Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLanguage Confusion Gate: Language-Aware Decoding Through Model Self-Distillation
Large language models (LLMs) often experience language confusion, which is the unintended mixing of languages during text generation. Current solutions to this problem either necessitate model retraining or cannot differentiate between harmful confusion and acceptable code-switching. This paper introduces the Language Confusion Gate (LCG), a lightweight, plug-in solution that filters tokens during decoding without altering the base LLM. The LCG is trained using norm-adjusted self-distillation to predict appropriate language families and apply masking only when needed. Our method is based on the findings that language confusion is infrequent, correct-language tokens are usually among the top predictions, and output token embedding norms are larger for high-resource languages, which biases sampling. When evaluated across various models, including Qwen3, GPT-OSS, Gemma3, Llama3.1, LCG decreases language confusion significantly, often by an order of magnitude, without negatively impacting task performance. Code is available at https://github.com/collinzrj/language_confusion_gate.
ConfuGuard: Using Metadata to Detect Active and Stealthy Package Confusion Attacks Accurately and at Scale
Package confusion attacks such as typosquatting threaten software supply chains. Attackers make packages with names that syntactically or semantically resemble legitimate ones, tricking engineers into installing malware. While prior work has developed defenses against package confusions in some software package registries, notably NPM, PyPI, and RubyGems, gaps remain: high false-positive rates; generalization to more software package ecosystems; and insights from real-world deployment. In this work, we introduce ConfuGuard, a solution designed to address the challenges posed by package confusion threats. We begin by presenting the first empirical analysis of benign signals derived from prior package confusion data, uncovering their threat patterns, engineering practices, and measurable attributes. We observed that 13.3% of real package confusion attacks are initially stealthy, so we take that into consideration and refined the definitions. Building on state-of-the-art approaches, we extend support from three to six software package registries, and leverage package metadata to distinguish benign packages. Our approach significantly reduces 64% false-positive (from 77% to 13%), with acceptable additional overhead to filter out benign packages by analyzing the package metadata. ConfuGuard is in production at our industry partner, whose analysts have already confirmed 301 packages detected by ConfuGuard as real attacks. We share lessons learned from production and provide insights to researchers.
I'm Spartacus, No, I'm Spartacus: Measuring and Understanding LLM Identity Confusion
Large Language Models (LLMs) excel in diverse tasks such as text generation, data analysis, and software development, making them indispensable across domains like education, business, and creative industries. However, the rapid proliferation of LLMs (with over 560 companies developing or deploying them as of 2024) has raised concerns about their originality and trustworthiness. A notable issue, termed identity confusion, has emerged, where LLMs misrepresent their origins or identities. This study systematically examines identity confusion through three research questions: (1) How prevalent is identity confusion among LLMs? (2) Does it arise from model reuse, plagiarism, or hallucination? (3) What are the security and trust-related impacts of identity confusion? To address these, we developed an automated tool combining documentation analysis, self-identity recognition testing, and output similarity comparisons--established methods for LLM fingerprinting--and conducted a structured survey via Credamo to assess its impact on user trust. Our analysis of 27 LLMs revealed that 25.93% exhibit identity confusion. Output similarity analysis confirmed that these issues stem from hallucinations rather than replication or reuse. Survey results further highlighted that identity confusion significantly erodes trust, particularly in critical tasks like education and professional use, with declines exceeding those caused by logical errors or inconsistencies. Users attributed these failures to design flaws, incorrect training data, and perceived plagiarism, underscoring the systemic risks posed by identity confusion to LLM reliability and trustworthiness.
The Topic Confusion Task: A Novel Scenario for Authorship Attribution
Authorship attribution is the problem of identifying the most plausible author of an anonymous text from a set of candidate authors. Researchers have investigated same-topic and cross-topic scenarios of authorship attribution, which differ according to whether new, unseen topics are used in the testing phase. However, neither scenario allows us to explain whether errors are caused by a failure to capture authorship writing style or by a topic shift. Motivated by this, we propose the topic confusion task where we switch the author-topic configuration between the training and testing sets. This setup allows us to distinguish two types of errors: those caused by the topic shift and those caused by the features' inability to capture the writing styles. We show that stylometric features with part-of-speech tags are the least susceptible to topic variations. We further show that combining them with other features leads to significantly lower topic confusion and higher attribution accuracy. Finally, we show that pretrained language models such as BERT and RoBERTa perform poorly on this task and are surpassed by simple features such as word-level n-grams.
Resolving Multi-Condition Confusion for Finetuning-Free Personalized Image Generation
Personalized text-to-image generation methods can generate customized images based on the reference images, which have garnered wide research interest. Recent methods propose a finetuning-free approach with a decoupled cross-attention mechanism to generate personalized images requiring no test-time finetuning. However, when multiple reference images are provided, the current decoupled cross-attention mechanism encounters the object confusion problem and fails to map each reference image to its corresponding object, thereby seriously limiting its scope of application. To address the object confusion problem, in this work we investigate the relevance of different positions of the latent image features to the target object in diffusion model, and accordingly propose a weighted-merge method to merge multiple reference image features into the corresponding objects. Next, we integrate this weighted-merge method into existing pre-trained models and continue to train the model on a multi-object dataset constructed from the open-sourced SA-1B dataset. To mitigate object confusion and reduce training costs, we propose an object quality score to estimate the image quality for the selection of high-quality training samples. Furthermore, our weighted-merge training framework can be employed on single-object generation when a single object has multiple reference images. The experiments verify that our method achieves superior performance to the state-of-the-arts on the Concept101 dataset and DreamBooth dataset of multi-object personalized image generation, and remarkably improves the performance on single-object personalized image generation. Our code is available at https://github.com/hqhQAQ/MIP-Adapter.
Reducing language context confusion for end-to-end code-switching automatic speech recognition
Code-switching deals with alternative languages in communication process. Training end-to-end (E2E) automatic speech recognition (ASR) systems for code-switching is especially challenging as code-switching training data are always insufficient to combat the increased multilingual context confusion due to the presence of more than one language. We propose a language-related attention mechanism to reduce multilingual context confusion for the E2E code-switching ASR model based on the Equivalence Constraint (EC) Theory. The linguistic theory requires that any monolingual fragment that occurs in the code-switching sentence must occur in one of the monolingual sentences. The theory establishes a bridge between monolingual data and code-switching data. We leverage this linguistics theory to design the code-switching E2E ASR model. The proposed model efficiently transfers language knowledge from rich monolingual data to improve the performance of the code-switching ASR model. We evaluate our model on ASRU 2019 Mandarin-English code-switching challenge dataset. Compared to the baseline model, our proposed model achieves a 17.12% relative error reduction.
Flexible Visual Recognition by Evidential Modeling of Confusion and Ignorance
In real-world scenarios, typical visual recognition systems could fail under two major causes, i.e., the misclassification between known classes and the excusable misbehavior on unknown-class images. To tackle these deficiencies, flexible visual recognition should dynamically predict multiple classes when they are unconfident between choices and reject making predictions when the input is entirely out of the training distribution. Two challenges emerge along with this novel task. First, prediction uncertainty should be separately quantified as confusion depicting inter-class uncertainties and ignorance identifying out-of-distribution samples. Second, both confusion and ignorance should be comparable between samples to enable effective decision-making. In this paper, we propose to model these two sources of uncertainty explicitly with the theory of Subjective Logic. Regarding recognition as an evidence-collecting process, confusion is then defined as conflicting evidence, while ignorance is the absence of evidence. By predicting Dirichlet concentration parameters for singletons, comprehensive subjective opinions, including confusion and ignorance, could be achieved via further evidence combinations. Through a series of experiments on synthetic data analysis, visual recognition, and open-set detection, we demonstrate the effectiveness of our methods in quantifying two sources of uncertainties and dealing with flexible recognition.
Recovering Top-Two Answers and Confusion Probability in Multi-Choice Crowdsourcing
Crowdsourcing has emerged as an effective platform for labeling large amounts of data in a cost- and time-efficient manner. Most previous work has focused on designing an efficient algorithm to recover only the ground-truth labels of the data. In this paper, we consider multi-choice crowdsourcing tasks with the goal of recovering not only the ground truth, but also the most confusing answer and the confusion probability. The most confusing answer provides useful information about the task by revealing the most plausible answer other than the ground truth and how plausible it is. To theoretically analyze such scenarios, we propose a model in which there are the top two plausible answers for each task, distinguished from the rest of the choices. Task difficulty is quantified by the probability of confusion between the top two, and worker reliability is quantified by the probability of giving an answer among the top two. Under this model, we propose a two-stage inference algorithm to infer both the top two answers and the confusion probability. We show that our algorithm achieves the minimax optimal convergence rate. We conduct both synthetic and real data experiments and demonstrate that our algorithm outperforms other recent algorithms. We also show the applicability of our algorithms in inferring the difficulty of tasks and in training neural networks with top-two soft labels.
This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology
The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus.
Hiding Text in Large Language Models: Introducing Unconditional Token Forcing Confusion
With the help of simple fine-tuning, one can artificially embed hidden text into large language models (LLMs). This text is revealed only when triggered by a specific query to the LLM. Two primary applications are LLM fingerprinting and steganography. In the context of LLM fingerprinting, a unique text identifier (fingerprint) is embedded within the model to verify licensing compliance. In the context of steganography, the LLM serves as a carrier for hidden messages that can be disclosed through a designated trigger. Our work demonstrates that embedding hidden text in the LLM via fine-tuning, though seemingly secure due to the vast number of potential triggers (any sequence of characters or tokens could serve as a trigger), is susceptible to extraction through analysis of the LLM's output decoding process. We propose a novel approach to extraction called Unconditional Token Forcing. It is premised on the hypothesis that iteratively feeding each token from the LLM's vocabulary into the model should reveal sequences with abnormally high token probabilities, indicating potential embedded text candidates. Additionally, our experiments show that when the first token of a hidden fingerprint is used as an input, the LLM not only produces an output sequence with high token probabilities, but also repetitively generates the fingerprint itself. We also present a method to hide text in such a way that it is resistant to Unconditional Token Forcing, which we named Unconditional Token Forcing Confusion.
SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection
Confusion and forgetting of object classes have been challenges of prime interest in Few-Shot Object Detection (FSOD). To overcome these pitfalls in metric learning based FSOD techniques, we introduce a novel Submodular Mutual Information Learning (SMILe) framework which adopts combinatorial mutual information functions to enforce the creation of tighter and discriminative feature clusters in FSOD. Our proposed approach generalizes to several existing approaches in FSOD, agnostic of the backbone architecture demonstrating elevated performance gains. A paradigm shift from instance based objective functions to combinatorial objectives in SMILe naturally preserves the diversity within an object class resulting in reduced forgetting when subjected to few training examples. Furthermore, the application of mutual information between the already learnt (base) and newly added (novel) objects ensures sufficient separation between base and novel classes, minimizing the effect of class confusion. Experiments on popular FSOD benchmarks, PASCAL-VOC and MS-COCO show that our approach generalizes to State-of-the-Art (SoTA) approaches improving their novel class performance by up to 5.7% (3.3 mAP points) and 5.4% (2.6 mAP points) on the 10-shot setting of VOC (split 3) and 30-shot setting of COCO datasets respectively. Our experiments also demonstrate better retention of base class performance and up to 2x faster convergence over existing approaches agnostic of the underlying architecture.
Learning ASR-Robust Contextualized Embeddings for Spoken Language Understanding
Employing pre-trained language models (LM) to extract contextualized word representations has achieved state-of-the-art performance on various NLP tasks. However, applying this technique to noisy transcripts generated by automatic speech recognizer (ASR) is concerned. Therefore, this paper focuses on making contextualized representations more ASR-robust. We propose a novel confusion-aware fine-tuning method to mitigate the impact of ASR errors to pre-trained LMs. Specifically, we fine-tune LMs to produce similar representations for acoustically confusable words that are obtained from word confusion networks (WCNs) produced by ASR. Experiments on the benchmark ATIS dataset show that the proposed method significantly improves the performance of spoken language understanding when performing on ASR transcripts. Our source code is available at https://github.com/MiuLab/SpokenVec
BiPhone: Modeling Inter Language Phonetic Influences in Text
A large number of people are forced to use the Web in a language they have low literacy in due to technology asymmetries. Written text in the second language (L2) from such users often contains a large number of errors that are influenced by their native language (L1). We propose a method to mine phoneme confusions (sounds in L2 that an L1 speaker is likely to conflate) for pairs of L1 and L2. These confusions are then plugged into a generative model (Bi-Phone) for synthetically producing corrupted L2 text. Through human evaluations, we show that Bi-Phone generates plausible corruptions that differ across L1s and also have widespread coverage on the Web. We also corrupt the popular language understanding benchmark SuperGLUE with our technique (FunGLUE for Phonetically Noised GLUE) and show that SoTA language understating models perform poorly. We also introduce a new phoneme prediction pre-training task which helps byte models to recover performance close to SuperGLUE. Finally, we also release the FunGLUE benchmark to promote further research in phonetically robust language models. To the best of our knowledge, FunGLUE is the first benchmark to introduce L1-L2 interactions in text.
PanoSSC: Exploring Monocular Panoptic 3D Scene Reconstruction for Autonomous Driving
Vision-centric occupancy networks, which represent the surrounding environment with uniform voxels with semantics, have become a new trend for safe driving of camera-only autonomous driving perception systems, as they are able to detect obstacles regardless of their shape and occlusion. Modern occupancy networks mainly focus on reconstructing visible voxels from object surfaces with voxel-wise semantic prediction. Usually, they suffer from inconsistent predictions of one object and mixed predictions for adjacent objects. These confusions may harm the safety of downstream planning modules. To this end, we investigate panoptic segmentation on 3D voxel scenarios and propose an instance-aware occupancy network, PanoSSC. We predict foreground objects and backgrounds separately and merge both in post-processing. For foreground instance grouping, we propose a novel 3D instance mask decoder that can efficiently extract individual objects. we unify geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation into PanoSSC framework and propose new metrics for evaluating panoptic voxels. Extensive experiments show that our method achieves competitive results on SemanticKITTI semantic scene completion benchmark.
AnyDressing: Customizable Multi-Garment Virtual Dressing via Latent Diffusion Models
Recent advances in garment-centric image generation from text and image prompts based on diffusion models are impressive. However, existing methods lack support for various combinations of attire, and struggle to preserve the garment details while maintaining faithfulness to the text prompts, limiting their performance across diverse scenarios. In this paper, we focus on a new task, i.e., Multi-Garment Virtual Dressing, and we propose a novel AnyDressing method for customizing characters conditioned on any combination of garments and any personalized text prompts. AnyDressing comprises two primary networks named GarmentsNet and DressingNet, which are respectively dedicated to extracting detailed clothing features and generating customized images. Specifically, we propose an efficient and scalable module called Garment-Specific Feature Extractor in GarmentsNet to individually encode garment textures in parallel. This design prevents garment confusion while ensuring network efficiency. Meanwhile, we design an adaptive Dressing-Attention mechanism and a novel Instance-Level Garment Localization Learning strategy in DressingNet to accurately inject multi-garment features into their corresponding regions. This approach efficiently integrates multi-garment texture cues into generated images and further enhances text-image consistency. Additionally, we introduce a Garment-Enhanced Texture Learning strategy to improve the fine-grained texture details of garments. Thanks to our well-craft design, AnyDressing can serve as a plug-in module to easily integrate with any community control extensions for diffusion models, improving the diversity and controllability of synthesized images. Extensive experiments show that AnyDressing achieves state-of-the-art results.
Unicom: Universal and Compact Representation Learning for Image Retrieval
Modern image retrieval methods typically rely on fine-tuning pre-trained encoders to extract image-level descriptors. However, the most widely used models are pre-trained on ImageNet-1K with limited classes. The pre-trained feature representation is therefore not universal enough to generalize well to the diverse open-world classes. In this paper, we first cluster the large-scale LAION400M into one million pseudo classes based on the joint textual and visual features extracted by the CLIP model. Due to the confusion of label granularity, the automatically clustered dataset inevitably contains heavy inter-class conflict. To alleviate such conflict, we randomly select partial inter-class prototypes to construct the margin-based softmax loss. To further enhance the low-dimensional feature representation, we randomly select partial feature dimensions when calculating the similarities between embeddings and class-wise prototypes. The dual random partial selections are with respect to the class dimension and the feature dimension of the prototype matrix, making the classification conflict-robust and the feature embedding compact. Our method significantly outperforms state-of-the-art unsupervised and supervised image retrieval approaches on multiple benchmarks. The code and pre-trained models are released to facilitate future research https://github.com/deepglint/unicom.
What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization
Uncertainty Quantification (UQ) is essential for creating trustworthy machine learning models. Recent years have seen a steep rise in UQ methods that can flag suspicious examples, however, it is often unclear what exactly these methods identify. In this work, we propose a framework for categorizing uncertain examples flagged by UQ methods in classification tasks. We introduce the confusion density matrix -- a kernel-based approximation of the misclassification density -- and use this to categorize suspicious examples identified by a given uncertainty method into three classes: out-of-distribution (OOD) examples, boundary (Bnd) examples, and examples in regions of high in-distribution misclassification (IDM). Through extensive experiments, we show that our framework provides a new and distinct perspective for assessing differences between uncertainty quantification methods, thereby forming a valuable assessment benchmark.
SPDiffusion: Semantic Protection Diffusion for Multi-concept Text-to-image Generation
Recent text-to-image models have achieved remarkable success in generating high-quality images. However, when tasked with multi-concept generation which creates images containing multiple characters or objects, existing methods often suffer from attribute confusion, resulting in severe text-image inconsistency. We found that attribute confusion occurs when a certain region of the latent features attend to multiple or incorrect prompt tokens. In this work, we propose novel Semantic Protection Diffusion (SPDiffusion) to protect the semantics of regions from the influence of irrelevant tokens, eliminating the confusion of non-corresponding attributes. In the SPDiffusion framework, we design a Semantic Protection Mask (SP-Mask) to represent the relevance of the regions and the tokens, and propose a Semantic Protection Cross-Attention (SP-Attn) to shield the influence of irrelevant tokens on specific regions in the generation process. To evaluate our method, we created a diverse multi-concept benchmark, and SPDiffusion achieves state-of-the-art results on this benchmark, proving its effectiveness. Our method can be combined with many other application methods or backbones, such as ControlNet, Story Diffusion, PhotoMaker and PixArt-alpha to enhance their multi-concept capabilities, demonstrating strong compatibility and scalability.
Semantic Enhanced Few-shot Object Detection
Few-shot object detection~(FSOD), which aims to detect novel objects with limited annotated instances, has made significant progress in recent years. However, existing methods still suffer from biased representations, especially for novel classes in extremely low-shot scenarios. During fine-tuning, a novel class may exploit knowledge from similar base classes to construct its own feature distribution, leading to classification confusion and performance degradation. To address these challenges, we propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection. In our proposed method, we align the visual features with class name embeddings and replace the linear classifier with our semantic similarity classifier. Our method trains each region proposal to converge to the corresponding class embedding. Furthermore, we introduce a multimodal feature fusion to augment the vision-language communication, enabling a novel class to draw support explicitly from well-trained similar base classes. To prevent class confusion, we propose a semantic-aware max-margin loss, which adaptively applies a margin beyond similar classes. As a result, our method allows each novel class to construct a compact feature space without being confused with similar base classes. Extensive experiments on Pascal VOC and MS COCO demonstrate the superiority of our method.
AnyLoss: Transforming Classification Metrics into Loss Functions
Many evaluation metrics can be used to assess the performance of models in binary classification tasks. However, most of them are derived from a confusion matrix in a non-differentiable form, making it very difficult to generate a differentiable loss function that could directly optimize them. The lack of solutions to bridge this challenge not only hinders our ability to solve difficult tasks, such as imbalanced learning, but also requires the deployment of computationally expensive hyperparameter search processes in model selection. In this paper, we propose a general-purpose approach that transforms any confusion matrix-based metric into a loss function, AnyLoss, that is available in optimization processes. To this end, we use an approximation function to make a confusion matrix represented in a differentiable form, and this approach enables any confusion matrix-based metric to be directly used as a loss function. The mechanism of the approximation function is provided to ensure its operability and the differentiability of our loss functions is proved by suggesting their derivatives. We conduct extensive experiments under diverse neural networks with many datasets, and we demonstrate their general availability to target any confusion matrix-based metrics. Our method, especially, shows outstanding achievements in dealing with imbalanced datasets, and its competitive learning speed, compared to multiple baseline models, underscores its efficiency.
LoRA-Composer: Leveraging Low-Rank Adaptation for Multi-Concept Customization in Training-Free Diffusion Models
Customization generation techniques have significantly advanced the synthesis of specific concepts across varied contexts. Multi-concept customization emerges as the challenging task within this domain. Existing approaches often rely on training a fusion matrix of multiple Low-Rank Adaptations (LoRAs) to merge various concepts into a single image. However, we identify this straightforward method faces two major challenges: 1) concept confusion, where the model struggles to preserve distinct individual characteristics, and 2) concept vanishing, where the model fails to generate the intended subjects. To address these issues, we introduce LoRA-Composer, a training-free framework designed for seamlessly integrating multiple LoRAs, thereby enhancing the harmony among different concepts within generated images. LoRA-Composer addresses concept vanishing through concept injection constraints, enhancing concept visibility via an expanded cross-attention mechanism. To combat concept confusion, concept isolation constraints are introduced, refining the self-attention computation. Furthermore, latent re-initialization is proposed to effectively stimulate concept-specific latent within designated regions. Our extensive testing showcases a notable enhancement in LoRA-Composer's performance compared to standard baselines, especially when eliminating the image-based conditions like canny edge or pose estimations. Code is released at https://github.com/Young98CN/LoRA_Composer
Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning
Semi-supervised learning is attracting blooming attention, due to its success in combining unlabeled data. To mitigate potentially incorrect pseudo labels, recent frameworks mostly set a fixed confidence threshold to discard uncertain samples. This practice ensures high-quality pseudo labels, but incurs a relatively low utilization of the whole unlabeled set. In this work, our key insight is that these uncertain samples can be turned into certain ones, as long as the confusion classes for the top-1 class are detected and removed. Invoked by this, we propose a novel method dubbed ShrinkMatch to learn uncertain samples. For each uncertain sample, it adaptively seeks a shrunk class space, which merely contains the original top-1 class, as well as remaining less likely classes. Since the confusion ones are removed in this space, the re-calculated top-1 confidence can satisfy the pre-defined threshold. We then impose a consistency regularization between a pair of strongly and weakly augmented samples in the shrunk space to strive for discriminative representations. Furthermore, considering the varied reliability among uncertain samples and the gradually improved model during training, we correspondingly design two reweighting principles for our uncertain loss. Our method exhibits impressive performance on widely adopted benchmarks. Code is available at https://github.com/LiheYoung/ShrinkMatch.
Initial State Interventions for Deconfounded Imitation Learning
Imitation learning suffers from causal confusion. This phenomenon occurs when learned policies attend to features that do not causally influence the expert actions but are instead spuriously correlated. Causally confused agents produce low open-loop supervised loss but poor closed-loop performance upon deployment. We consider the problem of masking observed confounders in a disentangled representation of the observation space. Our novel masking algorithm leverages the usual ability to intervene in the initial system state, avoiding any requirement involving expert querying, expert reward functions, or causal graph specification. Under certain assumptions, we theoretically prove that this algorithm is conservative in the sense that it does not incorrectly mask observations that causally influence the expert; furthermore, intervening on the initial state serves to strictly reduce excess conservatism. The masking algorithm is applied to behavior cloning for two illustrative control systems: CartPole and Reacher.
CoAID: COVID-19 Healthcare Misinformation Dataset
As the COVID-19 virus quickly spreads around the world, unfortunately, misinformation related to COVID-19 also gets created and spreads like wild fire. Such misinformation has caused confusion among people, disruptions in society, and even deadly consequences in health problems. To be able to understand, detect, and mitigate such COVID-19 misinformation, therefore, has not only deep intellectual values but also huge societal impacts. To help researchers combat COVID-19 health misinformation, therefore, we present CoAID (Covid-19 heAlthcare mIsinformation Dataset), with diverse COVID-19 healthcare misinformation, including fake news on websites and social platforms, along with users' social engagement about such news. CoAID includes 4,251 news, 296,000 related user engagements, 926 social platform posts about COVID-19, and ground truth labels. The dataset is available at: https://github.com/cuilimeng/CoAID.
Energy Confused Adversarial Metric Learning for Zero-Shot Image Retrieval and Clustering
Deep metric learning has been widely applied in many computer vision tasks, and recently, it is more attractive in zero-shot image retrieval and clustering(ZSRC) where a good embedding is requested such that the unseen classes can be distinguished well. Most existing works deem this 'good' embedding just to be the discriminative one and thus race to devise powerful metric objectives or hard-sample mining strategies for leaning discriminative embedding. However, in this paper, we first emphasize that the generalization ability is a core ingredient of this 'good' embedding as well and largely affects the metric performance in zero-shot settings as a matter of fact. Then, we propose the Energy Confused Adversarial Metric Learning(ECAML) framework to explicitly optimize a robust metric. It is mainly achieved by introducing an interesting Energy Confusion regularization term, which daringly breaks away from the traditional metric learning idea of discriminative objective devising, and seeks to 'confuse' the learned model so as to encourage its generalization ability by reducing overfitting on the seen classes. We train this confusion term together with the conventional metric objective in an adversarial manner. Although it seems weird to 'confuse' the network, we show that our ECAML indeed serves as an efficient regularization technique for metric learning and is applicable to various conventional metric methods. This paper empirically and experimentally demonstrates the importance of learning embedding with good generalization, achieving state-of-the-art performances on the popular CUB, CARS, Stanford Online Products and In-Shop datasets for ZSRC tasks. \textcolor[rgb]{1, 0, 0}{Code available at http://www.bhchen.cn/}.
Shiva++: An Enhanced Graph based Ontology Matcher
With the web getting bigger and assimilating knowledge about different concepts and domains, it is becoming very difficult for simple database driven applications to capture the data for a domain. Thus developers have come out with ontology based systems which can store large amount of information and can apply reasoning and produce timely information. Thus facilitating effective knowledge management. Though this approach has made our lives easier, but at the same time has given rise to another problem. Two different ontologies assimilating same knowledge tend to use different terms for the same concepts. This creates confusion among knowledge engineers and workers, as they do not know which is a better term then the other. Thus we need to merge ontologies working on same domain so that the engineers can develop a better application over it. This paper shows the development of one such matcher which merges the concepts available in two ontologies at two levels; 1) at string level and 2) at semantic level; thus producing better merged ontologies. We have used a graph matching technique which works at the core of the system. We have also evaluated the system and have tested its performance with its predecessor which works only on string matching. Thus current approach produces better results.
Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook for Sparse Neural Network Researchers
This article does not propose any novel algorithm or new hardware for sparsity. Instead, it aims to serve the "common good" for the increasingly prosperous Sparse Neural Network (SNN) research community. We attempt to summarize some most common confusions in SNNs, that one may come across in various scenarios such as paper review/rebuttal and talks - many drawn from the authors' own bittersweet experiences! We feel that doing so is meaningful and timely, since the focus of SNN research is notably shifting from traditional pruning to more diverse and profound forms of sparsity before, during, and after training. The intricate relationships between their scopes, assumptions, and approaches lead to misunderstandings, for non-experts or even experts in SNNs. In response, we summarize ten Q\&As of SNNs from many key aspects, including dense vs. sparse, unstructured sparse vs. structured sparse, pruning vs. sparse training, dense-to-sparse training vs. sparse-to-sparse training, static sparsity vs. dynamic sparsity, before-training/during-training vs. post-training sparsity, and many more. We strive to provide proper and generically applicable answers to clarify those confusions to the best extent possible. We hope our summary provides useful general knowledge for people who want to enter and engage with this exciting community; and also provides some "mind of ease" convenience for SNN researchers to explain their work in the right contexts. At the very least (and perhaps as this article's most insignificant target functionality), if you are writing/planning to write a paper or rebuttal in the field of SNNs, we hope some of our answers could help you!
Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.
