and build a benchmark consisting of 19 downstream respiratory health tasks for evaluation. Our pretrained models demonstrate superior performance (against existing acoustic models pretrained with general audio on 16 out of 19 tasks) and generalizability (to unseen datasets and new respiratory audio modalities). This highlights the great promise of respiratory acoustic foundation models and encourages more studies using OPERA as an open resource to accelerate research on respiratory audio for health. The system is accessible from https://github.com/evelyn0414/OPERA.

  • 9 authors
·
Jun 23, 2024

Autoregressive Diffusion Transformer for Text-to-Speech Synthesis

Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ .

  • 5 authors
·
Jun 8, 2024

VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing

The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ .