Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeShared DIFF Transformer
DIFF Transformer improves attention allocation by enhancing focus on relevant context while suppressing noise. It introduces a differential attention mechanism that calculates the difference between two independently generated attention distributions, effectively reducing noise and promoting sparse attention patterns. However, the independent signal generation in DIFF Transformer results in parameter redundancy and suboptimal utilization of information. In this work, we propose Shared DIFF Transformer, which draws on the idea of a differential amplifier by introducing a shared base matrix to model global patterns and incorporating low-rank updates to enhance task-specific flexibility. This design significantly reduces parameter redundancy, improves efficiency, and retains strong noise suppression capabilities. Experimental results show that, compared to DIFF Transformer, our method achieves better performance in tasks such as long-sequence modeling, key information retrieval, and in-context learning. Our work provides a novel and efficient approach to optimizing differential attention mechanisms and advancing robust Transformer architectures.
Learning to Design Circuits
Analog IC design relies on human experts to search for parameters that satisfy circuit specifications with their experience and intuitions, which is highly labor intensive, time consuming and suboptimal. Machine learning is a promising tool to automate this process. However, supervised learning is difficult for this task due to the low availability of training data: 1) Circuit simulation is slow, thus generating large-scale dataset is time-consuming; 2) Most circuit designs are propitiatory IPs within individual IC companies, making it expensive to collect large-scale datasets. We propose Learning to Design Circuits (L2DC) to leverage reinforcement learning that learns to efficiently generate new circuits data and to optimize circuits. We fix the schematic, and optimize the parameters of the transistors automatically by training an RL agent with no prior knowledge about optimizing circuits. After iteratively getting observations, generating a new set of transistor parameters, getting a reward, and adjusting the model, L2DC is able to optimize circuits. We evaluate L2DC on two transimpedance amplifiers. Trained for a day, our RL agent can achieve comparable or better performance than human experts trained for a quarter. It first learns to meet hard-constraints (eg. gain, bandwidth), and then learns to optimize good-to-have targets (eg. area, power). Compared with grid search-aided human design, L2DC can achieve 250times higher sample efficiency with comparable performance. Under the same runtime constraint, the performance of L2DC is also better than Bayesian Optimization.
Exploring Quality and Generalizability in Parameterized Neural Audio Effects
Deep neural networks have shown promise for music audio signal processing applications, often surpassing prior approaches, particularly as end-to-end models in the waveform domain. Yet results to date have tended to be constrained by low sample rates, noise, narrow domains of signal types, and/or lack of parameterized controls (i.e. "knobs"), making their suitability for professional audio engineering workflows still lacking. This work expands on prior research published on modeling nonlinear time-dependent signal processing effects associated with music production by means of a deep neural network, one which includes the ability to emulate the parameterized settings you would see on an analog piece of equipment, with the goal of eventually producing commercially viable, high quality audio, i.e. 44.1 kHz sampling rate at 16-bit resolution. The results in this paper highlight progress in modeling these effects through architecture and optimization changes, towards increasing computational efficiency, lowering signal-to-noise ratio, and extending to a larger variety of nonlinear audio effects. Toward these ends, the strategies employed involved a three-pronged approach: model speed, model accuracy, and model generalizability. Most of the presented methods provide marginal or no increase in output accuracy over the original model, with the exception of dataset manipulation. We found that limiting the audio content of the dataset, for example using datasets of just a single instrument, provided a significant improvement in model accuracy over models trained on more general datasets.
Understanding Differential Transformer Unchains Pretrained Self-Attentions
Differential Transformer has recently gained significant attention for its impressive empirical performance, often attributed to its ability to perform noise canceled attention. However, precisely how differential attention achieves its empirical benefits remains poorly understood. Moreover, Differential Transformer architecture demands large-scale training from scratch, hindering utilization of open pretrained weights. In this work, we conduct an in-depth investigation of Differential Transformer, uncovering three key factors behind its success: (1) enhanced expressivity via negative attention, (2) reduced redundancy among attention heads, and (3) improved learning dynamics. Based on these findings, we propose DEX, a novel method to efficiently integrate the advantages of differential attention into pretrained language models. By reusing the softmax attention scores and adding a lightweight differential operation on the output value matrix, DEX effectively incorporates the key advantages of differential attention while remaining lightweight in both training and inference. Evaluations confirm that DEX substantially improves the pretrained LLMs across diverse benchmarks, achieving significant performance gains with minimal adaptation data (< 0.01%).