CORE-MM: Complex Open-Ended Reasoning Evaluation For Multi-Modal Large Language Models
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence. These models not only excel in traditional vision-language tasks but also demonstrate impressive performance in contemporary multi-modal benchmarks. Although many of these benchmarks attempt to holistically evaluate MLLMs, they typically concentrate on basic reasoning tasks, often yielding only simple yes/no or multi-choice responses. These methods naturally lead to confusion and difficulties in conclusively determining the reasoning capabilities of MLLMs. To mitigate this issue, we manually curate a benchmark dataset specifically designed for MLLMs, with a focus on complex reasoning tasks. Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning. The queries in our dataset are intentionally constructed to engage the reasoning capabilities of MLLMs in the process of generating answers. For a fair comparison across various MLLMs, we incorporate intermediate reasoning steps into our evaluation criteria. In instances where an MLLM is unable to produce a definitive answer, its reasoning ability is evaluated by requesting intermediate reasoning steps. If these steps align with our manual annotations, appropriate scores are assigned. This evaluation scheme resembles methods commonly used in human assessments, such as exams or assignments, and represents what we consider a more effective assessment technique compared with existing benchmarks. We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark, designed to challenge and accurately measure their reasoning capabilities. The code and data will be released at https://core-mm.github.io/
The Journey to Trustworthy AI- Part 1: Pursuit of Pragmatic Frameworks
This paper reviews Trustworthy Artificial Intelligence (TAI) and its various definitions. Considering the principles respected in any society, TAI is often characterized by a few attributes, some of which have led to confusion in regulatory or engineering contexts. We argue against using terms such as Responsible or Ethical AI as substitutes for TAI. And to help clarify any confusion, we suggest leaving them behind. Given the subjectivity and complexity inherent in TAI, developing a universal framework is deemed infeasible. Instead, we advocate for approaches centered on addressing key attributes and properties such as fairness, bias, risk, security, explainability, and reliability. We examine the ongoing regulatory landscape, with a focus on initiatives in the EU, China, and the USA. We recognize that differences in AI regulations based on geopolitical and geographical reasons pose an additional challenge for multinational companies. We identify risk as a core factor in AI regulation and TAI. For example, as outlined in the EU-AI Act, organizations must gauge the risk level of their AI products to act accordingly (or risk hefty fines). We compare modalities of TAI implementation and how multiple cross-functional teams are engaged in the overall process. Thus, a brute force approach for enacting TAI renders its efficiency and agility, moot. To address this, we introduce our framework Set-Formalize-Measure-Act (SFMA). Our solution highlights the importance of transforming TAI-aware metrics, drivers of TAI, stakeholders, and business/legal requirements into actual benchmarks or tests. Finally, over-regulation driven by panic of powerful AI models can, in fact, harm TAI too. Based on GitHub user-activity data, in 2023, AI open-source projects rose to top projects by contributor account. Enabling innovation in TAI hinges on the independent contributions of the open-source community.
MasaCtrl: Tuning-Free Mutual Self-Attention Control for Consistent Image Synthesis and Editing
Despite the success in large-scale text-to-image generation and text-conditioned image editing, existing methods still struggle to produce consistent generation and editing results. For example, generation approaches usually fail to synthesize multiple images of the same objects/characters but with different views or poses. Meanwhile, existing editing methods either fail to achieve effective complex non-rigid editing while maintaining the overall textures and identity, or require time-consuming fine-tuning to capture the image-specific appearance. In this paper, we develop MasaCtrl, a tuning-free method to achieve consistent image generation and complex non-rigid image editing simultaneously. Specifically, MasaCtrl converts existing self-attention in diffusion models into mutual self-attention, so that it can query correlated local contents and textures from source images for consistency. To further alleviate the query confusion between foreground and background, we propose a mask-guided mutual self-attention strategy, where the mask can be easily extracted from the cross-attention maps. Extensive experiments show that the proposed MasaCtrl can produce impressive results in both consistent image generation and complex non-rigid real image editing.
Misaligned Roles, Misplaced Images: Structural Input Perturbations Expose Multimodal Alignment Blind Spots
Multimodal Language Models (MMLMs) typically undergo post-training alignment to prevent harmful content generation. However, these alignment stages focus primarily on the assistant role, leaving the user role unaligned, and stick to a fixed input prompt structure of special tokens, leaving the model vulnerable when inputs deviate from these expectations. We introduce Role-Modality Attacks (RMA), a novel class of adversarial attacks that exploit role confusion between the user and assistant and alter the position of the image token to elicit harmful outputs. Unlike existing attacks that modify query content, RMAs manipulate the input structure without altering the query itself. We systematically evaluate these attacks across multiple Vision Language Models (VLMs) on eight distinct settings, showing that they can be composed to create stronger adversarial prompts, as also evidenced by their increased projection in the negative refusal direction in the residual stream, a property observed in prior successful attacks. Finally, for mitigation, we propose an adversarial training approach that makes the model robust against input prompt perturbations. By training the model on a range of harmful and benign prompts all perturbed with different RMA settings, it loses its sensitivity to Role Confusion and Modality Manipulation attacks and is trained to only pay attention to the content of the query in the input prompt structure, effectively reducing Attack Success Rate (ASR) while preserving the model's general utility.
Corrective In-Context Learning: Evaluating Self-Correction in Large Language Models
In-context learning (ICL) has transformed the use of large language models (LLMs) for NLP tasks, enabling few-shot learning by conditioning on labeled examples without finetuning. Despite its effectiveness, ICL is prone to errors, especially for challenging examples. With the goal of improving the performance of ICL, we propose corrective in-context learning (CICL), an approach that incorporates a model's incorrect predictions alongside ground truth corrections into the prompt, aiming to enhance classification accuracy through self-correction. However, contrary to our hypothesis, extensive experiments on text classification tasks demonstrate that CICL consistently underperforms standard ICL, with performance degrading as the proportion of corrections in the prompt increases. Our findings indicate that CICL introduces confusion by disrupting the model's task understanding, rather than refining its predictions. Additionally, we observe that presenting harder examples in standard ICL does not improve performance, suggesting that example difficulty alone may not be a reliable criterion for effective selection. By presenting these negative results, we provide important insights into the limitations of self-corrective mechanisms in LLMs and offer directions for future research.
Do LLMs Know When to NOT Answer? Investigating Abstention Abilities of Large Language Models
Abstention Ability (AA) is a critical aspect of Large Language Model (LLM) reliability, referring to an LLM's capability to withhold responses when uncertain or lacking a definitive answer, without compromising performance. Although previous studies have attempted to improve AA, they lack a standardised evaluation method and remain unsuitable for black-box models where token prediction probabilities are inaccessible. This makes comparative analysis challenging, especially for state-of-the-art closed-source commercial LLMs. This paper bridges this gap by introducing a black-box evaluation approach and a new dataset, Abstain-QA, crafted to rigorously assess AA across varied question types (answerable and unanswerable), domains (well-represented and under-represented), and task types (fact centric and reasoning). We also propose a new confusion matrix, the ''Answerable-Unanswerable Confusion Matrix'' (AUCM) which serves as the basis for evaluating AA, by offering a structured and precise approach for assessment. Finally, we explore the impact of three prompting strategies-Strict Prompting, Verbal Confidence Thresholding, and Chain-of-Thought (CoT)-on improving AA. Our results indicate that even powerful models like GPT-4, Mixtral 8x22b encounter difficulties with abstention; however, strategic approaches such as Strict prompting and CoT can enhance this capability.
DiffCloth: Diffusion Based Garment Synthesis and Manipulation via Structural Cross-modal Semantic Alignment
Cross-modal garment synthesis and manipulation will significantly benefit the way fashion designers generate garments and modify their designs via flexible linguistic interfaces.Current approaches follow the general text-to-image paradigm and mine cross-modal relations via simple cross-attention modules, neglecting the structural correspondence between visual and textual representations in the fashion design domain. In this work, we instead introduce DiffCloth, a diffusion-based pipeline for cross-modal garment synthesis and manipulation, which empowers diffusion models with flexible compositionality in the fashion domain by structurally aligning the cross-modal semantics. Specifically, we formulate the part-level cross-modal alignment as a bipartite matching problem between the linguistic Attribute-Phrases (AP) and the visual garment parts which are obtained via constituency parsing and semantic segmentation, respectively. To mitigate the issue of attribute confusion, we further propose a semantic-bundled cross-attention to preserve the spatial structure similarities between the attention maps of attribute adjectives and part nouns in each AP. Moreover, DiffCloth allows for manipulation of the generated results by simply replacing APs in the text prompts. The manipulation-irrelevant regions are recognized by blended masks obtained from the bundled attention maps of the APs and kept unchanged. Extensive experiments on the CM-Fashion benchmark demonstrate that DiffCloth both yields state-of-the-art garment synthesis results by leveraging the inherent structural information and supports flexible manipulation with region consistency.
Improving Speech Recognition Error Prediction for Modern and Off-the-shelf Speech Recognizers
Modeling the errors of a speech recognizer can help simulate errorful recognized speech data from plain text, which has proven useful for tasks like discriminative language modeling, improving robustness of NLP systems, where limited or even no audio data is available at train time. Previous work typically considered replicating behavior of GMM-HMM based systems, but the behavior of more modern posterior-based neural network acoustic models is not the same and requires adjustments to the error prediction model. In this work, we extend a prior phonetic confusion based model for predicting speech recognition errors in two ways: first, we introduce a sampling-based paradigm that better simulates the behavior of a posterior-based acoustic model. Second, we investigate replacing the confusion matrix with a sequence-to-sequence model in order to introduce context dependency into the prediction. We evaluate the error predictors in two ways: first by predicting the errors made by a Switchboard ASR system on unseen data (Fisher), and then using that same predictor to estimate the behavior of an unrelated cloud-based ASR system on a novel task. Sampling greatly improves predictive accuracy within a 100-guess paradigm, while the sequence model performs similarly to the confusion matrix.
Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation
Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}.
Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications, ranging from content generation to interactive entertainment, and artistic creation. However, the diversity of downstream tasks in multitask scenarios presents substantial adaptation challenges for LLMs. While traditional methods often succumb to knowledge confusion on their monolithic dense models, Mixture-of-Experts (MoE) has been emerged as a promising solution with its sparse architecture for effective task decoupling. Inspired by the principles of human cognitive neuroscience, we design a novel framework Intuition-MoR1E that leverages the inherent semantic clustering of instances to mimic the human brain to deal with multitask, offering implicit guidance to router for optimized feature allocation. Moreover, we introduce cutting-edge Rank-1 Experts formulation designed to manage a spectrum of intuitions, demonstrating enhanced parameter efficiency and effectiveness in multitask LLM finetuning. Extensive experiments demonstrate that Intuition-MoR1E achieves superior efficiency and 2.15\% overall accuracy improvement across 14 public datasets against other state-of-the-art baselines.
Enhancing Metaphor Detection through Soft Labels and Target Word Prediction
Metaphors play a significant role in our everyday communication, yet detecting them presents a challenge. Traditional methods often struggle with improper application of language rules and a tendency to overlook data sparsity. To address these issues, we integrate knowledge distillation and prompt learning into metaphor detection. Our approach revolves around a tailored prompt learning framework specifically designed for metaphor detection. By strategically masking target words and providing relevant prompt data, we guide the model to accurately predict the contextual meanings of these words. This approach not only mitigates confusion stemming from the literal meanings of the words but also ensures effective application of language rules for metaphor detection. Furthermore, we've introduced a teacher model to generate valuable soft labels. These soft labels provide a similar effect to label smoothing and help prevent the model from becoming over confident and effectively addresses the challenge of data sparsity. Experimental results demonstrate that our model has achieved state-of-the-art performance, as evidenced by its remarkable results across various datasets.
Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion
Low-light image enhancement techniques have significantly progressed, but unstable image quality recovery and unsatisfactory visual perception are still significant challenges. To solve these problems, we propose a novel and robust low-light image enhancement method via CLIP-Fourier Guided Wavelet Diffusion, abbreviated as CFWD. Specifically, CFWD leverages multimodal visual-language information in the frequency domain space created by multiple wavelet transforms to guide the enhancement process. Multi-scale supervision across different modalities facilitates the alignment of image features with semantic features during the wavelet diffusion process, effectively bridging the gap between degraded and normal domains. Moreover, to further promote the effective recovery of the image details, we combine the Fourier transform based on the wavelet transform and construct a Hybrid High Frequency Perception Module (HFPM) with a significant perception of the detailed features. This module avoids the diversity confusion of the wavelet diffusion process by guiding the fine-grained structure recovery of the enhancement results to achieve favourable metric and perceptually oriented enhancement. Extensive quantitative and qualitative experiments on publicly available real-world benchmarks show that our approach outperforms existing state-of-the-art methods, achieving significant progress in image quality and noise suppression. The project code is available at https://github.com/hejh8/CFWD.
Knowledge Guided Disambiguation for Large-Scale Scene Classification with Multi-Resolution CNNs
Convolutional Neural Networks (CNNs) have made remarkable progress on scene recognition, partially due to these recent large-scale scene datasets, such as the Places and Places2. Scene categories are often defined by multi-level information, including local objects, global layout, and background environment, thus leading to large intra-class variations. In addition, with the increasing number of scene categories, label ambiguity has become another crucial issue in large-scale classification. This paper focuses on large-scale scene recognition and makes two major contributions to tackle these issues. First, we propose a multi-resolution CNN architecture that captures visual content and structure at multiple levels. The multi-resolution CNNs are composed of coarse resolution CNNs and fine resolution CNNs, which are complementary to each other. Second, we design two knowledge guided disambiguation techniques to deal with the problem of label ambiguity. (i) We exploit the knowledge from the confusion matrix computed on validation data to merge ambiguous classes into a super category. (ii) We utilize the knowledge of extra networks to produce a soft label for each image. Then the super categories or soft labels are employed to guide CNN training on the Places2. We conduct extensive experiments on three large-scale image datasets (ImageNet, Places, and Places2), demonstrating the effectiveness of our approach. Furthermore, our method takes part in two major scene recognition challenges, and achieves the second place at the Places2 challenge in ILSVRC 2015, and the first place at the LSUN challenge in CVPR 2016. Finally, we directly test the learned representations on other scene benchmarks, and obtain the new state-of-the-art results on the MIT Indoor67 (86.7\%) and SUN397 (72.0\%). We release the code and models at~https://github.com/wanglimin/MRCNN-Scene-Recognition.
Game-TARS: Pretrained Foundation Models for Scalable Generalist Multimodal Game Agents
We present Game-TARS, a generalist game agent trained with a unified, scalable action space anchored to human-aligned native keyboard-mouse inputs. Unlike API- or GUI-based approaches, this paradigm enables large-scale continual pre-training across heterogeneous domains, including OS, web, and simulation games. Game-TARS is pre-trained on over 500B tokens with diverse trajectories and multimodal data. Key techniques include a decaying continual loss to reduce causal confusion and an efficient Sparse-Thinking strategy that balances reasoning depth and inference cost. Experiments show that Game-TARS achieves about 2 times the success rate over the previous sota model on open-world Minecraft tasks, is close to the generality of fresh humans in unseen web 3d games, and outperforms GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet in FPS benchmarks. Scaling results on training-time and test-time confirm that the unified action space sustains improvements when scaled to cross-game and multimodal data. Our results demonstrate that simple, scalable action representations combined with large-scale pre-training provide a promising path toward generalist agents with broad computer-use abilities.
Taming Modality Entanglement in Continual Audio-Visual Segmentation
Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.
Smoothie-Qwen: Post-Hoc Smoothing to Reduce Language Bias in Multilingual LLMs
Multilingual large language models (LLMs) often exhibit language confusion, a tendency to generate responses in a dominant language irrespective of the prompt's language. To address this, we propose Smoothie-Qwen, a lightweight, post-hoc method that mitigates language bias without retraining. This technique selectively adjusts token-level output probabilities to effectively suppress undesired language generation. Applied to the Qwen model, our method reduces unintended Chinese output by over 95% while preserving task accuracy on multilingual benchmarks. This work provides a practical and efficient solution for enhancing the language controllability of LLMs, making them more reliable for global applications.
