1 EHRFL: Federated Learning Framework for Heterogeneous EHRs and Precision-guided Selection of Participating Clients In this study, we provide solutions to two practical yet overlooked scenarios in federated learning for electronic health records (EHRs): firstly, we introduce EHRFL, a framework that facilitates federated learning across healthcare institutions with distinct medical coding systems and database schemas using text-based linearization of EHRs. Secondly, we focus on a scenario where a single healthcare institution initiates federated learning to build a model tailored for itself, in which the number of clients must be optimized in order to reduce expenses incurred by the host. For selecting participating clients, we present a novel precision-based method, leveraging data latents to identify suitable participants for the institution. Our empirical results show that EHRFL effectively enables federated learning across hospitals with different EHR systems. Furthermore, our results demonstrate the efficacy of our precision-based method in selecting reduced number of participating clients without compromising model performance, resulting in lower operational costs when constructing institution-specific models. We believe this work lays a foundation for the broader adoption of federated learning on EHRs. 4 authors · Apr 20, 2024
- When Do Curricula Work in Federated Learning? An oft-cited open problem of federated learning is the existence of data heterogeneity at the clients. One pathway to understanding the drastic accuracy drop in federated learning is by scrutinizing the behavior of the clients' deep models on data with different levels of "difficulty", which has been left unaddressed. In this paper, we investigate a different and rarely studied dimension of FL: ordered learning. Specifically, we aim to investigate how ordered learning principles can contribute to alleviating the heterogeneity effects in FL. We present theoretical analysis and conduct extensive empirical studies on the efficacy of orderings spanning three kinds of learning: curriculum, anti-curriculum, and random curriculum. We find that curriculum learning largely alleviates non-IIDness. Interestingly, the more disparate the data distributions across clients the more they benefit from ordered learning. We provide analysis explaining this phenomenon, specifically indicating how curriculum training appears to make the objective landscape progressively less convex, suggesting fast converging iterations at the beginning of the training procedure. We derive quantitative results of convergence for both convex and nonconvex objectives by modeling the curriculum training on federated devices as local SGD with locally biased stochastic gradients. Also, inspired by ordered learning, we propose a novel client selection technique that benefits from the real-world disparity in the clients. Our proposed approach to client selection has a synergic effect when applied together with ordered learning in FL. 8 authors · Dec 24, 2022 1
- On Model Protection in Federated Learning against Eavesdropping Attacks In this study, we investigate the protection offered by federated learning algorithms against eavesdropping adversaries. In our model, the adversary is capable of intercepting model updates transmitted from clients to the server, enabling it to create its own estimate of the model. Unlike previous research, which predominantly focuses on safeguarding client data, our work shifts attention protecting the client model itself. Through a theoretical analysis, we examine how various factors, such as the probability of client selection, the structure of local objective functions, global aggregation at the server, and the eavesdropper's capabilities, impact the overall level of protection. We further validate our findings through numerical experiments, assessing the protection by evaluating the model accuracy achieved by the adversary. Finally, we compare our results with methods based on differential privacy, underscoring their limitations in this specific context. 2 authors · Apr 2
- Federated Instruction Tuning of LLMs with Domain Coverage Augmentation Federated Domain-specific Instruction Tuning (FedDIT) utilizes limited cross-client private data together with server-side public data for instruction augmentation, ultimately boosting model performance within specific domains. To date, the factors affecting FedDIT remain unclear, and existing instruction augmentation methods primarily focus on the centralized setting without considering distributed environments. Our experiments reveal that the cross-client domain coverage, rather than data heterogeneity, drives model performance in FedDIT. In response, we propose FedDCA, which optimizes domain coverage through greedy client center selection and retrieval-based augmentation. For client-side computational efficiency and system scalability, FedDCA^*, the variant of FedDCA, utilizes heterogeneous encoders with server-side feature alignment. Extensive experiments across four distinct domains (code, medical, financial, and mathematical) substantiate the effectiveness of both methods. Additionally, we investigate privacy preservation against memory extraction attacks utilizing various amounts of public data. Results show that there is no significant correlation between the volume of public data and the privacy-preserving capability. However, as the fine-tuning rounds increase, the risk of privacy leakage reduces or converges. 4 authors · Sep 30, 2024
- FedSelect: Customized Selection of Parameters for Fine-Tuning during Personalized Federated Learning Recent advancements in federated learning (FL) seek to increase client-level performance by fine-tuning client parameters on local data or personalizing architectures for the local task. Existing methods for such personalization either prune a global model or fine-tune a global model on a local client distribution. However, these existing methods either personalize at the expense of retaining important global knowledge, or predetermine network layers for fine-tuning, resulting in suboptimal storage of global knowledge within client models. Enlightened by the lottery ticket hypothesis, we first introduce a hypothesis for finding optimal client subnetworks to locally fine-tune while leaving the rest of the parameters frozen. We then propose a novel FL framework, FedSelect, using this procedure that directly personalizes both client subnetwork structure and parameters, via the simultaneous discovery of optimal parameters for personalization and the rest of parameters for global aggregation during training. We show that this method achieves promising results on CIFAR-10. 5 authors · Jun 22, 2023