new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 24

Ultra-Fast Language Generation via Discrete Diffusion Divergence Instruct

Fast and high-quality language generation is the holy grail that people pursue in the age of AI. In this work, we introduce Discrete Diffusion Divergence Instruct (DiDi-Instruct), a training-based method that initializes from a pre-trained (masked) discrete diffusion language model (dLLM) and distills a few-step student for fast generation. The resulting DiDi-Instruct model achieves comparable or superior performance to its dLLM teacher and the GPT-2 baseline while enabling up to 64times acceleration. The theoretical foundation of DiDi-Instruct is a novel framework based on integral KL-divergence minimization, which yields a practical training algorithm. We further introduce grouped reward normalization, intermediate-state matching, and the reward-guided ancestral sampler that significantly improve training stability, model coverage, and inference quality. On OpenWebText, DiDi-Instruct achieves perplexity from 62.2 (8 NFEs) to 18.4 (128 NFEs), which outperforms prior accelerated dLLMs and GPT-2 baseline. These gains come with a negligible entropy loss (around 1%) and reduce additional training wall-clock time by more than 20times compared to competing dLLM distillation methods. We further validate the robustness and effectiveness of DiDi-Instruct through extensive ablation studies, model scaling, and the generation of discrete protein sequences. In conclusion, DiDi-Instruct is an efficient yet effective distillation method, enabling language generation in the blink of an eye. We will release both code and models at github.com/haoyangzheng-ai/didi-instruct.

  • 8 authors
·
Sep 29

Ensemble-Instruct: Generating Instruction-Tuning Data with a Heterogeneous Mixture of LMs

Using in-context learning (ICL) for data generation, techniques such as Self-Instruct (Wang et al., 2023) or the follow-up Alpaca (Taori et al., 2023) can train strong conversational agents with only a small amount of human supervision. One limitation of these approaches is that they resort to very large language models (around 175B parameters) that are also proprietary and non-public. Here we explore the application of such techniques to language models that are much smaller (around 10B--40B parameters) and have permissive licenses. We find the Self-Instruct approach to be less effective at these sizes and propose new ICL methods that draw on two main ideas: (a) Categorization and simplification of the ICL templates to make prompt learning easier for the LM, and (b) Ensembling over multiple LM outputs to help select high-quality synthetic examples. Our algorithm leverages the 175 Self-Instruct seed tasks and employs separate pipelines for instructions that require an input and instructions that do not. Empirical investigations with different LMs show that: (1) Our proposed method yields higher-quality instruction tuning data than Self-Instruct, (2) It improves performances of both vanilla and instruction-tuned LMs by significant margins, and (3) Smaller instruction-tuned LMs generate more useful outputs than their larger un-tuned counterparts. Our codebase is available at https://github.com/IBM/ensemble-instruct.

  • 7 authors
·
Oct 21, 2023 2