Pseudo-Simulation for Autonomous Driving
Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations (R^2=0.8) than the best existing open-loop approach (R^2=0.7). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.
Are We Falling in a Middle-Intelligence Trap? An Analysis and Mitigation of the Reversal Curse
Recent studies have highlighted a phenomenon in large language models (LLMs) known as "the reversal curse," in which the order of knowledge entities in the training data biases the models' comprehension. For example, if a model is trained on sentences where entity A consistently appears before entity B, it can respond to queries about A by providing B as the answer. However, it may encounter confusion when presented with questions concerning B. We contend that the reversal curse is partially a result of specific model training objectives, particularly evident in the prevalent use of the next-token prediction within most causal language models. For the next-token prediction, models solely focus on a token's preceding context, resulting in a restricted comprehension of the input. In contrast, we illustrate that the GLM, trained using the autoregressive blank infilling objective where tokens to be predicted have access to the entire context, exhibits better resilience against the reversal curse. We propose a novel training method, BIdirectional Casual language modeling Optimization (BICO), designed to mitigate the reversal curse when fine-tuning pretrained causal language models on new data. BICO modifies the causal attention mechanism to function bidirectionally and employs a mask denoising optimization. In the task designed to assess the reversal curse, our approach improves Llama's accuracy from the original 0% to around 70%. We hope that more attention can be focused on exploring and addressing these inherent weaknesses of the current LLMs, in order to achieve a higher level of intelligence.
Revisiting MLLM Based Image Quality Assessment: Errors and Remedy
The rapid progress of multi-modal large language models (MLLMs) has boosted the task of image quality assessment (IQA). However, a key challenge arises from the inherent mismatch between the discrete token outputs of MLLMs and the continuous nature of quality scores required by IQA tasks. This discrepancy significantly hinders the performance of MLLM-based IQA methods. Previous approaches that convert discrete token predictions into continuous scores often suffer from conversion errors. Moreover, the semantic confusion introduced by level tokens (e.g., ``good'') further constrains the performance of MLLMs on IQA tasks and degrades their original capabilities for related tasks. To tackle these problems, we provide a theoretical analysis of the errors inherent in previous approaches and, motivated by this analysis, propose a simple yet effective framework, Q-Scorer. This framework incorporates a lightweight regression module and IQA-specific score tokens into the MLLM pipeline. Extensive experiments demonstrate that Q-Scorer achieves state-of-the-art performance across multiple IQA benchmarks, generalizes well to mixed datasets, and further improves when combined with other methods.
TRAJECT-Bench:A Trajectory-Aware Benchmark for Evaluating Agentic Tool Use
Large language model (LLM)-based agents increasingly rely on tool use to complete real-world tasks. While existing works evaluate the LLMs' tool use capability, they largely focus on the final answers yet overlook the detailed tool usage trajectory, i.e., whether tools are selected, parameterized, and ordered correctly. We introduce TRAJECT-Bench, a trajectory-aware benchmark to comprehensively evaluate LLMs' tool use capability through diverse tasks with fine-grained evaluation metrics. TRAJECT-Bench pairs high-fidelity, executable tools across practical domains with tasks grounded in production-style APIs, and synthesizes trajectories that vary in breadth (parallel calls) and depth (interdependent chains). Besides final accuracy, TRAJECT-Bench also reports trajectory-level diagnostics, including tool selection and argument correctness, and dependency/order satisfaction. Analyses reveal failure modes such as similar tool confusion and parameter-blind selection, and scaling behavior with tool diversity and trajectory length where the bottleneck of transiting from short to mid-length trajectories is revealed, offering actionable guidance for LLMs' tool use.
Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents
Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.
CAMEL: Cross-Attention Enhanced Mixture-of-Experts and Language Bias for Code-Switching Speech Recognition
Code-switching automatic speech recognition (ASR) aims to transcribe speech that contains two or more languages accurately. To better capture language-specific speech representations and address language confusion in code-switching ASR, the mixture-of-experts (MoE) architecture and an additional language diarization (LD) decoder are commonly employed. However, most researches remain stagnant in simple operations like weighted summation or concatenation to fuse languagespecific speech representations, leaving significant opportunities to explore the enhancement of integrating language bias information. In this paper, we introduce CAMEL, a cross-attention-based MoE and language bias approach for code-switching ASR. Specifically, after each MoE layer, we fuse language-specific speech representations with cross-attention, leveraging its strong contextual modeling abilities. Additionally, we design a source attention-based mechanism to incorporate the language information from the LD decoder output into text embeddings. Experimental results demonstrate that our approach achieves state-of-the-art performance on the SEAME, ASRU200, and ASRU700+LibriSpeech460 Mandarin-English code-switching ASR datasets.
Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis
Although text-to-image (T2I) models exhibit remarkable generation capabilities, they frequently fail to accurately bind semantically related objects or attributes in the input prompts; a challenge termed semantic binding. Previous approaches either involve intensive fine-tuning of the entire T2I model or require users or large language models to specify generation layouts, adding complexity. In this paper, we define semantic binding as the task of associating a given object with its attribute, termed attribute binding, or linking it to other related sub-objects, referred to as object binding. We introduce a novel method called Token Merging (ToMe), which enhances semantic binding by aggregating relevant tokens into a single composite token. This ensures that the object, its attributes and sub-objects all share the same cross-attention map. Additionally, to address potential confusion among main objects with complex textual prompts, we propose end token substitution as a complementary strategy. To further refine our approach in the initial stages of T2I generation, where layouts are determined, we incorporate two auxiliary losses, an entropy loss and a semantic binding loss, to iteratively update the composite token to improve the generation integrity. We conducted extensive experiments to validate the effectiveness of ToMe, comparing it against various existing methods on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our method is particularly effective in complex scenarios that involve multiple objects and attributes, which previous methods often fail to address. The code will be publicly available at https://github.com/hutaihang/ToMe.
FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models
Recent research has demonstrated that Feed-Forward Networks (FFNs) in Large Language Models (LLMs) play a pivotal role in storing diverse linguistic and factual knowledge. Conventional methods frequently face challenges due to knowledge confusion stemming from their monolithic and redundant architectures, which calls for more efficient solutions with minimal computational overhead, particularly for LLMs. In this paper, we explore the FFN computation paradigm in LLMs and introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications, while maintaining the same level of performance. Furthermore, we embed a router from the Mixture-of-Experts (MoE), combined with our devised Prior-Approximate (PA) loss term that facilitates the dynamic activation of experts and knowledge adaptation, thereby accelerating computational processes and enhancing performance using minimal training data and fine-tuning steps. FactorLLM thus enables efficient knowledge factorization and activates select groups of experts specifically tailored to designated tasks, emulating the interactive functional segmentation of the human brain. Extensive experiments across various benchmarks demonstrate the effectiveness of our proposed FactorLLM which achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed. Code: https://github.com/zhenwuweihe/FactorLLM.
Concept Conductor: Orchestrating Multiple Personalized Concepts in Text-to-Image Synthesis
The customization of text-to-image models has seen significant advancements, yet generating multiple personalized concepts remains a challenging task. Current methods struggle with attribute leakage and layout confusion when handling multiple concepts, leading to reduced concept fidelity and semantic consistency. In this work, we introduce a novel training-free framework, Concept Conductor, designed to ensure visual fidelity and correct layout in multi-concept customization. Concept Conductor isolates the sampling processes of multiple custom models to prevent attribute leakage between different concepts and corrects erroneous layouts through self-attention-based spatial guidance. Additionally, we present a concept injection technique that employs shape-aware masks to specify the generation area for each concept. This technique injects the structure and appearance of personalized concepts through feature fusion in the attention layers, ensuring harmony in the final image. Extensive qualitative and quantitative experiments demonstrate that Concept Conductor can consistently generate composite images with accurate layouts while preserving the visual details of each concept. Compared to existing baselines, Concept Conductor shows significant performance improvements. Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts. The code and models are available at https://github.com/Nihukat/Concept-Conductor.
Lost in Translation: Latent Concept Misalignment in Text-to-Image Diffusion Models
Advancements in text-to-image diffusion models have broadened extensive downstream practical applications, but such models often encounter misalignment issues between text and image. Taking the generation of a combination of two disentangled concepts as an example, say given the prompt "a tea cup of iced coke", existing models usually generate a glass cup of iced coke because the iced coke usually co-occurs with the glass cup instead of the tea one during model training. The root of such misalignment is attributed to the confusion in the latent semantic space of text-to-image diffusion models, and hence we refer to the "a tea cup of iced coke" phenomenon as Latent Concept Misalignment (LC-Mis). We leverage large language models (LLMs) to thoroughly investigate the scope of LC-Mis, and develop an automated pipeline for aligning the latent semantics of diffusion models to text prompts. Empirical assessments confirm the effectiveness of our approach, substantially reducing LC-Mis errors and enhancing the robustness and versatility of text-to-image diffusion models. The code and dataset are here: https://github.com/RossoneriZhao/iced_coke.
Tutorials on Stance Detection using Pre-trained Language Models: Fine-tuning BERT and Prompting Large Language Models
This paper presents two self-contained tutorials on stance detection in Twitter data using BERT fine-tuning and prompting large language models (LLMs). The first tutorial explains BERT architecture and tokenization, guiding users through training, tuning, and evaluating standard and domain-specific BERT models with HuggingFace transformers. The second focuses on constructing prompts and few-shot examples to elicit stances from ChatGPT and open-source FLAN-T5 without fine-tuning. Various prompting strategies are implemented and evaluated using confusion matrices and macro F1 scores. The tutorials provide code, visualizations, and insights revealing the strengths of few-shot ChatGPT and FLAN-T5 which outperform fine-tuned BERTs. By covering both model fine-tuning and prompting-based techniques in an accessible, hands-on manner, these tutorials enable learners to gain applied experience with cutting-edge methods for stance detection.
Delving into the Openness of CLIP
Contrastive Language-Image Pre-training (CLIP) formulates image classification as an image-to-text matching task, i.e., matching images to the corresponding natural language descriptions instead of discrete category IDs. This allows for open-vocabulary visual recognition, where the model can recognize images from an open class set (also known as an open vocabulary) in a zero-shot manner. However, evaluating the openness of CLIP-like models is challenging, as the models are open to arbitrary vocabulary in theory, but their accuracy varies in practice. To address this, we resort to an incremental perspective to assess the openness through vocabulary expansions, and define extensibility to measure a model's ability to handle novel classes. Our evaluation shows that CLIP-like models are not truly open, and their performance deteriorates as the vocabulary expands. We further dissect the feature space of CLIP from the perspectives of representation alignment and uniformity. Our investigation reveals that the overestimation of openness is due to confusion among competing text features, rather than a failure to capture the similarity between image features and text features of novel classes. We hope that our investigation and analysis will facilitate future research on the CLIP openness issue.
A Survey of Deep Active Learning
Active learning (AL) attempts to maximize the performance gain of the model by marking the fewest samples. Deep learning (DL) is greedy for data and requires a large amount of data supply to optimize massive parameters, so that the model learns how to extract high-quality features. In recent years, due to the rapid development of internet technology, we are in an era of information torrents and we have massive amounts of data. In this way, DL has aroused strong interest of researchers and has been rapidly developed. Compared with DL, researchers have relatively low interest in AL. This is mainly because before the rise of DL, traditional machine learning requires relatively few labeled samples. Therefore, early AL is difficult to reflect the value it deserves. Although DL has made breakthroughs in various fields, most of this success is due to the publicity of the large number of existing annotation datasets. However, the acquisition of a large number of high-quality annotated datasets consumes a lot of manpower, which is not allowed in some fields that require high expertise, especially in the fields of speech recognition, information extraction, medical images, etc. Therefore, AL has gradually received due attention. A natural idea is whether AL can be used to reduce the cost of sample annotations, while retaining the powerful learning capabilities of DL. Therefore, deep active learning (DAL) has emerged. Although the related research has been quite abundant, it lacks a comprehensive survey of DAL. This article is to fill this gap, we provide a formal classification method for the existing work, and a comprehensive and systematic overview. In addition, we also analyzed and summarized the development of DAL from the perspective of application. Finally, we discussed the confusion and problems in DAL, and gave some possible development directions for DAL.
Deep Clustering with Incomplete Noisy Pairwise Annotations: A Geometric Regularization Approach
The recent integration of deep learning and pairwise similarity annotation-based constrained clustering -- i.e., deep constrained clustering (DCC) -- has proven effective for incorporating weak supervision into massive data clustering: Less than 1% of pair similarity annotations can often substantially enhance the clustering accuracy. However, beyond empirical successes, there is a lack of understanding of DCC. In addition, many DCC paradigms are sensitive to annotation noise, but performance-guaranteed noisy DCC methods have been largely elusive. This work first takes a deep look into a recently emerged logistic loss function of DCC, and characterizes its theoretical properties. Our result shows that the logistic DCC loss ensures the identifiability of data membership under reasonable conditions, which may shed light on its effectiveness in practice. Building upon this understanding, a new loss function based on geometric factor analysis is proposed to fend against noisy annotations. It is shown that even under unknown annotation confusions, the data membership can still be provably identified under our proposed learning criterion. The proposed approach is tested over multiple datasets to validate our claims.
Divide and Conquer: Language Models can Plan and Self-Correct for Compositional Text-to-Image Generation
Despite significant advancements in text-to-image models for generating high-quality images, these methods still struggle to ensure the controllability of text prompts over images in the context of complex text prompts, especially when it comes to retaining object attributes and relationships. In this paper, we propose CompAgent, a training-free approach for compositional text-to-image generation, with a large language model (LLM) agent as its core. The fundamental idea underlying CompAgent is premised on a divide-and-conquer methodology. Given a complex text prompt containing multiple concepts including objects, attributes, and relationships, the LLM agent initially decomposes it, which entails the extraction of individual objects, their associated attributes, and the prediction of a coherent scene layout. These individual objects can then be independently conquered. Subsequently, the agent performs reasoning by analyzing the text, plans and employs the tools to compose these isolated objects. The verification and human feedback mechanism is finally incorporated into our agent to further correct the potential attribute errors and refine the generated images. Guided by the LLM agent, we propose a tuning-free multi-concept customization model and a layout-to-image generation model as the tools for concept composition, and a local image editing method as the tool to interact with the agent for verification. The scene layout controls the image generation process among these tools to prevent confusion among multiple objects. Extensive experiments demonstrate the superiority of our approach for compositional text-to-image generation: CompAgent achieves more than 10\% improvement on T2I-CompBench, a comprehensive benchmark for open-world compositional T2I generation. The extension to various related tasks also illustrates the flexibility of our CompAgent for potential applications.