Differential Transformer
Transformer tends to overallocate attention to irrelevant context. In this work, we introduce Diff Transformer, which amplifies attention to the relevant context while canceling noise. Specifically, the differential attention mechanism calculates attention scores as the difference between two separate softmax attention maps. The subtraction cancels noise, promoting the emergence of sparse attention patterns. Experimental results on language modeling show that Diff Transformer outperforms Transformer in various settings of scaling up model size and training tokens. More intriguingly, it offers notable advantages in practical applications, such as long-context modeling, key information retrieval, hallucination mitigation, in-context learning, and reduction of activation outliers. By being less distracted by irrelevant context, Diff Transformer can mitigate hallucination in question answering and text summarization. For in-context learning, Diff Transformer not only enhances accuracy but is also more robust to order permutation, which was considered as a chronic robustness issue. The results position Diff Transformer as a highly effective and promising architecture to advance large language models.
Differential Mamba
Sequence models like Transformers and RNNs often overallocate attention to irrelevant context, leading to noisy intermediate representations. This degrades LLM capabilities by promoting hallucinations, weakening long-range and retrieval abilities, and reducing robustness. Recent work has shown that differential design can mitigate this issue in Transformers, improving their effectiveness across various applications. In this paper, we explore whether these techniques, originally developed for Transformers, can be applied to Mamba, a recent architecture based on selective state-space layers that achieves Transformer-level performance with greater efficiency. We show that a naive adaptation of differential design to Mamba is insufficient and requires careful architectural modifications. To address this, we introduce a novel differential mechanism for Mamba, empirically validated on language modeling benchmarks, demonstrating improved retrieval capabilities and superior performance over vanilla Mamba. Finally, we conduct extensive ablation studies and empirical analyses to justify our design choices and provide evidence that our approach effectively mitigates the overallocation problem in Mamba-based models. Our code is publicly available.
Efficient OpAmp Adaptation for Zoom Attention to Golden Contexts
Large language models (LLMs) have shown significant promise in question-answering (QA) tasks, particularly in retrieval-augmented generation (RAG) scenarios and long-context applications. However, their performance is hindered by noisy reference documents, which often distract from essential information. Despite fine-tuning efforts, Transformer-based architectures struggle to prioritize relevant content. This is evidenced by their tendency to allocate disproportionate attention to irrelevant or later-positioned documents. Recent work proposes the differential attention mechanism to address this issue, but this mechanism is limited by an unsuitable common-mode rejection ratio (CMRR) and high computational costs. Inspired by the operational amplifier (OpAmp), we propose the OpAmp adaptation to address these challenges, which is implemented with adapters efficiently. By integrating the adapter into pre-trained Transformer blocks, our approach enhances focus on the golden context without costly training from scratch. Empirical evaluations on noisy-context benchmarks reveal that our Qwen2.5-OpAmp-72B model, trained with our OpAmp adaptation, surpasses the performance of state-of-the-art LLMs, including DeepSeek-V3 and GPT-4o.
Music De-limiter Networks via Sample-wise Gain Inversion
The loudness war, an ongoing phenomenon in the music industry characterized by the increasing final loudness of music while reducing its dynamic range, has been a controversial topic for decades. Music mastering engineers have used limiters to heavily compress and make music louder, which can induce ear fatigue and hearing loss in listeners. In this paper, we introduce music de-limiter networks that estimate uncompressed music from heavily compressed signals. Inspired by the principle of a limiter, which performs sample-wise gain reduction of a given signal, we propose the framework of sample-wise gain inversion (SGI). We also present the musdb-XL-train dataset, consisting of 300k segments created by applying a commercial limiter plug-in for training real-world friendly de-limiter networks. Our proposed de-limiter network achieves excellent performance with a scale-invariant source-to-distortion ratio (SI-SDR) of 23.8 dB in reconstructing musdb-HQ from musdb- XL data, a limiter-applied version of musdb-HQ. The training data, codes, and model weights are available in our repository (https://github.com/jeonchangbin49/De-limiter).
