new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 27

zkBridge: Trustless Cross-chain Bridges Made Practical

Blockchains have seen growing traction with cryptocurrencies reaching a market cap of over 1 trillion dollars, major institution investors taking interests, and global impacts on governments, businesses, and individuals. Also growing significantly is the heterogeneity of the ecosystem where a variety of blockchains co-exist. Cross-chain bridge is a necessary building block in this multi-chain ecosystem. Existing solutions, however, either suffer from performance issues or rely on trust assumptions of committees that significantly lower the security. Recurring attacks against bridges have cost users more than 1.5 billion USD. In this paper, we introduce zkBridge, an efficient cross-chain bridge that guarantees strong security without external trust assumptions. With succinct proofs, zkBridge not only guarantees correctness, but also significantly reduces on-chain verification cost. We propose novel succinct proof protocols that are orders-of-magnitude faster than existing solutions for workload in zkBridge. With a modular design, zkBridge enables a broad spectrum of use cases and capabilities, including message passing, token transferring, and other computational logic operating on state changes from different chains. To demonstrate the practicality of zkBridge, we implemented a prototype bridge from Cosmos to Ethereum, a particularly challenging direction that involves large proof circuits that existing systems cannot efficiently handle. Our evaluation shows that zkBridge achieves practical performance: proof generation takes less than 20 seconds, while verifying proofs on-chain costs less than 230K gas. For completeness, we also implemented and evaluated the direction from Ethereum to other EVM-compatible chains (such as BSC) which involves smaller circuits and incurs much less overhead.

  • 8 authors
·
Oct 1, 2022

Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents

The integration of AI agents with Web3 ecosystems harnesses their complementary potential for autonomy and openness yet also introduces underexplored security risks, as these agents dynamically interact with financial protocols and immutable smart contracts. This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios. We introduce the concept of context manipulation, a comprehensive attack vector that exploits unprotected context surfaces, including input channels, memory modules, and external data feeds. Through empirical analysis of ElizaOS, a decentralized AI agent framework for automated Web3 operations, we demonstrate how adversaries can manipulate context by injecting malicious instructions into prompts or historical interaction records, leading to unintended asset transfers and protocol violations which could be financially devastating. To quantify these vulnerabilities, we design CrAIBench, a Web3 domain-specific benchmark that evaluates the robustness of AI agents against context manipulation attacks across 150+ realistic blockchain tasks, including token transfers, trading, bridges and cross-chain interactions and 500+ attack test cases using context manipulation. We systematically assess attack and defense strategies, analyzing factors like the influence of security prompts, reasoning models, and the effectiveness of alignment techniques. Our findings show that prompt-based defenses are insufficient when adversaries corrupt stored context, achieving significant attack success rates despite these defenses. Fine-tuning-based defenses offer a more robust alternative, substantially reducing attack success rates while preserving utility on single-step tasks. This research highlights the urgent need to develop AI agents that are both secure and fiduciarily responsible.

  • 5 authors
·
Mar 20

xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning

Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap.

  • 11 authors
·
Jan 13, 2024