Timbre Classification of Musical Instruments with a Deep Learning Multi-Head Attention-Based Model
The aim of this work is to define a model based on deep learning that is able to identify different instrument timbres with as few parameters as possible. For this purpose, we have worked with classical orchestral instruments played with different dynamics, which are part of a few instrument families and which play notes in the same pitch range. It has been possible to assess the ability to classify instruments by timbre even if the instruments are playing the same note with the same intensity. The network employed uses a multi-head attention mechanism, with 8 heads and a dense network at the output taking as input the log-mel magnitude spectrograms of the sound samples. This network allows the identification of 20 instrument classes of the classical orchestra, achieving an overall F_1 value of 0.62. An analysis of the weights of the attention layer has been performed and the confusion matrix of the model is presented, allowing us to assess the ability of the proposed architecture to distinguish timbre and to establish the aspects on which future work should focus.
Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion
Diffusion models have become the mainstream architecture for text-to-image generation, achieving remarkable progress in visual quality and prompt controllability. However, current inference pipelines generally lack interpretable semantic supervision and correction mechanisms throughout the denoising process. Most existing approaches rely solely on post-hoc scoring of the final image, prompt filtering, or heuristic resampling strategies-making them ineffective in providing actionable guidance for correcting the generative trajectory. As a result, models often suffer from object confusion, spatial errors, inaccurate counts, and missing semantic elements, severely compromising prompt-image alignment and image quality. To tackle these challenges, we propose MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD), a novel framework that, for the first time, introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference. PPAD performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps. The framework supports both inference-only and training-enhanced settings, and performs semantic correction at only extremely few diffusion steps, offering strong generality and scalability. Extensive experiments demonstrate PPAD's significant improvements.
DISC: Plug-and-Play Decoding Intervention with Similarity of Characters for Chinese Spelling Check
One key characteristic of the Chinese spelling check (CSC) task is that incorrect characters are usually similar to the correct ones in either phonetics or glyph. To accommodate this, previous works usually leverage confusion sets, which suffer from two problems, i.e., difficulty in determining which character pairs to include and lack of probabilities to distinguish items in the set. In this paper, we propose a light-weight plug-and-play DISC (i.e., decoding intervention with similarity of characters) module for CSC models.DISC measures phonetic and glyph similarities between characters and incorporates this similarity information only during the inference phase. This method can be easily integrated into various existing CSC models, such as ReaLiSe, SCOPE, and ReLM, without additional training costs. Experiments on three CSC benchmarks demonstrate that our proposed method significantly improves model performance, approaching and even surpassing the current state-of-the-art models.
Beyond Orthography: Automatic Recovery of Short Vowels and Dialectal Sounds in Arabic
This paper presents a novel Dialectal Sound and Vowelization Recovery framework, designed to recognize borrowed and dialectal sounds within phonologically diverse and dialect-rich languages, that extends beyond its standard orthographic sound sets. The proposed framework utilized a quantized sequence of input with(out) continuous pretrained self-supervised representation. We show the efficacy of the pipeline using limited data for Arabic, a dialect-rich language containing more than 22 major dialects. Phonetically correct transcribed speech resources for dialectal Arabic are scarce. Therefore, we introduce ArabVoice15, a first-of-its-kind, curated test set featuring 5 hours of dialectal speech across 15 Arab countries, with phonetically accurate transcriptions, including borrowed and dialect-specific sounds. We described in detail the annotation guideline along with the analysis of the dialectal confusion pairs. Our extensive evaluation includes both subjective -- human perception tests and objective measures. Our empirical results, reported with three test sets, show that with only one and half hours of training data, our model improve character error rate by ~ 7\% in ArabVoice15 compared to the baseline.
Refining Corpora from a Model Calibration Perspective for Chinese Spelling Correction
Chinese Spelling Correction (CSC) commonly lacks large-scale high-quality corpora, due to the labor-intensive labeling of spelling errors in real-life human writing or typing scenarios. Two data augmentation methods are widely adopted: (1) Random Replacement with the guidance of confusion sets and (2) OCR/ASR-based Generation that simulates character misusing. However, both methods inevitably introduce noisy data (e.g., false spelling errors), potentially leading to over-correction. By carefully analyzing the two types of corpora, we find that though the latter achieves more robust generalization performance, the former yields better-calibrated CSC models. We then provide a theoretical analysis of this empirical observation, based on which a corpus refining strategy is proposed. Specifically, OCR/ASR-based data samples are fed into a well-calibrated CSC model trained on random replacement-based corpora and then filtered based on prediction confidence. By learning a simple BERT-based model on the refined OCR/ASR-based corpus, we set up impressive state-of-the-art performance on three widely-used benchmarks, while significantly alleviating over-correction (e.g., lowering false positive predictions).
EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM
In e-commerce, accurately extracting product attribute values from multimodal data is crucial for improving user experience and operational efficiency of retailers. However, previous approaches to multimodal attribute value extraction often struggle with implicit attribute values embedded in images or text, rely heavily on extensive labeled data, and can easily confuse similar attribute values. To address these issues, we introduce EIVEN, a data- and parameter-efficient generative framework that pioneers the use of multimodal LLM for implicit attribute value extraction. EIVEN leverages the rich inherent knowledge of a pre-trained LLM and vision encoder to reduce reliance on labeled data. We also introduce a novel Learning-by-Comparison technique to reduce model confusion by enforcing attribute value comparison and difference identification. Additionally, we construct initial open-source datasets for multimodal implicit attribute value extraction. Our extensive experiments reveal that EIVEN significantly outperforms existing methods in extracting implicit attribute values while requiring less labeled data.
Instructing Large Language Models to Identify and Ignore Irrelevant Conditions
Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.
Axe the X in XAI: A Plea for Understandable AI
In a recent paper, Erasmus et al. (2021) defend the idea that the ambiguity of the term "explanation" in explainable AI (XAI) can be solved by adopting any of four different extant accounts of explanation in the philosophy of science: the Deductive Nomological, Inductive Statistical, Causal Mechanical, and New Mechanist models. In this chapter, I show that the authors' claim that these accounts can be applied to deep neural networks as they would to any natural phenomenon is mistaken. I also provide a more general argument as to why the notion of explainability as it is currently used in the XAI literature bears little resemblance to the traditional concept of scientific explanation. It would be more fruitful to use the label "understandable AI" to avoid the confusion that surrounds the goal and purposes of XAI. In the second half of the chapter, I argue for a pragmatic conception of understanding that is better suited to play the central role attributed to explanation in XAI. Following Kuorikoski & Ylikoski (2015), the conditions of satisfaction for understanding an ML system are fleshed out in terms of an agent's success in using the system, in drawing correct inferences from it.
Revisiting Realistic Test-Time Training: Sequential Inference and Adaptation by Anchored Clustering
Deploying models on target domain data subject to distribution shift requires adaptation. Test-time training (TTT) emerges as a solution to this adaptation under a realistic scenario where access to full source domain data is not available and instant inference on target domain is required. Despite many efforts into TTT, there is a confusion over the experimental settings, thus leading to unfair comparisons. In this work, we first revisit TTT assumptions and categorize TTT protocols by two key factors. Among the multiple protocols, we adopt a realistic sequential test-time training (sTTT) protocol, under which we further develop a test-time anchored clustering (TTAC) approach to enable stronger test-time feature learning. TTAC discovers clusters in both source and target domain and match the target clusters to the source ones to improve generalization. Pseudo label filtering and iterative updating are developed to improve the effectiveness and efficiency of anchored clustering. We demonstrate that under all TTT protocols TTAC consistently outperforms the state-of-the-art methods on six TTT datasets. We hope this work will provide a fair benchmarking of TTT methods and future research should be compared within respective protocols. A demo code is available at https://github.com/Gorilla-Lab-SCUT/TTAC.
Addressing Data Scarcity in Multimodal User State Recognition by Combining Semi-Supervised and Supervised Learning
Detecting mental states of human users is crucial for the development of cooperative and intelligent robots, as it enables the robot to understand the user's intentions and desires. Despite their importance, it is difficult to obtain a large amount of high quality data for training automatic recognition algorithms as the time and effort required to collect and label such data is prohibitively high. In this paper we present a multimodal machine learning approach for detecting dis-/agreement and confusion states in a human-robot interaction environment, using just a small amount of manually annotated data. We collect a data set by conducting a human-robot interaction study and develop a novel preprocessing pipeline for our machine learning approach. By combining semi-supervised and supervised architectures, we are able to achieve an average F1-score of 81.1\% for dis-/agreement detection with a small amount of labeled data and a large unlabeled data set, while simultaneously increasing the robustness of the model compared to the supervised approach.
Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking
Chinese Spell Checking (CSC) aims to detect and correct erroneous characters for user-generated text in the Chinese language. Most of the Chinese spelling errors are misused semantically, phonetically or graphically similar characters. Previous attempts noticed this phenomenon and try to use the similarity for this task. However, these methods use either heuristics or handcrafted confusion sets to predict the correct character. In this paper, we propose a Chinese spell checker called ReaLiSe, by directly leveraging the multimodal information of the Chinese characters. The ReaLiSe model tackles the CSC task by (1) capturing the semantic, phonetic and graphic information of the input characters, and (2) selectively mixing the information in these modalities to predict the correct output. Experiments on the SIGHAN benchmarks show that the proposed model outperforms strong baselines by a large margin.
Guitar Effects Recognition and Parameter Estimation with Convolutional Neural Networks
Despite the popularity of guitar effects, there is very little existing research on classification and parameter estimation of specific plugins or effect units from guitar recordings. In this paper, convolutional neural networks were used for classification and parameter estimation for 13 overdrive, distortion and fuzz guitar effects. A novel dataset of processed electric guitar samples was assembled, with four sub-datasets consisting of monophonic or polyphonic samples and discrete or continuous settings values, for a total of about 250 hours of processed samples. Results were compared for networks trained and tested on the same or on a different sub-dataset. We found that discrete datasets could lead to equally high performance as continuous ones, whilst being easier to design, analyse and modify. Classification accuracy was above 80\%, with confusion matrices reflecting similarities in the effects timbre and circuits design. With parameter values between 0.0 and 1.0, the mean absolute error is in most cases below 0.05, while the root mean square error is below 0.1 in all cases but one.
Efficient Neural Network Approaches for Leather Defect Classification
Genuine leather, such as the hides of cows, crocodiles, lizards and goats usually contain natural and artificial defects, like holes, fly bites, tick marks, veining, cuts, wrinkles and others. A traditional solution to identify the defects is by manual defect inspection, which involves skilled experts. It is time consuming and may incur a high error rate and results in low productivity. This paper presents a series of automatic image processing processes to perform the classification of leather defects by adopting deep learning approaches. Particularly, the leather images are first partitioned into small patches,then it undergoes a pre-processing technique, namely the Canny edge detection to enhance defect visualization. Next, artificial neural network (ANN) and convolutional neural network (CNN) are employed to extract the rich image features. The best classification result achieved is 80.3 %, evaluated on a data set that consists of 2000 samples. In addition, the performance metrics such as confusion matrix and Receiver Operating Characteristic (ROC) are reported to demonstrate the efficiency of the method proposed.
ACR: Attention Collaboration-based Regressor for Arbitrary Two-Hand Reconstruction
Reconstructing two hands from monocular RGB images is challenging due to frequent occlusion and mutual confusion. Existing methods mainly learn an entangled representation to encode two interacting hands, which are incredibly fragile to impaired interaction, such as truncated hands, separate hands, or external occlusion. This paper presents ACR (Attention Collaboration-based Regressor), which makes the first attempt to reconstruct hands in arbitrary scenarios. To achieve this, ACR explicitly mitigates interdependencies between hands and between parts by leveraging center and part-based attention for feature extraction. However, reducing interdependence helps release the input constraint while weakening the mutual reasoning about reconstructing the interacting hands. Thus, based on center attention, ACR also learns cross-hand prior that handle the interacting hands better. We evaluate our method on various types of hand reconstruction datasets. Our method significantly outperforms the best interacting-hand approaches on the InterHand2.6M dataset while yielding comparable performance with the state-of-the-art single-hand methods on the FreiHand dataset. More qualitative results on in-the-wild and hand-object interaction datasets and web images/videos further demonstrate the effectiveness of our approach for arbitrary hand reconstruction. Our code is available at https://github.com/ZhengdiYu/Arbitrary-Hands-3D-Reconstruction.
TextCrafter: Accurately Rendering Multiple Texts in Complex Visual Scenes
This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward
Recent advancements in image customization exhibit a wide range of application prospects due to stronger customization capabilities. However, since we humans are more sensitive to faces, a significant challenge remains in preserving consistent identity while avoiding identity confusion with multi-reference images, limiting the identity scalability of customization models. To address this, we present UMO, a Unified Multi-identity Optimization framework, designed to maintain high-fidelity identity preservation and alleviate identity confusion with scalability. With "multi-to-multi matching" paradigm, UMO reformulates multi-identity generation as a global assignment optimization problem and unleashes multi-identity consistency for existing image customization methods generally through reinforcement learning on diffusion models. To facilitate the training of UMO, we develop a scalable customization dataset with multi-reference images, consisting of both synthesised and real parts. Additionally, we propose a new metric to measure identity confusion. Extensive experiments demonstrate that UMO not only improves identity consistency significantly, but also reduces identity confusion on several image customization methods, setting a new state-of-the-art among open-source methods along the dimension of identity preserving. Code and model: https://github.com/bytedance/UMO
Safe RLHF: Safe Reinforcement Learning from Human Feedback
With the development of large language models (LLMs), striking a balance between the performance and safety of AI systems has never been more critical. However, the inherent tension between the objectives of helpfulness and harmlessness presents a significant challenge during LLM training. To address this issue, we propose Safe Reinforcement Learning from Human Feedback (Safe RLHF), a novel algorithm for human value alignment. Safe RLHF explicitly decouples human preferences regarding helpfulness and harmlessness, effectively avoiding the crowdworkers' confusion about the tension and allowing us to train separate reward and cost models. We formalize the safety concern of LLMs as an optimization task of maximizing the reward function while satisfying specified cost constraints. Leveraging the Lagrangian method to solve this constrained problem, Safe RLHF dynamically adjusts the balance between the two objectives during fine-tuning. Through a three-round fine-tuning using Safe RLHF, we demonstrate a superior ability to mitigate harmful responses while enhancing model performance compared to existing value-aligned algorithms. Experimentally, we fine-tuned the Alpaca-7B using Safe RLHF and aligned it with collected human preferences, significantly improving its helpfulness and harmlessness according to human evaluations.