DiffLoRA: Differential Low-Rank Adapters for Large Language Models
Differential Transformer has recently been proposed to improve performance in Transformer models by canceling out noise through a denoiser attention mechanism. In this work, we introduce DiffLoRA, a parameter-efficient adaptation of the differential attention mechanism, with low-rank adapters on both positive and negative attention terms. This approach retains the efficiency of LoRA while aiming to benefit from the performance gains of differential attention. We evaluate DiffLoRA across a broad range of NLP tasks, including general benchmarks, many-shot in-context learning, RAG, and long-context tests. We observe that, although DiffLoRA falls short of other parameter-efficient fine-tuning methods in most evaluation tasks, it shows interesting results in certain domains (+11 pts on LoRA for HumanEval). We analyze the attention patterns post-finetuning to identify the reasons for this behavior.
Sound Matching an Analogue Levelling Amplifier Using the Newton-Raphson Method
Automatic differentiation through digital signal processing algorithms for virtual analogue modelling has recently gained popularity. These algorithms are typically more computationally efficient than black-box neural networks that rely on dense matrix multiplications. Due to their differentiable nature, they can be integrated with neural networks and jointly trained using gradient descent algorithms, resulting in more efficient systems. Furthermore, signal processing algorithms have significantly fewer parameters than neural networks, allowing the application of the Newton-Raphson method. This method offers faster and more robust convergence than gradient descent at the cost of quadratic storage. This paper presents a method to emulate analogue levelling amplifiers using a feed-forward digital compressor with parameters optimised via the Newton-Raphson method. We demonstrate that a digital compressor can successfully approximate the behaviour of our target unit, the Teletronix LA-2A. Different strategies for computing the Hessian matrix are benchmarked. We leverage parallel algorithms for recursive filters to achieve efficient training on modern GPUs. The resulting model is made into a VST plugin and is open-sourced at https://github.com/aim-qmul/4a2a.
Super-Directive Antenna Arrays: How Many Elements Do We Need?
Super-directive antenna arrays have faced challenges in achieving high realized gains ever since their introduction in the academic literature. The primary challenges are high impedance mismatches and resistive losses, which become increasingly more dominant as the number of elements increases. Consequently, a critical limitation arises in determining the maximum number of elements that should be utilized to achieve super-directivity, particularly within dense array configurations. This paper addresses precisely this issue through an optimization study to design a super-directive antenna array with a maximum number of elements. An iterative approach is employed to increase the array of elements while sustaining a satisfactory realized gain using the differential evolution (DE) algorithm. Thus, it is observed that super-directivity can be obtained in an array with a maximum of five elements. Our results indicate that the obtained unit array has a 67.20% higher realized gain than a uniform linear array with conventional excitation. For these reasons, these results make the proposed architecture a strong candidate for applications that require densely packed arrays, particularly in the context of massive multiple-input multiple-output (MIMO).
AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design
In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.
Artificial Transmission Line Synthesis Tailored for Traveling-Wave Parametric Processes
Artificial transmission lines built with lumped-element inductors and capacitors form the backbone of broadband, nearly quantum-limited traveling-wave parametric amplifiers (TWPAs). However, systematic design methods for TWPAs, and more generally artificial transmission lines, are lacking. Here, I develop a general synthesis framework for lossless artificial transmission lines by borrowing from periodic structure theory and passive network synthesis. These complementary approaches divide the design space: periodic loading synthesis employs spatial modulation of frequency-independent components, while filter synthesis employs frequency-dependent responses in spatially-uniform components. When tailoring transmission lines for parametric processes, nonlinear elements are added, typically nonlinear inductances in superconducting circuits, while ensuring energy and momentum conservation between interacting tones. Applying this framework, I design a kinetic inductance TWPA with a novel phase-matching architecture, and a backward-pumped Josephson TWPA exploiting an ambidextrous i.e., right-left-handed transmission line.
The simple essence of automatic differentiation
Automatic differentiation (AD) in reverse mode (RAD) is a central component of deep learning and other uses of large-scale optimization. Commonly used RAD algorithms such as backpropagation, however, are complex and stateful, hindering deep understanding, improvement, and parallel execution. This paper develops a simple, generalized AD algorithm calculated from a simple, natural specification. The general algorithm is then specialized by varying the representation of derivatives. In particular, applying well-known constructions to a naive representation yields two RAD algorithms that are far simpler than previously known. In contrast to commonly used RAD implementations, the algorithms defined here involve no graphs, tapes, variables, partial derivatives, or mutation. They are inherently parallel-friendly, correct by construction, and usable directly from an existing programming language with no need for new data types or programming style, thanks to use of an AD-agnostic compiler plugin.
