5 Good Intentions Beyond ACL: Who Does NLP for Social Good, and Where? The social impact of Natural Language Processing (NLP) is increasingly important, with a rising community focus on initiatives related to NLP for Social Good (NLP4SG). Indeed, in recent years, almost 20% of all papers in the ACL Anthology address topics related to social good as defined by the UN Sustainable Development Goals (Adauto et al., 2023). In this study, we take an author- and venue-level perspective to map the landscape of NLP4SG, quantifying the proportion of work addressing social good concerns both within and beyond the ACL community, by both core ACL contributors and non-ACL authors. With this approach we discover two surprising facts about the landscape of NLP4SG. First, ACL authors are dramatically more likely to do work addressing social good concerns when publishing in venues outside of ACL. Second, the vast majority of publications using NLP techniques to address concerns of social good are done by non-ACL authors in venues outside of ACL. We discuss the implications of these findings on agenda-setting considerations for the ACL community related to NLP4SG. 6 authors · Oct 5 2
- The ACL OCL Corpus: Advancing Open Science in Computational Linguistics We present ACL OCL, a scholarly corpus derived from the ACL Anthology to assist Open scientific research in the Computational Linguistics domain. Integrating and enhancing the previous versions of the ACL Anthology, the ACL OCL contributes metadata, PDF files, citation graphs and additional structured full texts with sections, figures, and links to a large knowledge resource (Semantic Scholar). The ACL OCL spans seven decades, containing 73K papers, alongside 210K figures. We spotlight how ACL OCL applies to observe trends in computational linguistics. By detecting paper topics with a supervised neural model, we note that interest in "Syntax: Tagging, Chunking and Parsing" is waning and "Natural Language Generation" is resurging. Our dataset is available from HuggingFace (https://huggingface.co/datasets/WINGNUS/ACL-OCL). 5 authors · May 24, 2023
- Structural Scaffolds for Citation Intent Classification in Scientific Publications Identifying the intent of a citation in scientific papers (e.g., background information, use of methods, comparing results) is critical for machine reading of individual publications and automated analysis of the scientific literature. We propose structural scaffolds, a multitask model to incorporate structural information of scientific papers into citations for effective classification of citation intents. Our model achieves a new state-of-the-art on an existing ACL anthology dataset (ACL-ARC) with a 13.3% absolute increase in F1 score, without relying on external linguistic resources or hand-engineered features as done in existing methods. In addition, we introduce a new dataset of citation intents (SciCite) which is more than five times larger and covers multiple scientific domains compared with existing datasets. Our code and data are available at: https://github.com/allenai/scicite. 4 authors · Apr 2, 2019