Language Surgery in Multilingual Large Language Models
Large Language Models (LLMs) have demonstrated remarkable generalization capabilities across tasks and languages, revolutionizing natural language processing. This paper investigates the naturally emerging representation alignment in LLMs, particularly in the middle layers, and its implications for disentangling language-specific and language-agnostic information. We empirically confirm the existence of this alignment, analyze its behavior in comparison to explicitly designed alignment models, and demonstrate its potential for language-specific manipulation without semantic degradation. Building on these findings, we propose Inference-Time Language Control (ITLC), a novel method that leverages latent injection to enable precise cross-lingual language control and mitigate language confusion in LLMs. Our experiments highlight ITLC's strong cross-lingual control capabilities while preserving semantic integrity in target languages. Furthermore, we demonstrate its effectiveness in alleviating the cross-lingual language confusion problem, which persists even in current large-scale LLMs, leading to inconsistent language generation. This work advances our understanding of representation alignment in LLMs and introduces a practical solution for enhancing their cross-lingual performance.
Backtracing: Retrieving the Cause of the Query
Many online content portals allow users to ask questions to supplement their understanding (e.g., of lectures). While information retrieval (IR) systems may provide answers for such user queries, they do not directly assist content creators -- such as lecturers who want to improve their content -- identify segments that _caused_ a user to ask those questions. We introduce the task of backtracing, in which systems retrieve the text segment that most likely caused a user query. We formalize three real-world domains for which backtracing is important in improving content delivery and communication: understanding the cause of (a) student confusion in the Lecture domain, (b) reader curiosity in the News Article domain, and (c) user emotion in the Conversation domain. We evaluate the zero-shot performance of popular information retrieval methods and language modeling methods, including bi-encoder, re-ranking and likelihood-based methods and ChatGPT. While traditional IR systems retrieve semantically relevant information (e.g., details on "projection matrices" for a query "does projecting multiple times still lead to the same point?"), they often miss the causally relevant context (e.g., the lecturer states "projecting twice gets me the same answer as one projection"). Our results show that there is room for improvement on backtracing and it requires new retrieval approaches. We hope our benchmark serves to improve future retrieval systems for backtracing, spawning systems that refine content generation and identify linguistic triggers influencing user queries. Our code and data are open-sourced: https://github.com/rosewang2008/backtracing.
Modeling Complex Mathematical Reasoning via Large Language Model based MathAgent
Large language models (LLMs) face challenges in solving complex mathematical problems that require comprehensive capacities to parse the statements, associate domain knowledge, perform compound logical reasoning, and integrate the intermediate rationales. Tackling all these problems once could be arduous for LLMs, thus leading to confusion in generation. In this work, we explore the potential of enhancing LLMs with agents by meticulous decomposition and modeling of mathematical reasoning process. Specifically, we propose a formal description of the mathematical solving and extend LLMs with an agent-based zero-shot framework named Planner-Reasoner-Executor-Reflector (PRER). We further provide and implement two MathAgents that define the logical forms and inherent relations via a pool of actions in different grains and orientations: MathAgent-M adapts its actions to LLMs, while MathAgent-H aligns with humankind. Experiments on miniF2F and MATH have demonstrated the effectiveness of PRER and proposed MathAgents, achieving an increase of 12.3%(53.9%66.2%) on the MiniF2F, 9.2% (49.8%59.0%) on MATH, and 13.2%(23.2%35.4%) for level-5 problems of MATH against GPT-4. Further analytical results provide more insightful perspectives on exploiting the behaviors of LLMs as agents.
Balanced Multi-Task Attention for Satellite Image Classification: A Systematic Approach to Achieving 97.23% Accuracy on EuroSAT Without Pre-Training
This work presents a systematic investigation of custom convolutional neural network architectures for satellite land use classification, achieving 97.23% test accuracy on the EuroSAT dataset without reliance on pre-trained models. Through three progressive architectural iterations (baseline: 94.30%, CBAM-enhanced: 95.98%, and balanced multi-task attention: 97.23%) we identify and address specific failure modes in satellite imagery classification. Our principal contribution is a novel balanced multi-task attention mechanism that combines Coordinate Attention for spatial feature extraction with Squeeze-Excitation blocks for spectral feature extraction, unified through a learnable fusion parameter. Experimental results demonstrate that this learnable parameter autonomously converges to alpha approximately 0.57, indicating near-equal importance of spatial and spectral modalities for satellite imagery. We employ progressive DropBlock regularization (5-20% by network depth) and class-balanced loss weighting to address overfitting and confusion pattern imbalance. The final 12-layer architecture achieves Cohen's Kappa of 0.9692 with all classes exceeding 94.46% accuracy, demonstrating confidence calibration with a 24.25% gap between correct and incorrect predictions. Our approach achieves performance within 1.34% of fine-tuned ResNet-50 (98.57%) while requiring no external data, validating the efficacy of systematic architectural design for domain-specific applications. Complete code, trained models, and evaluation scripts are publicly available.
Training-free Test-time Improvement for Explainable Medical Image Classification
Deep learning-based medical image classification techniques are rapidly advancing in medical image analysis, making it crucial to develop accurate and trustworthy models that can be efficiently deployed across diverse clinical scenarios. Concept Bottleneck Models (CBMs), which first predict a set of explainable concepts from images and then perform classification based on these concepts, are increasingly being adopted for explainable medical image classification. However, the inherent explainability of CBMs introduces new challenges when deploying trained models to new environments. Variations in imaging protocols and staining methods may induce concept-level shifts, such as alterations in color distribution and scale. Furthermore, since CBM training requires explicit concept annotations, fine-tuning models solely with image-level labels could compromise concept prediction accuracy and faithfulness - a critical limitation given the high cost of acquiring expert-annotated concept labels in medical domains. To address these challenges, we propose a training-free confusion concept identification strategy. By leveraging minimal new data (e.g., 4 images per class) with only image-level labels, our approach enhances out-of-domain performance without sacrificing source domain accuracy through two key operations: masking misactivated confounding concepts and amplifying under-activated discriminative concepts. The efficacy of our method is validated on both skin and white blood cell images. Our code is available at: https://github.com/riverback/TF-TTI-XMed.
RelationBooth: Towards Relation-Aware Customized Object Generation
Customized image generation is crucial for delivering personalized content based on user-provided image prompts, aligning large-scale text-to-image diffusion models with individual needs. However, existing models often overlook the relationships between customized objects in generated images. Instead, this work addresses that gap by focusing on relation-aware customized image generation, which aims to preserve the identities from image prompts while maintaining the predicate relations described in text prompts. Specifically, we introduce RelationBooth, a framework that disentangles identity and relation learning through a well-curated dataset. Our training data consists of relation-specific images, independent object images containing identity information, and text prompts to guide relation generation. Then, we propose two key modules to tackle the two main challenges: generating accurate and natural relations, especially when significant pose adjustments are required, and avoiding object confusion in cases of overlap. First, we introduce a keypoint matching loss that effectively guides the model in adjusting object poses closely tied to their relationships. Second, we incorporate local features from the image prompts to better distinguish between objects, preventing confusion in overlapping cases. Extensive results on three benchmarks demonstrate the superiority of RelationBooth in generating precise relations while preserving object identities across a diverse set of objects and relations. The source code and trained models will be made available to the public.
G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks
Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution? In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: (1) high-performing, achieving superior results on MMLU with accuracy at 84.50% and on HumanEval with pass@1 at 89.90%; (2) task-adaptive, architecting communication protocols tailored to task difficulty, reducing token consumption by up to 95.33% on HumanEval; and (3) adversarially robust, defending against agent adversarial attacks with merely 0.3% accuracy drop.
PriorCLIP: Visual Prior Guided Vision-Language Model for Remote Sensing Image-Text Retrieval
Remote sensing image-text retrieval plays a crucial role in remote sensing interpretation, yet remains challenging under both closed-domain and open-domain scenarios due to semantic noise and domain shifts. To address these issues, we propose a visual prior-guided vision-language model, PriorCLIP, which leverages visual priors for unbiased representation learning and adaptive vision-language alignment. In the closed-domain setting, PriorCLIP introduces two Progressive Attention Encoder (PAE) structures: Spatial-PAE constructs a belief matrix with instruction embeddings to filter key features and mitigate semantic bias. At the same time, Temporal-PAE exploits cyclic activation across time steps to enhance text representation. For the open-domain setting, we design a two-stage prior representation learning strategy, consisting of large-scale pre-training on coarse-grained image-text pairs, followed by fine-tuning on fine-grained pairs using vision-instruction, which enables robust retrieval across long-tail concepts and vocabulary shifts. Furthermore, a cluster-based symmetric contrastive Attribution Loss is proposed to constrain inter-class relations and alleviate semantic confusion in the shared embedding space. Extensive experiments on RSICD and RSITMD benchmarks demonstrate that PriorCLIP achieves substantial improvements, outperforming existing methods by 4.9% and 4.0% in closed-domain retrieval, and by 7.3% and 9.4% in open-domain retrieval, respectively.
POSQA: Probe the World Models of LLMs with Size Comparisons
Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain but also involves interactions with the physical and social environment. With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding. Inspired by cognitive theories, we propose POSQA: a Physical Object Size Question Answering dataset with simple size comparison questions to examine the extremity and analyze the potential mechanisms of the embodied comprehension of the latest LLMs. We show that even the largest LLMs today perform poorly under the zero-shot setting. We then push their limits with advanced prompting techniques and external knowledge augmentation. Furthermore, we investigate whether their real-world comprehension primarily derives from contextual information or internal weights and analyse the impact of prompt formats and report bias of different objects. Our results show that real-world understanding that LLMs shaped from textual data can be vulnerable to deception and confusion by the surface form of prompts, which makes it less aligned with human behaviours.
TutorBench: A Benchmark To Assess Tutoring Capabilities Of Large Language Models
As students increasingly adopt large language models (LLMs) as learning aids, it is crucial to build models that are adept at handling the nuances of tutoring: they need to identify the core needs of students, be adaptive, provide personalized guidance, and be accurate. To this end, we introduce TutorBench, a dataset and evaluation benchmark designed to rigorously evaluate the core tutoring skills of LLMs. The dataset comprises 1,490 samples curated by human experts, focused on high-school and AP-level curricula. The samples are drawn from three common tutoring tasks: (i) generating adaptive explanations tailored to a student's confusion, (ii) providing actionable feedback on a student's work, and (iii) promoting active learning through effective hint generation. To account for the inherent complexity of tutoring, samples are accompanied by sample-specific rubrics which are used to judge model responses during evaluation. TutorBench uses a reliable and fine-grained automatic evaluation method that uses an LLM-judge and the sample-specific rubrics. We evaluate 16 frontier LLMs on TutorBench and present a detailed analysis of their performance and behavior. Our results show that none of the frontier LLMs achieve a score of greater than 56%, showing a large room for improvement. We find that LLMs fall short in exhibiting the full range of tutoring skills needed to guide, diagnose, and support students effectively, with all the frontier models achieving less than a 60% pass rate on rubric criteria related to these skills. We also find that different model families exhibit varied strengths and limitations: the Claude models outperform others in supporting active learning, while they lag behind in the other two use cases. By releasing TutorBench, we provide a comprehensive and unsaturated benchmark to guide the development of the next-generation of AI tutors.
MotionFlow:Learning Implicit Motion Flow for Complex Camera Trajectory Control in Video Generation
Generating videos guided by camera trajectories poses significant challenges in achieving consistency and generalizability, particularly when both camera and object motions are present. Existing approaches often attempt to learn these motions separately, which may lead to confusion regarding the relative motion between the camera and the objects. To address this challenge, we propose a novel approach that integrates both camera and object motions by converting them into the motion of corresponding pixels. Utilizing a stable diffusion network, we effectively learn reference motion maps in relation to the specified camera trajectory. These maps, along with an extracted semantic object prior, are then fed into an image-to-video network to generate the desired video that can accurately follow the designated camera trajectory while maintaining consistent object motions. Extensive experiments verify that our model outperforms SOTA methods by a large margin.
LECTOR: LLM-Enhanced Concept-based Test-Oriented Repetition for Adaptive Spaced Learning
Spaced repetition systems are fundamental to efficient learning and memory retention, but existing algorithms often struggle with semantic interference and personalized adaptation. We present LECTOR (LLM-Enhanced Concept-based Test-Oriented Repetition), a novel adaptive scheduling algorithm specifically designed for test-oriented learning scenarios, particularly language examinations where success rate is paramount. LECTOR leverages large language models for semantic analysis while incorporating personalized learning profiles, addressing the critical challenge of semantic confusion in vocabulary learning by utilizing LLM-powered semantic similarity assessment and integrating it with established spaced repetition principles. Our comprehensive evaluation against six baseline algorithms (SSP-MMC, SM2, HLR, FSRS, ANKI, THRESHOLD) across 100 simulated learners over 100 days demonstrates significant improvements: LECTOR achieves a 90.2\% success rate compared to 88.4\% for the best baseline (SSP-MMC), representing a 2.0\% relative improvement. The algorithm shows particular strength in handling semantically similar concepts, reducing confusion-induced errors while maintaining computational efficiency. Our results establish LECTOR as a promising direction for intelligent tutoring systems and adaptive learning platforms.
From Generation to Detection: A Multimodal Multi-Task Dataset for Benchmarking Health Misinformation
Infodemics and health misinformation have significant negative impact on individuals and society, exacerbating confusion and increasing hesitancy in adopting recommended health measures. Recent advancements in generative AI, capable of producing realistic, human like text and images, have significantly accelerated the spread and expanded the reach of health misinformation, resulting in an alarming surge in its dissemination. To combat the infodemics, most existing work has focused on developing misinformation datasets from social media and fact checking platforms, but has faced limitations in topical coverage, inclusion of AI generation, and accessibility of raw content. To address these issues, we present MM Health, a large scale multimodal misinformation dataset in the health domain consisting of 34,746 news article encompassing both textual and visual information. MM Health includes human-generated multimodal information (5,776 articles) and AI generated multimodal information (28,880 articles) from various SOTA generative AI models. Additionally, We benchmarked our dataset against three tasks (reliability checks, originality checks, and fine-grained AI detection) demonstrating that existing SOTA models struggle to accurately distinguish the reliability and origin of information. Our dataset aims to support the development of misinformation detection across various health scenarios, facilitating the detection of human and machine generated content at multimodal levels.