Diff-SSL-G-Comp: Towards a Large-Scale and Diverse Dataset for Virtual Analog Modeling
Virtual Analog (VA) modeling aims to simulate the behavior of hardware circuits via algorithms to replicate their tone digitally. Dynamic Range Compressor (DRC) is an audio processing module that controls the dynamics of a track by reducing and amplifying the volumes of loud and quiet sounds, which is essential in music production. In recent years, neural-network-based VA modeling has shown great potential in producing high-fidelity models. However, due to the lack of data quantity and diversity, their generalization ability in different parameter settings and input sounds is still limited. To tackle this problem, we present Diff-SSL-G-Comp, the first large-scale and diverse dataset for modeling the SSL 500 G-Bus Compressor. Specifically, we manually collected 175 unmastered songs from the Cambridge Multitrack Library. We recorded the compressed audio in 220 parameter combinations, resulting in an extensive 2528-hour dataset with diverse genres, instruments, tempos, and keys. Moreover, to facilitate the use of our proposed dataset, we conducted benchmark experiments in various open-sourced black-box and grey-box models, as well as white-box plugins. We also conducted ablation studies in different data subsets to illustrate the effectiveness of improved data diversity and quantity. The dataset and demos are on our project page: http://www.yichenggu.com/DiffSSLGComp/.
In-Context Brush: Zero-shot Customized Subject Insertion with Context-Aware Latent Space Manipulation
Recent advances in diffusion models have enhanced multimodal-guided visual generation, enabling customized subject insertion that seamlessly "brushes" user-specified objects into a given image guided by textual prompts. However, existing methods often struggle to insert customized subjects with high fidelity and align results with the user's intent through textual prompts. In this work, we propose "In-Context Brush", a zero-shot framework for customized subject insertion by reformulating the task within the paradigm of in-context learning. Without loss of generality, we formulate the object image and the textual prompts as cross-modal demonstrations, and the target image with the masked region as the query. The goal is to inpaint the target image with the subject aligning textual prompts without model tuning. Building upon a pretrained MMDiT-based inpainting network, we perform test-time enhancement via dual-level latent space manipulation: intra-head "latent feature shifting" within each attention head that dynamically shifts attention outputs to reflect the desired subject semantics and inter-head "attention reweighting" across different heads that amplifies prompt controllability through differential attention prioritization. Extensive experiments and applications demonstrate that our approach achieves superior identity preservation, text alignment, and image quality compared to existing state-of-the-art methods, without requiring dedicated training or additional data collection.
Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits
We introduce Reverse Derivative Ascent: a categorical analogue of gradient based methods for machine learning. Our algorithm is defined at the level of so-called reverse differential categories. It can be used to learn the parameters of models which are expressed as morphisms of such categories. Our motivating example is boolean circuits: we show how our algorithm can be applied to such circuits by using the theory of reverse differential categories. Note our methodology allows us to learn the parameters of boolean circuits directly, in contrast to existing binarised neural network approaches. Moreover, we demonstrate its empirical value by giving experimental results on benchmark machine learning datasets.
Architect of the Bits World: Masked Autoregressive Modeling for Circuit Generation Guided by Truth Table
Logic synthesis, a critical stage in electronic design automation (EDA), optimizes gate-level circuits to minimize power consumption and area occupancy in integrated circuits (ICs). Traditional logic synthesis tools rely on human-designed heuristics, often yielding suboptimal results. Although differentiable architecture search (DAS) has shown promise in generating circuits from truth tables, it faces challenges such as high computational complexity, convergence to local optima, and extensive hyperparameter tuning. Consequently, we propose a novel approach integrating conditional generative models with DAS for circuit generation. Our approach first introduces CircuitVQ, a circuit tokenizer trained based on our Circuit AutoEncoder We then develop CircuitAR, a masked autoregressive model leveraging CircuitVQ as the tokenizer. CircuitAR can generate preliminary circuit structures from truth tables, which guide DAS in producing functionally equivalent circuits. Notably, we observe the scalability and emergent capability in generating complex circuit structures of our CircuitAR models. Extensive experiments also show the superior performance of our method. This research bridges the gap between probabilistic generative models and precise circuit generation, offering a robust solution for logic synthesis.
Transferable Parasitic Estimation via Graph Contrastive Learning and Label Rebalancing in AMS Circuits
Graph representation learning on Analog-Mixed Signal (AMS) circuits is crucial for various downstream tasks, e.g., parasitic estimation. However, the scarcity of design data, the unbalanced distribution of labels, and the inherent diversity of circuit implementations pose significant challenges to learning robust and transferable circuit representations. To address these limitations, we propose CircuitGCL, a novel graph contrastive learning framework that integrates representation scattering and label rebalancing to enhance transferability across heterogeneous circuit graphs. CircuitGCL employs a self-supervised strategy to learn topology-invariant node embeddings through hyperspherical representation scattering, eliminating dependency on large-scale data. Simultaneously, balanced mean squared error (BMSE) and balanced softmax cross-entropy (BSCE) losses are introduced to mitigate label distribution disparities between circuits, enabling robust and transferable parasitic estimation. Evaluated on parasitic capacitance estimation (edge-level task) and ground capacitance classification (node-level task) across TSMC 28nm AMS designs, CircuitGCL outperforms all state-of-the-art (SOTA) methods, with the R^2 improvement of 33.64% sim 44.20% for edge regression and F1-score gain of 0.9times sim 2.1times for node classification. Our code is available at https://github.com/ShenShan123/CircuitGCL.
Differentiable Black-box and Gray-box Modeling of Nonlinear Audio Effects
Audio effects are extensively used at every stage of audio and music content creation. The majority of differentiable audio effects modeling approaches fall into the black-box or gray-box paradigms; and most models have been proposed and applied to nonlinear effects like guitar amplifiers, overdrive, distortion, fuzz and compressor. Although a plethora of architectures have been introduced for the task at hand there is still lack of understanding on the state of the art, since most publications experiment with one type of nonlinear audio effect and a very small number of devices. In this work we aim to shed light on the audio effects modeling landscape by comparing black-box and gray-box architectures on a large number of nonlinear audio effects, identifying the most suitable for a wide range of devices. In the process, we also: introduce time-varying gray-box models and propose models for compressor, distortion and fuzz, publish a large dataset for audio effects research - ToneTwist AFx https://github.com/mcomunita/tonetwist-afx-dataset - that is also the first open to community contributions, evaluate models on a variety of metrics and conduct extensive subjective evaluation. Code https://github.com/mcomunita/nablafx and supplementary material https://github.com/mcomunita/nnlinafx-supp-material are also available.
Efficient neural networks for real-time modeling of analog dynamic range compression
Deep learning approaches have demonstrated success in modeling analog audio effects. Nevertheless, challenges remain in modeling more complex effects that involve time-varying nonlinear elements, such as dynamic range compressors. Existing neural network approaches for modeling compression either ignore the device parameters, do not attain sufficient accuracy, or otherwise require large noncausal models prohibiting real-time operation. In this work, we propose a modification to temporal convolutional networks (TCNs) enabling greater efficiency without sacrificing performance. By utilizing very sparse convolutional kernels through rapidly growing dilations, our model attains a significant receptive field using fewer layers, reducing computation. Through a detailed evaluation we demonstrate our efficient and causal approach achieves state-of-the-art performance in modeling the analog LA-2A, is capable of real-time operation on CPU, and only requires 10 minutes of training data.
DOA Estimation by DNN-based Denoising and Dereverberation from Sound Intensity Vector
We propose a direction of arrival (DOA) estimation method that combines sound-intensity vector (IV)-based DOA estimation and DNN-based denoising and dereverberation. Since the accuracy of IV-based DOA estimation degrades due to environmental noise and reverberation, two DNNs are used to remove such effects from the observed IVs. DOA is then estimated from the refined IVs based on the physics of wave propagation. Experiments on an open dataset showed that the average DOA error of the proposed method was 0.528 degrees, and it outperformed a conventional IV-based and DNN-based DOA estimation method.