Line of Duty: Evaluating LLM Self-Knowledge via Consistency in Feasibility Boundaries
As LLMs grow more powerful, their most profound achievement may be recognising when to say "I don't know". Existing studies on LLM self-knowledge have been largely constrained by human-defined notions of feasibility, often neglecting the reasons behind unanswerability by LLMs and failing to study deficient types of self-knowledge. This study aims to obtain intrinsic insights into different types of LLM self-knowledge with a novel methodology: allowing them the flexibility to set their own feasibility boundaries and then analysing the consistency of these limits. We find that even frontier models like GPT-4o and Mistral Large are not sure of their own capabilities more than 80% of the time, highlighting a significant lack of trustworthiness in responses. Our analysis of confidence balance in LLMs indicates that models swing between overconfidence and conservatism in feasibility boundaries depending on task categories and that the most significant self-knowledge weaknesses lie in temporal awareness and contextual understanding. These difficulties in contextual comprehension additionally lead models to question their operational boundaries, resulting in considerable confusion within the self-knowledge of LLMs. We make our code and results available publicly at https://github.com/knowledge-verse-ai/LLM-Self_Knowledge_Eval
Few-shot Open Relation Extraction with Gaussian Prototype and Adaptive Margin
Few-shot relation extraction with none-of-the-above (FsRE with NOTA) aims at predicting labels in few-shot scenarios with unknown classes. FsRE with NOTA is more challenging than the conventional few-shot relation extraction task, since the boundaries of unknown classes are complex and difficult to learn. Meta-learning based methods, especially prototype-based methods, are the mainstream solutions to this task. They obtain the classification boundary by learning the sample distribution of each class. However, their performance is limited because few-shot overfitting and NOTA boundary confusion lead to misclassification between known and unknown classes. To this end, we propose a novel framework based on Gaussian prototype and adaptive margin named GPAM for FsRE with NOTA, which includes three modules, semi-factual representation, GMM-prototype metric learning and decision boundary learning. The first two modules obtain better representations to solve the few-shot problem through debiased information enhancement and Gaussian space distance measurement. The third module learns more accurate classification boundaries and prototypes through adaptive margin and negative sampling. In the training procedure of GPAM, we use contrastive learning loss to comprehensively consider the effects of range and margin on the classification of known and unknown classes to ensure the model's stability and robustness. Sufficient experiments and ablations on the FewRel dataset show that GPAM surpasses previous prototype methods and achieves state-of-the-art performance.
Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning
Recently, leveraging pre-training techniques to enhance point cloud models has become a prominent research topic. However, existing approaches typically require full fine-tuning of pre-trained models to achieve satisfactory performance on downstream tasks, which is storage-intensive and computationally demanding. To address this issue, we propose a novel Parameter-Efficient Fine-Tuning (PEFT) method for point cloud, called PointGST (Point cloud Graph Spectral Tuning). PointGST freezes the pre-trained model and introduces a lightweight, trainable Point Cloud Spectral Adapter (PCSA) for fine-tuning parameters in the spectral domain. The core idea is built on two observations: 1) The inner tokens from frozen models might present confusion in the spatial domain; 2) Task-specific intrinsic information is important for transferring the general knowledge to the downstream task. Specifically, PointGST transfers the point tokens from the spatial domain to the spectral domain, effectively de-correlating confusion among tokens by using orthogonal components for separation. Moreover, the generated spectral basis involves intrinsic information about the downstream point clouds, enabling more targeted tuning. As a result, PointGST facilitates the efficient transfer of general knowledge to downstream tasks while significantly reducing training costs. Extensive experiments on challenging point cloud datasets across various tasks demonstrate that PointGST not only outperforms its fully fine-tuning counterpart but also significantly reduces trainable parameters, making it a promising solution for efficient point cloud learning. The code will be made available at https://github.com/jerryfeng2003/PointGST
PS-TTL: Prototype-based Soft-labels and Test-Time Learning for Few-shot Object Detection
In recent years, Few-Shot Object Detection (FSOD) has gained widespread attention and made significant progress due to its ability to build models with a good generalization power using extremely limited annotated data. The fine-tuning based paradigm is currently dominating this field, where detectors are initially pre-trained on base classes with sufficient samples and then fine-tuned on novel ones with few samples, but the scarcity of labeled samples of novel classes greatly interferes precisely fitting their data distribution, thus hampering the performance. To address this issue, we propose a new framework for FSOD, namely Prototype-based Soft-labels and Test-Time Learning (PS-TTL). Specifically, we design a Test-Time Learning (TTL) module that employs a mean-teacher network for self-training to discover novel instances from test data, allowing detectors to learn better representations and classifiers for novel classes. Furthermore, we notice that even though relatively low-confidence pseudo-labels exhibit classification confusion, they still tend to recall foreground. We thus develop a Prototype-based Soft-labels (PS) strategy through assessing similarities between low-confidence pseudo-labels and category prototypes as soft-labels to unleash their potential, which substantially mitigates the constraints posed by few-shot samples. Extensive experiments on both the VOC and COCO benchmarks show that PS-TTL achieves the state-of-the-art, highlighting its effectiveness. The code and model are available at https://github.com/gaoyingjay/PS-TTL.
Out of Length Text Recognition with Sub-String Matching
Scene Text Recognition (STR) methods have demonstrated robust performance in word-level text recognition. However, in real applications the text image is sometimes long due to detected with multiple horizontal words. It triggers the requirement to build long text recognition models from readily available short (i.e., word-level) text datasets, which has been less studied previously. In this paper, we term this task Out of Length (OOL) text recognition. We establish the first Long Text Benchmark (LTB) to facilitate the assessment of different methods in long text recognition. Meanwhile, we propose a novel method called OOL Text Recognition with sub-String Matching (SMTR). SMTR comprises two cross-attention-based modules: one encodes a sub-string containing multiple characters into next and previous queries, and the other employs the queries to attend to the image features, matching the sub-string and simultaneously recognizing its next and previous character. SMTR can recognize text of arbitrary length by iterating the process above. To avoid being trapped in recognizing highly similar sub-strings, we introduce a regularization training to compel SMTR to effectively discover subtle differences between similar sub-strings for precise matching. In addition, we propose an inference augmentation strategy to alleviate confusion caused by identical sub-strings in the same text and improve the overall recognition efficiency. Extensive experimental results reveal that SMTR, even when trained exclusively on short text, outperforms existing methods in public short text benchmarks and exhibits a clear advantage on LTB. Code: https://github.com/Topdu/OpenOCR.
Let the Code LLM Edit Itself When You Edit the Code
In this work, we investigate a typical scenario in code generation where a developer edits existing code in real time and requests a code assistant, e.g., a large language model, to re-predict the next token or next line on the fly. Naively, the LLM needs to re-encode the entire KV cache to provide an accurate prediction. However, this process is computationally expensive, especially when the sequence length is long. Simply encoding the edited subsequence and integrating it to the original KV cache meets the temporal confusion problem, leading to significantly worse performance. We address this efficiency and accuracy trade-off by introducing \textbf{Positional \textbf{Integrity Encoding} (PIE). Building upon the rotary positional encoding, PIE first removes the rotary matrices in the Key cache that introduce temporal confusion and then reapplies the correct rotary matrices. This process ensures that positional relationships between tokens are correct and requires only a single round of matrix multiplication. We validate the effectiveness of PIE through extensive experiments on the RepoBench-C-8k dataset, utilizing DeepSeek-Coder models with 1.3B, 6.7B, and 33B parameters. Our evaluation includes three real-world coding tasks: code insertion, code deletion, and multi-place code editing. Results demonstrate that PIE reduces computational overhead by over 85% compared to the standard full recomputation approach across all model sizes and tasks while well approximating the model performance.
LCS: A Language Converter Strategy for Zero-Shot Neural Machine Translation
Multilingual neural machine translation models generally distinguish translation directions by the language tag (LT) in front of the source or target sentences. However, current LT strategies cannot indicate the desired target language as expected on zero-shot translation, i.e., the off-target issue. Our analysis reveals that the indication of the target language is sensitive to the placement of the target LT. For example, when placing the target LT on the decoder side, the indication would rapidly degrade along with decoding steps, while placing the target LT on the encoder side would lead to copying or paraphrasing the source input. To address the above issues, we propose a simple yet effective strategy named Language Converter Strategy (LCS). By introducing the target language embedding into the top encoder layers, LCS mitigates confusion in the encoder and ensures stable language indication for the decoder. Experimental results on MultiUN, TED, and OPUS-100 datasets demonstrate that LCS could significantly mitigate the off-target issue, with language accuracy up to 95.28%, 96.21%, and 85.35% meanwhile outperforming the vanilla LT strategy by 3.07, 3,3, and 7.93 BLEU scores on zero-shot translation, respectively.
DANCER: Entity Description Augmented Named Entity Corrector for Automatic Speech Recognition
End-to-end automatic speech recognition (E2E ASR) systems often suffer from mistranscription of domain-specific phrases, such as named entities, sometimes leading to catastrophic failures in downstream tasks. A family of fast and lightweight named entity correction (NEC) models for ASR have recently been proposed, which normally build on phonetic-level edit distance algorithms and have shown impressive NEC performance. However, as the named entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated; for example, homophone ambiguities increase substantially. In view of this, we proposed a novel Description Augmented Named entity CorrEctoR (dubbed DANCER), which leverages entity descriptions to provide additional information to facilitate mitigation of phonetic confusion for NEC on ASR transcription. To this end, an efficient entity description augmented masked language model (EDA-MLM) comprised of a dense retrieval model is introduced, enabling MLM to adapt swiftly to domain-specific entities for the NEC task. A series of experiments conducted on the AISHELL-1 and Homophone datasets confirm the effectiveness of our modeling approach. DANCER outperforms a strong baseline, the phonetic edit-distance-based NEC model (PED-NEC), by a character error rate (CER) reduction of about 7% relatively on AISHELL-1 for named entities. More notably, when tested on Homophone that contain named entities of high phonetic confusion, DANCER offers a more pronounced CER reduction of 46% relatively over PED-NEC for named entities.
SelfSwapper: Self-Supervised Face Swapping via Shape Agnostic Masked AutoEncoder
Face swapping has gained significant attention for its varied applications. The majority of previous face swapping approaches have relied on the seesaw game training scheme, which often leads to the instability of the model training and results in undesired samples with blended identities due to the target identity leakage problem. This paper introduces the Shape Agnostic Masked AutoEncoder (SAMAE) training scheme, a novel self-supervised approach designed to enhance face swapping model training. Our training scheme addresses the limitations of traditional training methods by circumventing the conventional seesaw game and introducing clear ground truth through its self-reconstruction training regime. It effectively mitigates identity leakage by masking facial regions of the input images and utilizing learned disentangled identity and non-identity features. Additionally, we tackle the shape misalignment problem with new techniques including perforation confusion and random mesh scaling, and establishes a new state-of-the-art, surpassing other baseline methods, preserving both identity and non-identity attributes, without sacrificing on either aspect.
Meta-ZSDETR: Zero-shot DETR with Meta-learning
Zero-shot object detection aims to localize and recognize objects of unseen classes. Most of existing works face two problems: the low recall of RPN in unseen classes and the confusion of unseen classes with background. In this paper, we present the first method that combines DETR and meta-learning to perform zero-shot object detection, named Meta-ZSDETR, where model training is formalized as an individual episode based meta-learning task. Different from Faster R-CNN based methods that firstly generate class-agnostic proposals, and then classify them with visual-semantic alignment module, Meta-ZSDETR directly predict class-specific boxes with class-specific queries and further filter them with the predicted accuracy from classification head. The model is optimized with meta-contrastive learning, which contains a regression head to generate the coordinates of class-specific boxes, a classification head to predict the accuracy of generated boxes, and a contrastive head that utilizes the proposed contrastive-reconstruction loss to further separate different classes in visual space. We conduct extensive experiments on two benchmark datasets MS COCO and PASCAL VOC. Experimental results show that our method outperforms the existing ZSD methods by a large margin.
An Error-Guided Correction Model for Chinese Spelling Error Correction
Although existing neural network approaches have achieved great success on Chinese spelling correction, there is still room to improve. The model is required to avoid over-correction and to distinguish a correct token from its phonological and visually similar ones. In this paper, we propose an error-guided correction model (EGCM) to improve Chinese spelling correction. By borrowing the powerful ability of BERT, we propose a novel zero-shot error detection method to do a preliminary detection, which guides our model to attend more on the probably wrong tokens in encoding and to avoid modifying the correct tokens in generating. Furthermore, we introduce a new loss function to integrate the error confusion set, which enables our model to distinguish easily misused tokens. Moreover, our model supports highly parallel decoding to meet real application requirements. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art approaches by a remarkable margin, on both the correction quality and computation speed.
CDConv: A Benchmark for Contradiction Detection in Chinese Conversations
Dialogue contradiction is a critical issue in open-domain dialogue systems. The contextualization nature of conversations makes dialogue contradiction detection rather challenging. In this work, we propose a benchmark for Contradiction Detection in Chinese Conversations, namely CDConv. It contains 12K multi-turn conversations annotated with three typical contradiction categories: Intra-sentence Contradiction, Role Confusion, and History Contradiction. To efficiently construct the CDConv conversations, we devise a series of methods for automatic conversation generation, which simulate common user behaviors that trigger chatbots to make contradictions. We conduct careful manual quality screening of the constructed conversations and show that state-of-the-art Chinese chatbots can be easily goaded into making contradictions. Experiments on CDConv show that properly modeling contextual information is critical for dialogue contradiction detection, but there are still unresolved challenges that require future research.
SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation
Conventional point cloud semantic segmentation methods usually employ an encoder-decoder architecture, where mid-level features are locally aggregated to extract geometric information. However, the over-reliance on these class-agnostic local geometric representations may raise confusion between local parts from different categories that are similar in appearance or spatially adjacent. To address this issue, we argue that mid-level features can be further enhanced with semantic information, and propose semantic-affine transformation that transforms features of mid-level points belonging to different categories with class-specific affine parameters. Based on this technique, we propose SemAffiNet for point cloud semantic segmentation, which utilizes the attention mechanism in the Transformer module to implicitly and explicitly capture global structural knowledge within local parts for overall comprehension of each category. We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets, and evaluate semantic-affine transformation on various 3D point cloud and 2D image segmentation baselines, where both qualitative and quantitative results demonstrate the superiority and generalization ability of our proposed approach. Code is available at https://github.com/wangzy22/SemAffiNet.
Mask is All You Need: Rethinking Mask R-CNN for Dense and Arbitrary-Shaped Scene Text Detection
Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. The first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the "deconv-conv" decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.
Towards Understanding Grokking: An Effective Theory of Representation Learning
We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations whose training dynamics and dependence on training set size can be predicted by our effective theory in a toy setting. We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. We find on transformers the grokking phase stays closer to the memorization phase (compared to the comprehension phase), leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.
Latent space representation for multi-target speaker detection and identification with a sparse dataset using Triplet neural networks
We present an approach to tackle the speaker recognition problem using Triplet Neural Networks. Currently, the i-vector representation with probabilistic linear discriminant analysis (PLDA) is the most commonly used technique to solve this problem, due to high classification accuracy with a relatively short computation time. In this paper, we explore a neural network approach, namely Triplet Neural Networks (TNNs), to built a latent space for different classifiers to solve the Multi-Target Speaker Detection and Identification Challenge Evaluation 2018 (MCE 2018) dataset. This training set contains i-vectors from 3,631 speakers, with only 3 samples for each speaker, thus making speaker recognition a challenging task. When using the train and development set for training both the TNN and baseline model (i.e., similarity evaluation directly on the i-vector representation), our proposed model outperforms the baseline by 23%. When reducing the training data to only using the train set, our method results in 309 confusions for the Multi-target speaker identification task, which is 46% better than the baseline model. These results show that the representational power of TNNs is especially evident when training on small datasets with few instances available per class.
Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction
Universal Information Extraction (UIE) has garnered significant attention due to its ability to address model explosion problems effectively. Extractive UIE can achieve strong performance using a relatively small model, making it widely adopted. Extractive UIEs generally rely on task instructions for different tasks, including single-target instructions and multiple-target instructions. Single-target instruction UIE enables the extraction of only one type of relation at a time, limiting its ability to model correlations between relations and thus restricting its capability to extract complex relations. While multiple-target instruction UIE allows for the extraction of multiple relations simultaneously, the inclusion of irrelevant relations introduces decision complexity and impacts extraction accuracy. Therefore, for multi-relation extraction, we propose LDNet, which incorporates multi-aspect relation modeling and a label drop mechanism. By assigning different relations to different levels for understanding and decision-making, we reduce decision confusion. Additionally, the label drop mechanism effectively mitigates the impact of irrelevant relations. Experiments show that LDNet outperforms or achieves competitive performance with state-of-the-art systems on 9 tasks, 33 datasets, in both single-modal and multi-modal, few-shot and zero-shot settings.https://github.com/Lu-Yang666/LDNet
AI-generated Text Detection with a GLTR-based Approach
The rise of LLMs (Large Language Models) has contributed to the improved performance and development of cutting-edge NLP applications. However, these can also pose risks when used maliciously, such as spreading fake news, harmful content, impersonating individuals, or facilitating school plagiarism, among others. This is because LLMs can generate high-quality texts, which are challenging to differentiate from those written by humans. GLTR, which stands for Giant Language Model Test Room and was developed jointly by the MIT-IBM Watson AI Lab and HarvardNLP, is a visual tool designed to help detect machine-generated texts based on GPT-2, that highlights the words in text depending on the probability that they were machine-generated. One limitation of GLTR is that the results it returns can sometimes be ambiguous and lead to confusion. This study aims to explore various ways to improve GLTR's effectiveness for detecting AI-generated texts within the context of the IberLef-AuTexTification 2023 shared task, in both English and Spanish languages. Experiment results show that our GLTR-based GPT-2 model overcomes the state-of-the-art models on the English dataset with a macro F1-score of 80.19%, except for the first ranking model (80.91%). However, for the Spanish dataset, we obtained a macro F1-score of 66.20%, which differs by 4.57% compared to the top-performing model.
Character-Adapter: Prompt-Guided Region Control for High-Fidelity Character Customization
Customized image generation, which seeks to synthesize images with consistent characters, holds significant relevance for applications such as storytelling, portrait generation, and character design. However, previous approaches have encountered challenges in preserving characters with high-fidelity consistency due to inadequate feature extraction and concept confusion of reference characters. Therefore, we propose Character-Adapter, a plug-and-play framework designed to generate images that preserve the details of reference characters, ensuring high-fidelity consistency. Character-Adapter employs prompt-guided segmentation to ensure fine-grained regional features of reference characters and dynamic region-level adapters to mitigate concept confusion. Extensive experiments are conducted to validate the effectiveness of Character-Adapter. Both quantitative and qualitative results demonstrate that Character-Adapter achieves the state-of-the-art performance of consistent character generation, with an improvement of 24.8% compared with other methods. Our code will be released at https://github.com/Character-Adapter/Character-Adapte
Linking Theories and Methods in Cognitive Sciences via Joint Embedding of the Scientific Literature: The Example of Cognitive Control
Traditionally, theory and practice of Cognitive Control are linked via literature reviews by human domain experts. This approach, however, is inadequate to track the ever-growing literature. It may also be biased, and yield redundancies and confusion. Here we present an alternative approach. We performed automated text analyses on a large body of scientific texts to create a joint representation of tasks and constructs. More specifically, 385,705 scientific abstracts were first mapped into an embedding space using a transformers-based language model. Document embeddings were then used to identify a task-construct graph embedding that grounds constructs on tasks and supports nuanced meaning of the constructs by taking advantage of constrained random walks in the graph. This joint task-construct graph embedding, can be queried to generate task batteries targeting specific constructs, may reveal knowledge gaps in the literature, and inspire new tasks and novel hypotheses.
Uni-Encoder: A Fast and Accurate Response Selection Paradigm for Generation-Based Dialogue Systems
Sample-and-rank is a key decoding strategy for modern generation-based dialogue systems. It helps achieve diverse and high-quality responses by selecting an answer from a small pool of generated candidates. The current state-of-the-art ranking methods mainly use an encoding paradigm called Cross-Encoder, which separately encodes each context-candidate pair and ranks the candidates according to their fitness scores. However, Cross-Encoder repeatedly encodes the same lengthy context for each candidate, resulting in high computational costs. Poly-Encoder addresses the above problems by reducing the interaction between context and candidates, but with a price of performance drop. In this work, we develop a new paradigm called Uni-Encoder, that keeps the full attention over each pair as in Cross-Encoder while only encoding the context once, as in Poly-Encoder. Uni-Encoder encodes all the candidates with the context in one forward pass. We use the same positional embedding for all candidates to ensure they are treated equally and design a new attention mechanism to avoid confusion. Our Uni-Encoder can simulate other ranking paradigms using different attention and response concatenation methods. Extensive experiments show that our proposed paradigm achieves new state-of-the-art results on four benchmark datasets with high computational efficiency. For instance, it improves R10@1 by 2.9% with an approximately 4X faster inference speed on the Ubuntu V2 dataset.
DriveAdapter: Breaking the Coupling Barrier of Perception and Planning in End-to-End Autonomous Driving
End-to-end autonomous driving aims to build a fully differentiable system that takes raw sensor data as inputs and directly outputs the planned trajectory or control signals of the ego vehicle. State-of-the-art methods usually follow the `Teacher-Student' paradigm. The Teacher model uses privileged information (ground-truth states of surrounding agents and map elements) to learn the driving strategy. The student model only has access to raw sensor data and conducts behavior cloning on the data collected by the teacher model. By eliminating the noise of the perception part during planning learning, state-of-the-art works could achieve better performance with significantly less data compared to those coupled ones. However, under the current Teacher-Student paradigm, the student model still needs to learn a planning head from scratch, which could be challenging due to the redundant and noisy nature of raw sensor inputs and the casual confusion issue of behavior cloning. In this work, we aim to explore the possibility of directly adopting the strong teacher model to conduct planning while letting the student model focus more on the perception part. We find that even equipped with a SOTA perception model, directly letting the student model learn the required inputs of the teacher model leads to poor driving performance, which comes from the large distribution gap between predicted privileged inputs and the ground-truth. To this end, we propose DriveAdapter, which employs adapters with the feature alignment objective function between the student (perception) and teacher (planning) modules. Additionally, since the pure learning-based teacher model itself is imperfect and occasionally breaks safety rules, we propose a method of action-guided feature learning with a mask for those imperfect teacher features to further inject the priors of hand-crafted rules into the learning process.
Seeing is not always believing: Benchmarking Human and Model Perception of AI-Generated Images
Photos serve as a way for humans to record what they experience in their daily lives, and they are often regarded as trustworthy sources of information. However, there is a growing concern that the advancement of artificial intelligence (AI) technology may produce fake photos, which can create confusion and diminish trust in photographs. This study aims to comprehensively evaluate agents for distinguishing state-of-the-art AI-generated visual content. Our study benchmarks both human capability and cutting-edge fake image detection AI algorithms, using a newly collected large-scale fake image dataset Fake2M. In our human perception evaluation, titled HPBench, we discovered that humans struggle significantly to distinguish real photos from AI-generated ones, with a misclassification rate of 38.7%. Along with this, we conduct the model capability of AI-Generated images detection evaluation MPBench and the top-performing model from MPBench achieves a 13% failure rate under the same setting used in the human evaluation. We hope that our study can raise awareness of the potential risks of AI-generated images and facilitate further research to prevent the spread of false information. More information can refer to https://github.com/Inf-imagine/Sentry.
ImGeoNet: Image-induced Geometry-aware Voxel Representation for Multi-view 3D Object Detection
We propose ImGeoNet, a multi-view image-based 3D object detection framework that models a 3D space by an image-induced geometry-aware voxel representation. Unlike previous methods which aggregate 2D features into 3D voxels without considering geometry, ImGeoNet learns to induce geometry from multi-view images to alleviate the confusion arising from voxels of free space, and during the inference phase, only images from multiple views are required. Besides, a powerful pre-trained 2D feature extractor can be leveraged by our representation, leading to a more robust performance. To evaluate the effectiveness of ImGeoNet, we conduct quantitative and qualitative experiments on three indoor datasets, namely ARKitScenes, ScanNetV2, and ScanNet200. The results demonstrate that ImGeoNet outperforms the current state-of-the-art multi-view image-based method, ImVoxelNet, on all three datasets in terms of detection accuracy. In addition, ImGeoNet shows great data efficiency by achieving results comparable to ImVoxelNet with 100 views while utilizing only 40 views. Furthermore, our studies indicate that our proposed image-induced geometry-aware representation can enable image-based methods to attain superior detection accuracy than the seminal point cloud-based method, VoteNet, in two practical scenarios: (1) scenarios where point clouds are sparse and noisy, such as in ARKitScenes, and (2) scenarios involve diverse object classes, particularly classes of small objects, as in the case in ScanNet200.
Online Prototype Learning for Online Continual Learning
Online continual learning (CL) studies the problem of learning continuously from a single-pass data stream while adapting to new data and mitigating catastrophic forgetting. Recently, by storing a small subset of old data, replay-based methods have shown promising performance. Unlike previous methods that focus on sample storage or knowledge distillation against catastrophic forgetting, this paper aims to understand why the online learning models fail to generalize well from a new perspective of shortcut learning. We identify shortcut learning as the key limiting factor for online CL, where the learned features may be biased, not generalizable to new tasks, and may have an adverse impact on knowledge distillation. To tackle this issue, we present the online prototype learning (OnPro) framework for online CL. First, we propose online prototype equilibrium to learn representative features against shortcut learning and discriminative features to avoid class confusion, ultimately achieving an equilibrium status that separates all seen classes well while learning new classes. Second, with the feedback of online prototypes, we devise a novel adaptive prototypical feedback mechanism to sense the classes that are easily misclassified and then enhance their boundaries. Extensive experimental results on widely-used benchmark datasets demonstrate the superior performance of OnPro over the state-of-the-art baseline methods. Source code is available at https://github.com/weilllllls/OnPro.
End-to-end Autonomous Driving: Challenges and Frontiers
The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 250 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework. To facilitate future research, we maintain an active repository that contains up-to-date links to relevant literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.
Graph Matching with Bi-level Noisy Correspondence
In this paper, we study a novel and widely existing problem in graph matching (GM), namely, Bi-level Noisy Correspondence (BNC), which refers to node-level noisy correspondence (NNC) and edge-level noisy correspondence (ENC). In brief, on the one hand, due to the poor recognizability and viewpoint differences between images, it is inevitable to inaccurately annotate some keypoints with offset and confusion, leading to the mismatch between two associated nodes, i.e., NNC. On the other hand, the noisy node-to-node correspondence will further contaminate the edge-to-edge correspondence, thus leading to ENC. For the BNC challenge, we propose a novel method termed Contrastive Matching with Momentum Distillation. Specifically, the proposed method is with a robust quadratic contrastive loss which enjoys the following merits: i) better exploring the node-to-node and edge-to-edge correlations through a GM customized quadratic contrastive learning paradigm; ii) adaptively penalizing the noisy assignments based on the confidence estimated by the momentum teacher. Extensive experiments on three real-world datasets show the robustness of our model compared with 12 competitive baselines. The code is available at https://github.com/XLearning-SCU/2023-ICCV-COMMON.
Keep Me Updated! Memory Management in Long-term Conversations
Remembering important information from the past and continuing to talk about it in the present are crucial in long-term conversations. However, previous literature does not deal with cases where the memorized information is outdated, which may cause confusion in later conversations. To address this issue, we present a novel task and a corresponding dataset of memory management in long-term conversations, in which bots keep track of and bring up the latest information about users while conversing through multiple sessions. In order to support more precise and interpretable memory, we represent memory as unstructured text descriptions of key information and propose a new mechanism of memory management that selectively eliminates invalidated or redundant information. Experimental results show that our approach outperforms the baselines that leave the stored memory unchanged in terms of engagingness and humanness, with larger performance gap especially in the later sessions.
Sex Trouble: Common pitfalls in incorporating sex/gender in medical machine learning and how to avoid them
False assumptions about sex and gender are deeply embedded in the medical system, including that they are binary, static, and concordant. Machine learning researchers must understand the nature of these assumptions in order to avoid perpetuating them. In this perspectives piece, we identify three common mistakes that researchers make when dealing with sex/gender data: "sex confusion", the failure to identity what sex in a dataset does or doesn't mean; "sex obsession", the belief that sex, specifically sex assigned at birth, is the relevant variable for most applications; and "sex/gender slippage", the conflation of sex and gender even in contexts where only one or the other is known. We then discuss how these pitfalls show up in machine learning studies based on electronic health record data, which is commonly used for everything from retrospective analysis of patient outcomes to the development of algorithms to predict risk and administer care. Finally, we offer a series of recommendations about how machine learning researchers can produce both research and algorithms that more carefully engage with questions of sex/gender, better serving all patients, including transgender people.
Deep neural networks as nested dynamical systems
There is an analogy that is often made between deep neural networks and actual brains, suggested by the nomenclature itself: the "neurons" in deep neural networks should correspond to neurons (or nerve cells, to avoid confusion) in the brain. We claim, however, that this analogy doesn't even type check: it is structurally flawed. In agreement with the slightly glib summary of Hebbian learning as "cells that fire together wire together", this article makes the case that the analogy should be different. Since the "neurons" in deep neural networks are managing the changing weights, they are more akin to the synapses in the brain; instead, it is the wires in deep neural networks that are more like nerve cells, in that they are what cause the information to flow. An intuition that nerve cells seem like more than mere wires is exactly right, and is justified by a precise category-theoretic analogy which we will explore in this article. Throughout, we will continue to highlight the error in equating artificial neurons with nerve cells by leaving "neuron" in quotes or by calling them artificial neurons. We will first explain how to view deep neural networks as nested dynamical systems with a very restricted sort of interaction pattern, and then explain a more general sort of interaction for dynamical systems that is useful throughout engineering, but which fails to adapt to changing circumstances. As mentioned, an analogy is then forced upon us by the mathematical formalism in which they are both embedded. We call the resulting encompassing generalization deeply interacting learning systems: they have complex interaction as in control theory, but adaptation to circumstances as in deep neural networks.