Modeling Analog Dynamic Range Compressors using Deep Learning and State-space Models
We describe a novel approach for developing realistic digital models of dynamic range compressors for digital audio production by analyzing their analog prototypes. While realistic digital dynamic compressors are potentially useful for many applications, the design process is challenging because the compressors operate nonlinearly over long time scales. Our approach is based on the structured state space sequence model (S4), as implementing the state-space model (SSM) has proven to be efficient at learning long-range dependencies and is promising for modeling dynamic range compressors. We present in this paper a deep learning model with S4 layers to model the Teletronix LA-2A analog dynamic range compressor. The model is causal, executes efficiently in real time, and achieves roughly the same quality as previous deep-learning models but with fewer parameters.
Exploring Adapter Design Tradeoffs for Low Resource Music Generation
Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.
Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
Direction of arrival estimation for multiple sound sources using convolutional recurrent neural network
This paper proposes a deep neural network for estimating the directions of arrival (DOA) of multiple sound sources. The proposed stacked convolutional and recurrent neural network (DOAnet) generates a spatial pseudo-spectrum (SPS) along with the DOA estimates in both azimuth and elevation. We avoid any explicit feature extraction step by using the magnitudes and phases of the spectrograms of all the channels as input to the network. The proposed DOAnet is evaluated by estimating the DOAs of multiple concurrently present sources in anechoic, matched and unmatched reverberant conditions. The results show that the proposed DOAnet is capable of estimating the number of sources and their respective DOAs with good precision and generate SPS with high signal-to-noise ratio.
D2S-FLOW: Automated Parameter Extraction from Datasheets for SPICE Model Generation Using Large Language Models
In electronic design, engineers often manually search through extensive documents to retrieve component parameters required for constructing SPICE models, a process that is both labor-intensive and time-consuming. To address this challenge, we present an automated framework called D2S-FLOW that leverages large language models (LLMs) to extract electrical parameters from datasheets and generate SPICE models with high precision and efficiency, significantly reducing the need for manual intervention. Unlike traditional RAG systems, D2S-FLOW employs a workflow to enhance precision in handling unstructured documents and inconsistent naming conventions through three innovative mechanisms: Attention-Guided Document Focusing (AGDF), Hierarchical Document-Enhanced Retrieval (HDER), and Heterogeneous Named Entity Normalization (HNEN). AGDF narrows retrieval to user-selected documents, HDER utilizes document structure for precise parameter localization, and HNEN standardizes terminology via semantic inference. Experimental results demonstrate that the framework achieves an Exact Match (EM) of 0.86, an F1 score of 0.92, and an Exact Correctness (EC) of 0.96, outperforming the strongest baseline by 19.4%, 5.7%, and 13.1%, respectively. Additionally, it reduces API token consumption by 38% and minimizes the irrelevant information ratio to 4%, showcasing substantial improvements in resource efficiency. This research provides an effective automated solution for circuit design.
A Differentially Private Clustering Algorithm for Well-Clustered Graphs
We study differentially private (DP) algorithms for recovering clusters in well-clustered graphs, which are graphs whose vertex set can be partitioned into a small number of sets, each inducing a subgraph of high inner conductance and small outer conductance. Such graphs have widespread application as a benchmark in the theoretical analysis of spectral clustering. We provide an efficient (epsilon,delta)-DP algorithm tailored specifically for such graphs. Our algorithm draws inspiration from the recent work of Chen et al., who developed DP algorithms for recovery of stochastic block models in cases where the graph comprises exactly two nearly-balanced clusters. Our algorithm works for well-clustered graphs with k nearly-balanced clusters, and the misclassification ratio almost matches the one of the best-known non-private algorithms. We conduct experimental evaluations on datasets with known ground truth clusters to substantiate the prowess of our algorithm. We also show that any (pure) epsilon-DP algorithm would result in substantial error.
Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning
The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due to challenges in designing quantum circuit architectures, including data encoding and parameterized circuits, which profoundly influence model performance. In this paper, we propose addressing this challenge with differentiable quantum architecture search (DiffQAS), enabling trainable circuit parameters and structure weights using gradient-based optimization. Furthermore, we enhance training efficiency through asynchronous reinforcement learning (RL) methods facilitating parallel training. Through numerical simulations, we demonstrate that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures across considered environments, showcasing stability across diverse scenarios. This methodology offers a pathway for designing QRL models without extensive quantum knowledge, ensuring robust performance and fostering broader application of QRL.
FlowDec: A flow-based full-band general audio codec with high perceptual quality
We propose FlowDec, a neural full-band audio codec for general audio sampled at 48 kHz that combines non-adversarial codec training with a stochastic postfilter based on a novel conditional flow matching method. Compared to the prior work ScoreDec which is based on score matching, we generalize from speech to general audio and move from 24 kbit/s to as low as 4 kbit/s, while improving output quality and reducing the required postfilter DNN evaluations from 60 to 6 without any fine-tuning or distillation techniques. We provide theoretical insights and geometric intuitions for our approach in comparison to ScoreDec as well as another recent work that uses flow matching, and conduct ablation studies on our proposed components. We show that FlowDec is a competitive alternative to the recent GAN-dominated stream of neural codecs, achieving FAD scores better than those of the established GAN-based codec DAC and listening test scores that are on par, and producing qualitatively more natural reconstructions for speech and harmonic structures in music.
Real-time Low-latency Music Source Separation using Hybrid Spectrogram-TasNet
There have been significant advances in deep learning for music demixing in recent years. However, there has been little attention given to how these neural networks can be adapted for real-time low-latency applications, which could be helpful for hearing aids, remixing audio streams and live shows. In this paper, we investigate the various challenges involved in adapting current demixing models in the literature for this use case. Subsequently, inspired by the Hybrid Demucs architecture, we propose the Hybrid Spectrogram Time-domain Audio Separation Network HS-TasNet, which utilises the advantages of spectral and waveform domains. For a latency of 23 ms, the HS-TasNet obtains an overall signal-to-distortion ratio (SDR) of 4.65 on the MusDB test set, and increases to 5.55 with additional training data. These results demonstrate the potential of efficient demixing for real-time low-latency music applications.
Leveraging Continuously Differentiable Activation Functions for Learning in Quantized Noisy Environments
Real-world analog systems intrinsically suffer from noise that can impede model convergence and accuracy on a variety of deep learning models. We demonstrate that differentiable activations like GELU and SiLU enable robust propagation of gradients which help to mitigate analog quantization error that is ubiquitous to all analog systems. We perform analysis and training of convolutional, linear, and transformer networks in the presence of quantized noise. Here, we are able to demonstrate that continuously differentiable activation functions are significantly more noise resilient over conventional rectified activations. As in the case of ReLU, the error in gradients are 100x higher than those in GELU near zero. Our findings provide guidance for selecting appropriate activations to realize performant and reliable hardware implementations across several machine learning domains such as computer vision, signal processing, and beyond.
Accelerating Automatic Differentiation of Direct Form Digital Filters
We introduce a general formulation for automatic differentiation through direct form filters, yielding a closed-form backpropagation that includes initial condition gradients. The result is a single expression that can represent both the filter and its gradients computation while supporting parallelism. C++/CUDA implementations in PyTorch achieve at least 1000x speedup over naive Python implementations and consistently run fastest on the GPU. For the low-order filters commonly used in practice, exact time-domain filtering with analytical gradients outperforms the frequency-domain method in terms of speed. The source code is available at https://github.com/yoyolicoris/philtorch.
Modulation Extraction for LFO-driven Audio Effects
Low frequency oscillator (LFO) driven audio effects such as phaser, flanger, and chorus, modify an input signal using time-varying filters and delays, resulting in characteristic sweeping or widening effects. It has been shown that these effects can be modeled using neural networks when conditioned with the ground truth LFO signal. However, in most cases, the LFO signal is not accessible and measurement from the audio signal is nontrivial, hindering the modeling process. To address this, we propose a framework capable of extracting arbitrary LFO signals from processed audio across multiple digital audio effects, parameter settings, and instrument configurations. Since our system imposes no restrictions on the LFO signal shape, we demonstrate its ability to extract quasiperiodic, combined, and distorted modulation signals that are relevant to effect modeling. Furthermore, we show how coupling the extraction model with a simple processing network enables training of end-to-end black-box models of unseen analog or digital LFO-driven audio effects using only dry and wet audio pairs, overcoming the need to access the audio effect or internal LFO signal. We make our code available and provide the trained audio effect models in a real-time VST plugin.
